
Dynamic Size Counting in Population Protocols
David Doty # Ñ

University of California, Davis, CA, USA

Mahsa Eftekhari #Ñ

University of California, Davis, CA, USA

Abstract
The population protocol model describes a network of anonymous agents that interact asynchronously
in pairs chosen at random. Each agent starts in the same initial state s. We introduce the dynamic
size counting problem: approximately counting the number of agents in the presence of an adversary
who at any time can remove any number of agents or add any number of new agents in state s.
A valid solution requires that after each addition/removal event, resulting in population size n,
with high probability each agent “quickly” computes the same constant-factor estimate of the value
log2 n (how quickly is called the convergence time), which remains the output of every agent for
as long as possible (the holding time). Since the adversary can remove agents, the holding time is
necessarily finite: even after the adversary stops altering the population, it is impossible to stabilize
to an output that never again changes.

We first show that a protocol solves the dynamic size counting problem if and only if it solves
the loosely-stabilizing counting problem: that of estimating log n in a fixed-size population, but
where the adversary can initialize each agent in an arbitrary state, with the same convergence time
and holding time. We then show a protocol solving the loosely-stabilizing counting problem with
the following guarantees: if the population size is n, M is the largest initial estimate of log n, and
s is the maximum integer initially stored in any field of the agents’ memory, we have expected
convergence time O(log n + log M), expected polynomial holding time, and expected memory usage
of O(log2(s) + (log log n)2) bits. Interpreted as a dynamic size counting protocol, when changing
from population size nprev to nnext, the convergence time is O(log nnext + log log nprev).

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Models of computation

Keywords and phrases Loosely-stabilizing, population protocols, size counting

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.13

Related Version Full Version: https://arxiv.org/abs/2202.12864

Supplementary Material Software (Simulation Results with Colab Notebook):
https://github.com/eftekhari-mhs/population-protocols/tree/main/dynamic_counting

archived at swh:1:dir:a71288ec3836738d716285e3e6f6446978940c2f

Funding Supported by NSF award 1900931 and CAREER award 1844976.

1 Introduction

A population protocol [6] is a network of n anonymous and identical agents with finite memory
called the state. A scheduler repeatedly selects a pair of agents independently and uniformly
at random to interact. Each agent sees the entire state of the other agent in the interaction
and updates own state in response. Time complexity is measured by parallel time: the number
of interactions divided by the population size n, capturing the natural time scale in which
each agent has Θ(1) interactions per unit time. The agents collectively do a computation,
e.g., population size counting: computing the value n. Counting is a fundamental task in
distributed computing: knowing an estimate of n often simplifies the design of protocols
solving problems such as majority and leader election [1, 2, 4, 11,13–16,24,31,35].

© David Doty and Mahsa Eftekhari;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:doty@ucdavis.edu
https://web.cs.ucdavis.edu/~doty/
https://orcid.org/0000-0002-3922-172X
mailto:mhseftekhari@ucdavis.edu
https://eftekhari.cs.ucdavis.edu/
https://orcid.org/0000-0001-5680-2086
https://doi.org/10.4230/LIPIcs.SAND.2022.13
https://arxiv.org/abs/2202.12864
https://github.com/eftekhari-mhs/population-protocols/tree/main/dynamic_counting
https://github.com/eftekhari-mhs/population-protocols/tree/main/dynamic_counting
https://archive.softwareheritage.org/swh:1:dir:a71288ec3836738d716285e3e6f6446978940c2f;origin=https://github.com/eftekhari-mhs/population-protocols;visit=swh:1:snp:eaebac3f9ac66fd8998e5ac147f1e51ef6d4c587;anchor=swh:1:rev:36108bc5d89e93b463430ef55235972391ba9e53;path=/dynamic_counting/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Dynamic Size Counting in Population Protocols

A protocol is defined by a transition function with a pair of states as input and as output
(more generally to capture randomized protocols, a relation that can associate multiple
outputs to the same input). For example, consider the simple counting protocol with
transitions Li, Lj → Li+j , Fi+j , with every agent starting in L1. In population size n, this
protocol converges to a single agent in state Ln, with all other agents in state Fi for some i.
The additional transitions Fi, Fj → Fj , Fj for i < j propagate the output n to all agents.

The dynamic size counting problem

In contrast to most work, which assumes the population size n is fixed over time, we model an
adversary that can add or remove agents arbitrarily and repeatedly during the computation.
All agents start in the same state, including newly added agents. The goal is for each agent
to approximately count the population size n, which we define to mean that all agents should
eventually store the same output k in their states, which with high probability is within
a constant multiplicative factor of log n.1 Once all agents have the same output k, they
have converged. They maintain k as the output for some time called the holding time (after
which they might alter k even if the population size has not changed). In response to a
“significant” change in size from nprev to nnext, agents should re-converge to a new output
k′ of log nnext. (Agents are not “notified” about the change; instead they must continually
monitor the population to test whether their current output is accurate.) Note that if nprev
is close to nnext (within a polynomial factor), then k may remain an accurate estimate of
nnext, so agents may not re-converge in response to a small change.

Ideally the expected convergence time is small, and the expected holding time is large.
With a fixed size population, it is common to require the output to stabilize to a value that
never again changes after convergence, i.e., infinite holding time. However, this turns out to be
impossible with an adversary that can remove agents (Observation 3.4). When changing from
size nprev to nnext, our protocol achieves expected convergence time O(log nnext +log log nprev)
and expected holding time Ω(nc

next), where c can be made arbitrarily large. The number of
bits of memory used per agent is O(log2(s) + (log log n)2), where s is the maximum integer
stored in the agents’ memory after the change.

While it is common to measure population protocol memory complexity by counting
the number of states (which is exponentially larger than the number of bits required to
represent each state), that measure is a bit awkward here. Our protocol is uniform – the same
transition rules for every population size – so has an infinite number of producible states.
One could count expected number of states that will be produced, but this is a bit misleading:
in time t each agent visits O(t) states on average, so O(t · n) states total. Counting how
many bits are required is more accurate metric of the actual memory requirements.

