26 research outputs found

    Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time

    Get PDF
    A loosely-stabilizing leader election protocol with polylogarithmic convergence time in the population protocol model is presented in this paper. In the population protocol model, which is a common abstract model of mobile sensor networks, it is known to be impossible to design a self-stabilizing leader election protocol. Thus, in our prior work, we introduced the concept of loose-stabilization, which is weaker than self-stabilization but has similar advantage as self-stabilization in practice. Following this work, several loosely-stabilizing leader election protocols are presented. The loosely-stabilizing leader election guarantees that, starting from an arbitrary configuration, the system reaches a safe configuration with a single leader within a relatively short time, and keeps the unique leader for an sufficiently long time thereafter. The convergence times of all the existing loosely-stabilizing protocols, i.e., the expected time to reach a safe configuration, are polynomial in n where n is the number of nodes (while the holding times to keep the unique leader are exponential in n). In this paper, a loosely-stabilizing protocol with polylogarithmic convergence time is presented. Its holding time is not exponential, but arbitrarily large polynomial in n

    Brief Announcement: Loosely-stabilizing Leader Election with Polylogarithmic Convergence Time

    Get PDF
    We present a fast loosely-stabilizing leader election protocol in the population protocol model. It elects a unique leader in a poly-logarithmic time and holds the leader for a polynomial time with arbitrarily large degree in terms of parallel time, i.e, the number of steps per the population size

    Uniform Partition in Population Protocol Model Under Weak Fairness

    Get PDF
    We focus on a uniform partition problem in a population protocol model. The uniform partition problem aims to divide a population into k groups of the same size, where k is a given positive integer. In the case of k=2 (called uniform bipartition), a previous work clarified space complexity under various assumptions: 1) an initialized base station (BS) or no BS, 2) weak or global fairness, 3) designated or arbitrary initial states of agents, and 4) symmetric or asymmetric protocols, except for the setting that agents execute a protocol from arbitrary initial states under weak fairness in the model with an initialized base station. In this paper, we clarify the space complexity for this remaining setting. In this setting, we prove that P states are necessary and sufficient to realize asymmetric protocols, and that P+1 states are necessary and sufficient to realize symmetric protocols, where P is the known upper bound of the number of agents. From these results and the previous work, we have clarified the solvability of the uniform bipartition for each combination of assumptions. Additionally, we newly consider an assumption on a model of a non-initialized BS and clarify solvability and space complexity in the assumption. Moreover, the results in this paper can be applied to the case that k is an arbitrary integer (called uniform k-partition)

    Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols

    Get PDF
    We consider the leader election problem in the population protocol model. In pragmatic settings of population protocols, self-stabilization is a highly desired feature owing to its fault resilience and the benefit of initialization freedom. However, the design of self-stabilizing leader election is possible only under a strong assumption (i.e., the knowledge of the exact size of a network) and rich computational resource (i.e., the number of states). Loose-stabilization is a promising relaxed concept of self-stabilization to address the aforementioned issue. Loose-stabilization guarantees that starting from any configuration, the network will reach a safe configuration where a single leader exists within a short time, and thereafter it will maintain the single leader for a long time, but not necessarily forever. The main contribution of this paper is giving a time-optimal loosely-stabilizing leader election protocol. The proposed protocol with design parameter ? ? 1 attains O(? log n) parallel convergence time and ?(n^?) parallel holding time (i.e., the length of the period keeping the unique leader), both in expectation. This protocol is time-optimal in the sense of both the convergence and holding times in expectation because any loosely-stabilizing leader election protocol with the same length of the holding time is known to require ?(? log n) parallel time

    Smoothed Analysis of Population Protocols

    Get PDF

    Uniform Bipartition in the Population Protocol Model with Arbitrary Communication Graphs

    Get PDF
    In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight

    Dynamic Size Counting in Population Protocols

    Get PDF
    The population protocol model describes a network of anonymous agents that interact asynchronously in pairs chosen at random. Each agent starts in the same initial state ss. We introduce the *dynamic size counting* problem: approximately counting the number of agents in the presence of an adversary who at any time can remove any number of agents or add any number of new agents in state ss. A valid solution requires that after each addition/removal event, resulting in population size nn, with high probability each agent "quickly" computes the same constant-factor estimate of the value log2n\log_2 n (how quickly is called the *convergence* time), which remains the output of every agent for as long as possible (the *holding* time). Since the adversary can remove agents, the holding time is necessarily finite: even after the adversary stops altering the population, it is impossible to *stabilize* to an output that never again changes. We first show that a protocol solves the dynamic size counting problem if and only if it solves the *loosely-stabilizing counting* problem: that of estimating logn\log n in a *fixed-size* population, but where the adversary can initialize each agent in an arbitrary state, with the same convergence time and holding time. We then show a protocol solving the loosely-stabilizing counting problem with the following guarantees: if the population size is nn, MM is the largest initial estimate of logn\log n, and s is the maximum integer initially stored in any field of the agents' memory, we have expected convergence time O(logn+logM)O(\log n + \log M), expected polynomial holding time, and expected memory usage of O(log2(s)+(loglogn)2)O(\log^2 (s) + (\log \log n)^2) bits. Interpreted as a dynamic size counting protocol, when changing from population size nprevn_{prev} to nnextn_{next}, the convergence time is O(lognnext+loglognprev)O(\log n_{next} + \log \log n_{prev})

    Fast Graphical Population Protocols

    Get PDF
    Let GG be a graph on nn nodes. In the stochastic population protocol model, a collection of nn indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each interaction, two randomly chosen neighbors first read each other's states, and then update their local states. A rich line of research has established tight upper and lower bounds on the complexity of fundamental tasks, such as majority and leader election, in this model, when GG is a clique. Specifically, in the clique, these tasks can be solved fast, i.e., in npolylognn \operatorname{polylog} n pairwise interactions, with high probability, using at most polylogn\operatorname{polylog} n states per node. In this work, we consider the more general setting where GG is an arbitrary graph, and present a technique for simulating protocols designed for fully-connected networks in any connected regular graph. Our main result is a simulation that is efficient on many interesting graph families: roughly, the simulation overhead is polylogarithmic in the number of nodes, and quadratic in the conductance of the graph. As a sample application, we show that, in any regular graph with conductance ϕ\phi, both leader election and exact majority can be solved in ϕ2npolylogn\phi^{-2} \cdot n \operatorname{polylog} n pairwise interactions, with high probability, using at most ϕ2polylogn\phi^{-2} \cdot \operatorname{polylog} n states per node. This shows that there are fast and space-efficient population protocols for leader election and exact majority on graphs with good expansion properties. We believe our results will prove generally useful, as they allow efficient technology transfer between the well-mixed (clique) case, and the under-explored spatial setting.Comment: 47 pages, 5 figure
    corecore