The loosely-stabilizing counting problem

The dynamic size counting problem has an equivalent characterization: rather than removing
agents and adding them with a fixed initial state, the loosely-stabilizing adversary sets each
agent to an arbitrary initial state in a fixed-size population. A protocol solves the dynamic
size counting problem if and only if it solves the loosely-stabilizing counting problem, with
the same convergence and holding times (Lemma 3.5). Due to this equivalence, we analyze

1 Nonuniform protocols require agents to be initialized with an estimate k of log n in order to accomplish
other tasks, such as a “leaderless phase clock” [1]. The bound k = Θ(log n) is necessary and sufficient
for correctness and speed in most cases [1, 2, 4, 11,13–16,24,31,35].

D. Doty and M. Eftekhari 13:3

our protocol assuming a fixed population size and adversarial initial states. In this case
our convergence time O(log n + log M) is measured as a function of the population size n

and the value M that is the maximum estimate value stored in agents’ memory. From the
perspective of the dynamic size counting problem, these “adversarial initial states” would
correspond to the agent states after correctly estimating the previous population size, just
prior to adding or removing agents.

1.1 Related work
Initialized counting with a fixed size population. In population protocols with fixed size,
there is work computing exactly or approximately the population size n. For a full review
see [19]. Such protocols reach a stable configuration from which the output cannot change.
Some of these counting protocols would still solve the counting problem in the presence of
an adversary who can only add agents (see Observation 3.3). However, these protocols fail
in the presence of an adversary who can also remove agents, since they work only in the
initialized setting and rely on reaching a stable configuration (see Observation 3.4).

Self-stabilizing counting with a fixed size population. A population protocol is self-
stabilizing if, from any initial configuration, it reaches to a correct stable configuration.
Self-stabilizing size counting has been studied [8–10,27], but provably requires adding a “base
station” agent that cannot be corrupted by the adversary. In these protocols the base station
is the only agent required to learn the population size. Aspnes, Beauquier, Burman, and
Sohier [8] showed a time- and space-optimal protocol that solves the exact counting problem
in O(n log n) time, using 1-bit memory for each non-base station agent.

Size regulation in a dynamically sized population. The model described by Goldwasser,
Ostrovsky, Scafuro, and Sealfon [25] is close to our setting. They consider the size regulation
problem: approximately maintaining a target size (hard-coded into each agent) using
O(log log n) bits of memory per agent, despite an adversary that (like ours) adds or removes
agents. That paper assumes a model variation in which:

The agents can replicate or self-destruct.
The computation happens through synchronized rounds of interactions. At each round
the scheduler selects a random matching of size k = O(n) agents to interact.
The adversary’s changes to the population size are limited. The adversary can insert or
delete a total of o(n1/4) agents within each round.

The latter two model differences above crucially rule out their protocol as useful for
our problem. We use the standard asynchronous scheduler, and much of the complexity of
our protocol is to handle drastic population size changes (e.g., removing n− log n agents).
Additionally, their protocol heavily relies on flipping coins of bias 1√

n
that we cannot utilize

since the agents don’t start with an estimate of n. Moreover, even when the agents compute
their estimate, the population size might change.

Loosely-stabilizing leader election. Sudo, Nakamura, Yamauchi, Ooshita, Kakugawa, and
Masuzawa [34] introduce loose-stabilization as a relaxation for the self-stabilizing leader
election problem in which the agents must know the exact population size to elect a leader.
The loosely stabilizing leader election guarantees that starting from any configuration, the
population will elect a leader within a short time. After that, the agents hold the leader
for a long time but not forever (in contrast with self-stabilization). On the positive side,
the agents no longer need to know the exact population size to solve the loosely-stabilizing

SAND 2022

13:4 Dynamic Size Counting in Population Protocols

leader election, but a rough upper bound suffices. Loosely-stabilizing leader election has
been studied, providing a time-optimal protocol that solves the leader election problem [33]
and a tradeoff between the holding and convergence times [26,36].

Computation with dynamically changing inputs. Alistarh, Töpfer, and Uznański [5]
consider the dynamic variant of the comparison problem. In the comparision problem, a
subset of population are in the input states X and Y and the goal is to compute if X > Y

or X < Y . In the dynamic variant of the comparision problem, they assume an adversary
who can change the counts of the input states at any time. The agents should compute
the output as long as the counts remain untouched for sufficiently long time. They propose
a protocol that solves the comparision problem in O(log n) time using O(log n) states per
agent, assuming |X| ≥ C2 · |Y | ≥ C1 log n for some constants C1, C2 > 1.

Berenbrink, Biermeier, Hahn, and Kaaser [12] consider the adaptive majority problem
(generalization of the comparison problem [5]). At any time every agent has an opinion from
{X, Y } or undecided and their opinions might change adversarially. The goal is to have
agreement in the population about the majority opinion. They introduce a non-uniform
loosely-stabilizing leaderless phase clock that that uses O(log n) states to solve the adaptive
majority problem. This is similar to having an adversary who can add or remove agents with
different opinion. However, all agents are assumed already to have an estimate of log n that
remains untouched. Thus it is not straightforward to use their protocol to solve our problem
of obtaining this estimate.

2 Definitions and Notation

A population protocol is a pair P = (Λ, ∆), where Λ is a finite set of states, and ∆ ⊆
(Λ×Λ)×(Λ×Λ) is the transition relation. (Often this is defined as a function δ : Λ×Λ→ Λ×Λ,
but we allow randomized transitions, where the same pair of inputs can randomly choose
among multiple outputs.)

A configuration c of a population protocol is a multiset over Λ of size n, giving the
states of the n agents in the population. For a state s ∈ Λ, we write c(s) to denote the
count of agents in state s. A transition is a 4-tuple, written α : r1, r2 → p1, p2, such that
((r1, r2), (p1, p2)) ∈ ∆. If an agent in state r1 interacts with an agent in state r2, then they
can change states to p1 and p2. This notation omits explicit probabilities; our main protocol’s
transitions can be implemented so as to always have either one or two possible outputs for
any input pair, with probability 1/2 of each output in the latter case.2 For every pair of
states r1, r2 without an explicitly listed transition r1, r2 → p1, p2, there is an implicit null
transition r1, r2 → r1, r2 in which the agents interact but do not change state. For our main
protocol, we specify transitions formally with pseudocode that indicate how agents alter each
independent field in their state. We say a configuration d is reachable from a configuration c
if applying 0 or more transitions to c results in d.

When discussing random events in a protocol of population size n, we say event E happens
with high probability if Pr [¬E] = O(n−c), where c is a constant that depends on our choice of
parameters in the protocol, where c can be made arbitrarily large by changing the parameters.

2 For the purpose of representation, we make an exception in our protocol, when we show agents generate
a geometric random variable in one line (see Protocol 6). However, we can assume a geometric random
variable is generated through O(log n) consecutive interactions with each selecting out of two possible
outputs (H or T).

D. Doty and M. Eftekhari 13:5

For concreteness, we will write a particular polynomial probability such as O(n−2), but in
each case we could tune some parameter (say, increasing the time complexity by a constant
factor) to increase the polynomial’s exponent.

To measure time we count the total number of interactions (including null transitions
such as a, b→ a, b in which the agents interact but do not change state), and divide by the
number of agents n.

In a uniform protocol (such as the main one of this paper), the transitions are independent
from the population size n (see [21] for a formal definition). In other words, a single protocol
computes the output correctly when applied on any population size. In contrast, in a
nonuniform protocol different transitions are applied for different population sizes.

A protocol stably solves a problem if the agents eventually reach a correct configuration
with probability 1, and no subsequent interactions can move the agents to an incorrect
configuration; i.e., the configuration is stable. A population protocol is self-stabilizing if from
any initial configuration, the agents stably solve the problem.

3 Dynamic Size Counting

In a population of size n, define C(n, ϵ1, ϵ2) to be the set of correct configurations c such
that every agent u in c obeys ϵ1 log n < u.estimate < ϵ2 log n. Let th be any time bound.
Moreover, we define L(n, th) ⊂ C(n, ϵ1, ϵ2) the subset of correct configurations such that
as the expected time for protocol P starting from a configuration l ∈ L(n, th) to stay in
C(n, ϵ1, ϵ2) is at least th(n).

▶ Definition 3.1. Let nprev and nnext denote the previous and next population size. A protocol
P solves the dynamic size counting problem if there are ϵ1, ϵ2 > 0, called the accuracy, such
that if the population size changes from nprev to nnext, the protocol reaches a configuration l
in L(nnext, th) with high probability. The time needed to do this is called the convergence
time. Moreover, th, the time that the population stays in C(nnext, ϵ1, ϵ2), is called the holding
time.

A population protocol is (tc(n), th(n))-loosely stabilizing if starting from any initial
configuration, the agents reach a correct configuration in tc(n) time and stay in the correct
configuration for additional th(n) time [33,34]. In contrast to self-stabilizing [7,17], subsequent
interactions can move the agents to an incorrect configuration; however, the agents recover
quickly from an incorrect configuration.

Given any starting configuration s ̸∈ C(n, ϵ1, ϵ2) of size n, we define fc(s, L(n, th)) as the
expected time to reach a correct configuration in L(n, th).

▶ Definition 3.2 ([34, Definition 2]). Let tc(n, M) and th(n) be functions of n, the largest
integer value M in the initial configuration s, and the set of correct configuration C(n, ϵ1, ϵ2).
A protocol P is a tc(n, M), th(n), ϵ1, ϵ2 loosely-stabilizing population size counting protocol if
there exists a set L(n, th) ⊂ C(n, ϵ1, ϵ2) of configurations satisfying:

For every n and every initial configuration s ̸∈ C(n, ϵ1, ϵ2) of size n, fc(s, L(n, th)) ≤
tc(n, M).

3.1 Basic properties of the dynamic size counting problem
We first observe that the key challenge in dynamic size counting is that the adversary may
remove agents. If the adversary can only add agents, the problem is straightforward to solve
with optimal convergence and holding times.

SAND 2022

13:6 Dynamic Size Counting in Population Protocols

▶ Observation 3.3. Suppose the adversary in the dynamic size counting problem only adds
agents. Then there is a protocol solving dynamic size counting with O(log n) convergence
time (in expectation and with probability ≥ 1−O(1/n)) and infinite holding time.

Proof. Each agent in the initial state s generates a geometric random variable. After the last
time that the adversary adds agents, resulting in n total agents, exactly n geometric random
variables will have been generated. Agents propagate the maximum by epidemic using
transition a, b→ max(a, b), max(a, b), taking 3 ln n time to reach all agents with probability
≥ 1− 1

n2 [17, Corollary 2.8]. The maximum of n i.i.d. geometric random variables is in
the range [log n− log ln n, 2 log n] with probability ≥ 1− 1

n [18, Lemma D.7]. ◀

In contrast, if the adversary can remove agents, then even if it is guaranteed to do this
exactly once, no protocol can be stabilizing, i.e., have infinite holding time.

▶ Observation 3.4. Suppose the adversary in the dynamic size counting problem will remove
agents exactly once. Then any protocol solving the problem has finite holding time.

Proof. Suppose otherwise. Let the initial population size be n and the later size be n′ < n.
The protocol must handle the case where the adversary never removes agents, since in
population size n this is equivalent to an adversary who starts with n + 1 agents and
immediately removes one of them. Thus if the adversary waits sufficiently long before the
removal, then all agents stabilize to output k = Θ(log n). In other words, no sequence of
transitions can alter the value, including transitions occurring only among any subpopulation
of size n′. So after the adversary removes n− n′ agents, the remaining n′ agents are unable
to alter the output k, a contradiction if n′ is sufficiently small compared to n such that the
output k is not a correct estimate for a population of size n′. ◀

Recall that we define M as the largest integer value the agents stored in the starting
configuration s. Lemma 3.5 shows that the dynamic size counting problem is equivalent to
the loosely-stabilizing counting problem. Due to this equivalence, our correctness proofs will
use the loosely-stabilizing characterization. The proof is given in the full version [20].

▶ Lemma 3.5. A protocol solves the dynamic size counting problem with convergence time
tc(n, M) and holding time th(n) if and only if it solves the loosely-stabilizing counting problem
with convergence time tc(n, M) and holding time th(n).

Proof sketch. Any states present in an adversarially prepared configuration c will be
produced in large quantities from any sufficiently large initial configuration of all initialized
states s [18, Lemma 4.2]. The dynamic size adversary can then remove agents to result in c,
which the protocol must handle, showing it can handle an arbitrary initial configuration. ◀

3.2 High-level overview of dynamic size counting protocol
This section briefly describes our protocol for solving the dynamic size counting, defined
formally in Section 3.3. By Lemma 3.5, it suffices to design a protocol solving the loosely-
stabilizing counting problem for a fixed population size n. Our protocol uses the “detection”
protocol of [3]. Consider a subset of states designated as a “source”. A detection protocol
alerts all agents whether a source state is present in the population.

D. Doty and M. Eftekhari 13:7

In Protocol 1, the population maintains several dynamic groups, with the agent’s group
stored as a positive integer field group. The group values are not fixed: each agent changes
its group field on every interaction, with equal probability either incrementing group or
setting it to 1. We show that, no matter the initial group values, after O(log n) time the group
values will be in the range [1, 8 log n] WHP. Furthermore, the distribution of group values
is very close to that of n i.i.d. geometric random variables, in the sense that each agent’s
group value is independent of every other, with expected n/2i agents having group = i if
each agent has had at least i interactions.3

The agents store an array of “signal” integers in their signals field to track the existing
group values in the population. Each agent in the i’th group is responsible for boosting the
signal associated with i. The goal is to have signals[i] > 0 for all agents if and only if some
agent has group = i.

The detection protocol of [3], explained below, provides a technique for agents to know
which groups are still present. Once a signal for group k fades out, the agents speculate that
there is no agent with group = k. Depending on the current value stored as estimate in
agents’ memory and the value k, this might cause re-calculating the population size. The
agents are constantly checking for the changes in the signals. They re-compute estimate
once there is a large gap between estimate and the first group i with signals[i] = 0. We
call i the first missing value (stored in the field FMV).

The signals array is updated as follows. An agent with group = k sets signals[k] to its
maximum possible value (3k + 1); we call this boosting. Other groups k are updated between
two agents u, v with u.signals[k] = a and v.signals[k] = b via propagation transitions
that set both agent’s signals[k] to max(a− 1, b− 1, 0). The paper [3] used a nonuniform
protocol where each agent already has an estimate of log n. They prove that if the state
being detected (in our case, a state with group = k) is absent and the current maximum
signal is c, then all agents will have signal 0 within Θ(c) time. However, if the state being
detected is present, then the boosting transitions (occurring every O(1) units of parallel
time on average in the worst case that its count is only 1) will keep the signal positive in all
agents with high probability. For this to hold, the maximum value set during boosting must
be Ω(log n); the nonuniform protocol of [3] uses its estimate of log n for this purpose.

Crucially, our protocol associates smaller maximum signal values to smaller group values
(so many are much smaller than log n), to ensure that a signal does not take abnormally long
to get to 0 when its associated group value is missing. Otherwise, if we set each signal value
to Ω(log n) (based on the agent’s current estimate of log n) during boosting, then it would
take time proportional to estimate (which could be much larger than the actual value of
log n) to detect the absence of a group value. Thus it is critical that we provide a novel
analysis of the detection protocol, showing that the signals for smaller group values k ≪ log n

remain present with high probability. This requires arguing that the boosting reactions for
such smaller values are happening with sufficiently higher frequency, due to the higher count
of agents with group = k, compensating for the smaller boosting signal values they use.

3.3 Formal description of loosely-stabilizing counting protocol

The DynamicCounting protocol (Protocol 1) divides agents among several groups via the
UpdateGroup subprotocol. The agents update their group from i to i + 1 with probability
1/2 or reset to group 1 with probability 1/2. The number of agents at each group and the

3 The difference is that a geometric random variable G obeys Pr [G = j] = 1/2j for all j ∈ N+, but after
i interactions an agent u can increment u.group by at most i, so Pr [u.group = j] = 0 if j ≫ i.

SAND 2022

13:8 Dynamic Size Counting in Population Protocols

total number of groups are both random variables dynamically changing through time. We
show that the total number of groups remains close to log n at all times with high probability.

The agents start with arbitrary (or even adversarial) group values but we show that
WHP the set of group values will converge to [1, 8 log n] within O(log n) time. Additionally,
each agent stores an array of O(log n) signal values in their signals field. The goal is to
maintain positive values in the signals[i] if some agent has group = i. The agents store
the index of the first group i with signals[i] = 0 in their FMV field. They use FMV as an
approximation of log n and constantly compare it with their estimate value.

Depending on the estimate value stored in agents’ memory, the agents maintain three
main phases of computation:

NormalPhase: An agent stays in the NormalPhase as long as there is a small gap between
estimate and FMV: 0.25 · estimate ≤ FMV ≤ 2.5estimate.

WaitingPhase: An agent switches from NormalPhase to WaitingPhase if it sees a large gap
between the FMV and estimate: FMV ̸∈ {0.25 ·estimate, . . . , 2.5 ·estimate}. The purpose
of WaitingPhase is to give enough time to the other agents so that by the end of the
WaitingPhase for one agent, with high probability every other agent has also noticed the
large gap between the FMV and estimate and entered WaitingPhase.

UpdatingPhase: During the UpdatingPhase, every agent uses a new geometric random
variable and propagates the maximum by epidemic. We set WaitingPhase long enough
so that with high probability when the first agent switches to the UpdatingPhase, the
rest of the population are all in WaitingPhase. By the end of UpdatingPhase, every agent
switches back to NormalPhase.

Below we explain each subprotocol in more detail.

Algorithm 1 DynamicCounting(u, v).

for agent ∈ {u, v} do
UpdateGroup(agent)

SignalPropagation(u, v)
for agent ∈ {u, v} do

UpdateMV(agent)
SizeChecker(agent)
if agent.phase ̸= NormalPhase then

TimerRoutine(agent)
PropagateMaxEst(u, v)
for agent ∈ {u, v} do

if agent.phase = NormalPhase then
agent.estimate← agent.GRV

In every interaction, both sender and receiver update their group according to the rules
of the UpdateGroup subprotocol. If we look at the distribution of the group values after
O(log n) time, there are about n/2 agents in group 1, n/4 agents in group 2, and n/2i

agents in group i (see Figure 1). Note that the number of agents in each group decreases
exponentially. Still, we ensure that agents with larger group values use stronger signals to
propagate, since there is less support for those groups.

To notify all agents about the set of all group values that are generated among the
population, we use the detection protocol of [3] that is also used as a synchronization scheme
in [12]. The agents store an integer for each group value that is generated by the population.
The signals is an array of length Θ(log n) such that a positive value in index i represents

D. Doty and M. Eftekhari 13:9

Algorithm 2 UpdateGroup(u).

u.group←

{
u.group + 1 with probability 1/2
1 with probability 1/2

some agents in the population have generated group = i. Note that, as an agent updates
its group, it boosts multiple signals based on its group value, e.g., an agent with group = i

helped boost all the indices 1, 2, 3, . . . , i of signals in its last i interactions. We use the
SignalPropagation protocol to keep the signal of group i positive as long as some agents have
generated group = i.

Algorithm 3 SignalPropagation(u, v).

▷ Boosting:
u.signals[u.group]← (3 · u.group) + 1
v.signals[v.group]← (3 · v.group) + 1
▷ Propagate signal:
for i ∈ {1, 2, . . . , Max(|u.signals|, |v.signals|} do

m← Max(u.signals[i], v.signals[i])
u.signals[i], v.signals[i]← Max(0, m− 1)

Regardless of the initial configuration, the distribution of group values changes
immediately (in O(log n) time), but it might take more time for the signals to get updated.
It takes O(i) time for signals[i] to hit zero. The larger the index i, signals[i] leaves the
population slower. Hence, the agents look at the first missing signal that they observe among
the array of all signals.

Algorithm 4 UpdateMV(u).

▷ Find the first appearance of a zero in u.signals beyond index ⌈log(u.estimate)⌉
s← ⌈log(u.estimate)⌉
u.FMV← min{i ∈ [s, |u.signals|] | u.signals[i] = 0}

Once there is a large gap between the first missing group (FMV) and the agents’ estimation
of log n (estimate), each agent individually moves to a waiting phase and waits for other
agents to catch the same gap between their estimate and FMV. Note that we time this phase
as a function of FMV and not the estimate since the estimate is not valid anymore and
might be much smaller or larger than the actual value of log n.

Eventually, all agents will notice the large discrepancy between FMV and estimate and
move to the WaitingPhase. The WaitingPhase is followed by the UpdatingPhase (explained
in the TimerRoutine). In the UpdatingPhase, all agents generate one geometric random
variable (stored in GRV) and propagate the maximum value. We assume the agents generate
a geometric random variable in one line (line 4 in Protocol 6) for simplicity.4

Once the UpdatingPhase is completed, all agents will update their estimate to the
maximum geometric random variable they have seen and switch to the NormalPhase again.
Recall that the agents remain in the NormalPhase as long as their FMV and estimate are
relatively close. They continue changing their group values and send group signals as
described earlier.

4 Alternatively, the agents could generate a geometric random variable through O(log n) consecutive
interactions, each selecting a random coin flip (H or T). In this alternative version, we should make the
WaitingPhase longer.

SAND 2022

13:10 Dynamic Size Counting in Population Protocols

Algorithm 5 SizeChecker(u).

if u.phase = NormalPhase and u.FMV ̸∈ {0.25 · u.estimate, . . . , 2.5 · u.estimate} then
u.phase←WaitingPhase ▷ Waiting for other agents to detect the size change

Algorithm 6 TimerRoutine(u).

u.timer← u.timer + 1
if u.timer > 12 · u.FMV then

if u.phase = WaitingPhase then
u.GRV←a new geometric random variable
u.timer← 0, u.phase← UpdatingPhase

if u.phase = UpdatingPhase then
u.estimate← u.GRV
u.timer← 0, u.phase← NormalPhase

Intuitively, for each group value, about n/2i agents will hold group = i, and boost
signals[i] by setting it to the max = Θ(i). As the value of i grows, the number of agents
with group = i decreases, but their signals get stronger since the agents enhance a group
signal i proportional to i. In a normal run of the protocol, the agents expect to have positive
values in signals[i] for group values between [log ln n, log n].

4 Analysis of Dynamic Counting Protocol

4.1 Bound on the group values
Recall that the agents calculate a dynamic group value by following the rules of Protocol 2.
As described in this protocol, the agents either move to the next group or return to group 1
with probability 1/2.5

In this part, we analyze the distribution of group values. Note that the group values
are rather chaotic at the beginning of the protocol since the agents might start holding any
arbitrary group values that are much larger than log n. However, after all agents reset back
to group = 1, we can show for each group = k, Pr [group = k] ≈ 1

2k .
In the rest of this section, we assume the initialized setting for simplicity. Later, we show

how we can generalize our results to any arbitrary initial configuration. We define Gu,t as the
group value of agent u at time t and I(t, u) to represent the number of interactions involving
this agent by the time t. Note that with this definition, Gu,t is equal to k (for k < I(t, u)) if
and only if agent u generates the sequence of [HTTT . . . T] (H followed by k − 1 Ts) during
its last k interactions. Thus, we have:

∀k ∈ N, 1 ≤ k < I(t, u) : Pr [Gu,t = k] = 1
2k

(1)

With this definition Gu,t is undefined for any agents that has not generated H yet. In other
words, the values Gu,t are “close to geometric” in the sense that they are independent and
have probability equal to a geometric random variable on all values k < I(t, u).

5 The truncated version of this Markov chain (mapping all states k + 1, k + 2, . . . to k + 1) is also known
as the “winning streak” [30].

D. Doty and M. Eftekhari 13:11

Algorithm 7 PropagateMaxEst(u, v).

if u.phase = v.phase & u.phase ̸= WaitingPhase then
u.GRV, v.GRV← max(u.GRV, v.GRV)

▶ Observation 4.1. For agents u1, u2, . . . , un, and the values ki < I(t, ui), for 1 ≤ i ≤ n:

Pr [Gu1,t = k1, Gu2,t = k2, . . . , Gun,t = kn] =
n∏

i=1
Pr [Gui,t = ki]

Next we bound the maximum group value that has been generated by any agent. Let
Mt = maxu∈A Gu,t be the maximum value of Gu,t across the population at time t. A proof
of the following lemma appears in the full version [20].

▶ Lemma 4.2. Let c ≥ 2 and let t be a time such that all agents have at least c log n

interactions. In a population of size n, 1
d log n ≤Mt with probability at least 1−exp

(
−n1−1/d

)
and Mt < c log n with probability at least 1− n1−c.

Note that the maximum group value has a large variance. However, we can prove a tight
bound for the first group value with no support; since to have FMV = k, for all values i that
are less than k, ∃u ∈ A such that u.group = i.

So, we analyze the bounds for the first group value with no support, i.e., the value
min{k ∈ N+ | (∀u ∈ A) u.group ̸= k}. Considering n i.i.d. geometric random variables, the
first missing value to be the smallest integer not appearing among the random variables.
The first missing value has been studied in the literature [28,29,32] as the “the first empty
urn” (see also “probabilistic counting” [23]) but for simplicity we use a loose bound for our
analysis. The proof appears in the full version [20].

▶ Lemma 4.3. Let δ > 0, 0 < ϵ < 1 and let t be a time such that all agents have at least
(1+δ) log n interactions. Define FMVt = min{k ∈ N | (∀u ∈ A) u.group ̸= k} at time t. Then,
FMVt > (1− ϵ) log n with probability at least (1− ϵ) log(n) · exp (−nϵ) and FMVt ≤ (1 + δ) log n

with probability at least 1−
(1

nδ/2

)(2+δ) log n.

4.2 Distribution of the groups
So far, we have proved bounds on the existing group values. However, in general, we need to
show that at a given time t = Ω(log n), there are about n

2k agents having group = k WHP.
The following lemma gives us a lower and upper bound for the number of agents in each
group:

▶ Lemma 4.4. Let c ≥ 2, 0 < ϵ < 1, 0 ≤ δ ≤ 1, and let t be a time such that all agents have
at least c log n interactions. Let 1 ≤ k ≤ (1− ϵ) log n, then, the number of agents who hold
group = k, is at least Lk = (1− δ) n

2k with probability at least 1− exp
(
− δ2·nϵ

2

)
and at most

Uk = (1 + δ) n
2k with probability at least 1− exp

(
− δ2·nϵ

3

)
.

Proof sketch. The fraction of agents with group = k is equal to the fraction of heads in of
a binomial distribution B

(
n, 2−k

)
with µ = n

2k , so the Chernoff bound applies. A complete
proof is given in the full version [20]. ◀

The following theorem summarizes what we will use later about the distribution of the
group values and the number of agents residing in each group at time t.

SAND 2022

13:12 Dynamic Size Counting in Population Protocols

0 5 10 15 20 25 30 35 40

101

103

105

107

Time step 300, n = 1000000000

Figure 1 Showing the distribution of group values after 300 parallel-time in a population of
size n = 109. The x-axis indicates the different group values while the y-axis indicates the number
of agents in each group. Note that, we are using log-scale for the y-axis. In this snapshot of the
population, FMV = 29. Even though, the maximum group value is 35 and is much larger than FMV.

▶ Theorem 4.5. Fix a time t ≥ d ln n for d > 30, let M∗
t and FMVt be the maximum group

value and the FMV at this time respectively. Then,
0.9 log n ≤M∗

t < 0.1d log n with probability at least 1− 2 · n1−d/10 − 2 · n1− 2d
3 .

0.9 log n ≤ FMVt < 3 log n with probability at least 1− 4 · n1− 2d
3 .

The number of agents who hold group = k for 1 ≤ k ≤ 0.9 log n, is in
[3·n

2k+2 , 5·n
2k+2

]
with

probability at least 1− 4 · n1− 2d
3 .

4.3 Group detection
In the previous section, we show that the set of present group values among the population
will quickly (in O(log n) time) enter a small interval of values ([1, 8 · log n]) consistent with
the population size. In this section, we will prove the following:

The agents agree about the presence of group values in [log ln n, 0.9 log n] after O(log n)
time WHP.
For a non-existing group value i, each agent will have signals[i] = 0 in O(i + log n) time
WHP.

We designed Protocol 3 such that each agent in the i’th group boosts the associated
signal value by setting signals[i] = Bi (recall Bi = Θ(i)). We will show by having at
least Li agents boosting signals[i], the whole population learns about the existence of the
i’th group in O(log n) time with high probability. Intuitively, although signals[i] starts
lower than signals[j] for i < j, so potentially dies out more quickly, it is also boosted
more often since more agents have group value i. Concretely, with Li agents responsible
to boost signal i, and for all indices log ln n < i < 0.9 log n in the signals of the agents,
Pr [signals[i] = 0] < exp

(
− 2Bi

n/Li

)
.

Intuitively, the next lemma shows that if the group values are distributed as in Lemma 4.4,
then the whole population will learn about all the present group values above log ln n within
O(log n) time. Note that Pr [u.signals[i] = j] is the probability that the agent u has value
j in the ith index of its signals. The following lemma is a restatement from [3, Section 5.1].
The proof appears in the full version [20].

▶ Lemma 4.6. In the execution of Protocol 3, suppose that for each group value log ln n <

i < 0.9 log n, at least Ai agents hold group = i. For every agent u ∈ A let u.signals[i] = ri

when u.group = i. Assuming each agent has at least ri interactions, then for a fixed agent u

and index i, Pr [u.signals[i] = 0] ≤
(
1− Ai

n

)2ri−1

.

D. Doty and M. Eftekhari 13:13

To use the previous lemma, we need to make sure that the agents wait for sufficiently long
time such that each agent has at least ri interactions. The next corollary uses Lemma 4.6 to
derive bounds for the entire protocol using bounds from Lemma 4.4 for the distribution of
the group values. Also, Corollary 4.7 takes a union bound over all agents and group values
i, and uses the concrete value ri = Bi = 3 · i + 1 used in our protocol. The proof appears in
the full version [20].

▶ Corollary 4.7. For all i > 0 and for every agent u ∈ A, assuming Bi = 3 · i + 1 let
u.signals[i] = Bi if u.group = i. Suppose that for each group value log ln n < i < 0.9 log n,
at least Li agents hold group = i. Let β ≥ 8; then after β log n time, we have:

Pr [(∃u ∈ A)(∃i ∈ {log ln n, . . . , 0.9 log n}) u.signals[i] = 0] ≤ 2 · n1−0.9β

Finally, we show that when there is no agent holding group = i, then signals[i] will
become zero in all agents “quickly” with an arbitrarily large probability. To be precise, with
no agent boosting signal i, Pr [u.signals[i] = 0] ≥ 1−n−α within Θ(Bi + α ln n) time WHP
in which Bi is the maximum value for signal i. The lemma is a restatement from [17, Lemma
3.3] and [3, Lemma 1].

▶ Lemma 4.8. For every agent u ∈ A let u.signals[i] = Bi when u.group = i. Assume
that no agent sets its group to i from this point on. Then for all α ≥ 1, all agents will have
signals[i] = 0 after 3n ln

(
nα · 3Bi

)
interactions with probability at least 1− n−α.

Proof. Set t = 3n ln
(
nα · 3Bi

)
and Rmax = Bi in the proof of [17, Lemma 3.3]. ◀

4.4 Dynamic size counting protocol analysis
Recall that estimate denote the estimate of log n in agents’ memory, and n is the true
population size. In the previous section, we show that the set of present group values among
the population will quickly (in O(log n) time) enter a small sub-interval of consecutive values
in [1, 3 · log n] consistent with the population size. This section will show that the group
values will remain in that interval (with high probability for polynomial time). Moreover,
the following two lemmas show how the agents update their estimate if it is far from log n.
The proofs appear in the full version [20].

Assuming the agents’ estimate is much smaller than log n, the next lemma shows that all
the agents will notice the large gap between estimate and FMV. Hence, they will re-calculate
their population size estimate.

▶ Lemma 4.9. Let M = maxu∈A u.estimate. Assuming M ≤ 0.22 log n, then the whole
population will enter WaitingPhase in O(log n) time with probability at least 1−O(n−2).

For the other direction, assume the population size estimate in agents’ memory is much
larger than log n. We prove in the following lemma that all the agents will notice the large gap
between estimate and FMV. Hence, they will re-calculate their population size estimation.

Note that in Corollary 4.7, we proved for all group values i for log ln n ≥ i, the signals[i]
will have a positive value in O(log n) time. However, we could not prove the same bound
for values less than log ln n. So, inevitably the agents ignore their signals for values that
are less than log ln n. Since the agents have no access to the value of log n, they have to
use estimate as an approximation of log n. Thus, they ignore indices that are less than
log M in signals: making FMV a function of max(log M, log n). For example, if the true
population size is n but M > 2n, then the agents should ignore the appearance of a zero
in their signals for all indices i that are ≤ log(M) = n. The correct FMV happens at index

SAND 2022

13:14 Dynamic Size Counting in Population Protocols

j = Θ(log n), but the agents stay in the NormalPhase as long as signals[i] for i ≥ n are
positive. In this scenario, it takes O(n) time for the agents to switch to WaitingPhase since
for each signals[i], it takes O(i) time to hit zero.

This scenario is inevitable with our current detection scheme since for indices i that are
less than log ln n, the event of signals[i] = 0 happens frequently.

▶ Lemma 4.10. Let M = maxu∈A u.estimate. Assuming M ≥ 7.5 · log n, then the whole
population will enter WaitingPhase in O(log n + log M) time with probability at least 1 −
O(n−2).

In the next theorem (full proof given in [20]), we will show once there is a large gap
between the maximum estimate among the population and the true value of log n, the
agents update their estimate in O(log n + log M) time.

▶ Theorem 4.11. Let M = maxu∈A u.estimate. Assuming estimate ≥ 7.5 log n or
estimate ≤ 0.2 log n, then every agent replaces its estimate with a new value that is
in [log n− log ln n, 2 log n] with probability 1−O(1/n) in O(log n + log M) time.

Proof sketch. By Lemmas 4.9 and 4.10, once an agent notices the large gap between
estimate and FMV, they switch to WaitingPhase. We set WaitingPhase long enough so when
the first agent moves to UpdatingPhase, there is no agent left in the NormalPhase. Thus,
they all re-generate a new geometric random variable and store the maximum as their
estimate. ◀

In the full version of the paper [20], we show that the holding time of our protocol is
polynomial. For the state complexity, recall that the adversary can initialize agents with
large integer values to arbitrarily increase memory usage. Therefore, we should calculate
the agents’ memory concerning the fields defined in our protocol and the value that the
adversary can set in them. Thus, we use s as the largest integer value that the adversary set
in the agents’ memory.

▶ Theorem 4.12. Let M = max u.estimate for all u ∈ A. There is a uniform leaderless
loosely-stabilizing population protocol that WHP:
1. If M > 7.5 log n or M < 0.2 log n reaches to a configuration with all agents set their

estimate with a value in [log n− log ln n, 2 log n] in O(log n + log M) parallel time.
2. If 0.75 log n < M < 2.25 log n, then the agents hold a stable estimate during the following

O(n15) parallel time.
3. Assuming for every agent u ∈ A, max(u.estimate, u.GRV, u.group, u.signals.size()) < s

in the initial configuration, then the protocol uses O(log2(s) + log n log log n) bits per
agent.

4.5 Space optimization
In this section, we explain how to reduce the space complexity of the protocol from O(log2(s)+
log n log log n) to O(log2(s) + (log log n)2) bits per agent.

In Protocol 1, the agents keep track of all the present group values using an array
of size O(log n) (stored in signals) by mapping every group = i to signals[i]. We can
reduce the space complexity of the protocol by reducing the signals’ size. Let the agents
map a group = i to signals[⌊log i⌋]. So, instead of monitoring all O(log n) group values,
they keep O(log log n) indices in their signals. Thus, reducing the space complexity to
O(log2(s) + (log log n)2) bits per agent.

D. Doty and M. Eftekhari 13:15

Recall that in Protocol 1, there are ≈ n
2i agents with group = i for i ≤ 0.9 log n that help

keep signals[i] positive. However, with this technique, there will be ≈
∑2j+1

i=2j
n
2i agents that

are helping signals[i] to stay positive. So, every lemma in Section 4.3 about Protocol 3
holds. Finally, we update Protocol 5 so that the agents compare their estimate with 2LFMV

in which LFMV is the smallest index i > log log M such that signals[i] = 0. On the negative
side of this optimization, we get a less sensitive protocol with respect to the gap between
agents’ estimate and log n.

▶ Theorem 4.13. Let M = max u.estimate for all u ∈ A. There is a uniform leaderless
loosely-stabilizing population protocol that WHP:

1. If M > 15 log n or M < 0.1 log n reaches to a configuration with all agents set their
estimate with a value in [log n− log ln n, 2 log n] in O(log n + log M) parallel time.

2. If 0.75 log n < M < 2.17 log n, then the agents hold a stable estimate during the following
O(n15) parallel time.

3. Assuming for every agent u ∈ A, max(u.estimate, u.GRV, u.group, u.signals.size()) < s

in the initial configuration, then the protocol uses O(log2(s) + (log log n)2) bits per agent.

5 Conclusion and open problems

In this paper, we introduced the dynamic size counting problem. Assuming an adversary
who can add or remove agents, the agents must update their estimate according to the
changes in the population size. There are several open questions related to this problem.

Reducing convergence time. Our protocol’s convergence time depends on both the
previous (nprev) and next (nnext) population sizes, though exponentially less on the former:
O(log nnext + log log nprev). Is there a protocol with optimal convergence time O(log nnext)?

Increasing holding time. Observation 3.4 states that the holding time must be finite, but
it is likely that much longer holding times than Ω(nc) for constant c are achievable. For the
loosely-stabilizing leader election problem, there is a provable tradeoff in the sense that the
holding time is at most exponential in the convergence time [26,36]. Does a similar tradeoff
hold for the dynamic size counting problem?

Reducing space. Our main protocol uses O(s+(log n)log n) states (equivalent to O(log2(s)+
log n log log n) bits). In Section 4.5, we showed how we can reduce the state complexity of
our protocol to o(nϵ) (equivalent to O(log2(s) + (log log n)2) bits) by mapping more than one
group to each index of the signals. With this trick, we reduce the size of the signals from
O(log n) to O(log log n). Another interesting idea is to replace our O(log n) detection scheme
to O(1) detection protocol of [22] which puts a constant threshold on the values stored in
each index. So, it may be possible to reduce the space complexity even more to O(cO(log n))
(with all O(log n) indices present) or O(cO(log log n)) = polylog(n) (using our optimization
technique to have O(log log n) indices in the signals).

However, the current protocol of [22] has a one-sided error that makes it hard to compose
with our protocol. With probability ϵ > 0, the agents might say signal i has disappeared
even though there exists agents with group = i in the population.

Additionally, in the presence of a uniform self-stabilizing synchronization scheme, one
could think of consecutive rounds of independent size computation. The agents update their
output if the new computed population size drastically differs from the previously computed

SAND 2022

13:16 Dynamic Size Counting in Population Protocols

population size. Note that the self-stabilizing clock must be independent of the population
size since we allow the adversary to change the value of log n by adding or removing agents.
To the best of our knowledge, there is no such synchronization scheme available to population
protocols.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest. Time-

space trade-offs in population protocols. In SODA 2017: Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2560–2579. SIAM, 2017.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In SODA 2018: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2221–2239. SIAM, 2018.

3 Dan Alistarh, Bartłomiej Dudek, Adrian Kosowski, David Soloveichik, and Przemysław
Uznański. Robust detection in leak-prone population protocols. In DNA Computing and
Molecular Programming, pages 155–171. Springer International Publishing, 2017.

4 Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population protocols.
In ICALP 2015: Proceedings, Part II, of the 42nd International Colloquium on Automata,
Languages, and Programming - Volume 9135, pages 479–491. Springer-Verlag, 2015. doi:
10.1007/978-3-662-47666-6_38.

5 Dan Alistarh, Martin Töpfer, and Przemysław Uznański. Fast and robust comparison in
population protocols. In PODC 2021: The ACM Symposium on Principles of Distributed
Computing, 2021.

6 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
2006.

7 Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-stabilizing population
protocols. ACM Trans. Auton. Adapt. Syst., 3(4):1–28, 2008. doi:10.1145/1452001.1452003.

8 James Aspnes, Joffroy Beauquier, Janna Burman, and Devan Sohier. Time and space optimal
counting in population protocols. In 20th International Conference on Principles of Distributed
Systems (OPODIS 2016), volume 70, pages 13:1–13:17, 2017.

9 Joffroy Beauquier, Janna Burman, Simon Clavière, and Devan Sohier. Space-optimal counting
in population protocols. In Distributed Computing, pages 631–646, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

10 Joffroy Beauquier, Julien Clement, Stephane Messika, Laurent Rosaz, and Brigitte Rozoy. Self-
stabilizing counting in mobile sensor networks with a base station. In Distributed Computing,
pages 63–76, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

11 Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An O(log3/2 n) parallel time
population protocol for majority with O(log n) states. In PODC 2020: Proceedings of the 39th
Symposium on Principles of Distributed Computing, pages 191–199. Association for Computing
Machinery, 2020. doi:10.1145/3382734.3405747.

12 Petra Berenbrink, Felix Biermeier, Christopher Hahn, and Dominik Kaaser. Loosely-stabilizing
phase clocks and the adaptive majority problem. In SAND 2021: 1st Symposium on Algorithmic
Foundations of Dynamic Networks, 2021.

13 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and
Tomasz Radzik. A Population Protocol for Exact Majority with O(log5/3 n) Stabilization
Time and Theta(log n) States. In 32nd International Symposium on Distributed Computing
(DISC 2018), volume 121 of Leibniz International Proceedings in Informatics (LIPIcs), pages
10:1–10:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.DISC.2018.10.

https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1145/1452001.1452003
https://doi.org/10.1145/3382734.3405747
https://doi.org/10.4230/LIPIcs.DISC.2018.10

D. Doty and M. Eftekhari 13:17

14 Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and space leader election
in population protocols. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, pages 119–129, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384312.

15 Petra Berenbrink, Dominik Kaaser, Peter Kling, and Lena Otterbach. Simple and efficient
leader election. In SOSA 2018: The 1st Symposium on Simplicity in Algorithms, pages 9:1–9:11,
2018. doi:10.4230/OASIcs.SOSA.2018.9.

16 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Brief announcement:
Population protocols for leader election and exact majority with O(log2 n) states and O(log2 n)
convergence time. In PODC 2017: Proceedings of the ACM Symposium on Principles of
Distributed Computing, pages 451–453. Association for Computing Machinery, 2017. doi:
10.1145/3087801.3087858.

17 Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak, Eric Severson,
and Chuan Xu. Time-optimal self-stabilizing leader election in population protocols. In PODC
2021: Proceedings of the ACM Symposium on Principles of Distributed Computing, pages
33–44. ACM, 2021. doi:10.1145/3465084.3467898.

18 David Doty and Mahsa Eftekhari. Efficient size estimation and impossibility of termination
in uniform dense population protocols. In PODC 2019: Proceedings of the ACM Symposium
on Principles of Distributed Computing, pages 34–42. Association for Computing Machinery,
2019. doi:10.1145/3293611.3331627.

19 David Doty and Mahsa Eftekhari. A survey of size counting in population protocols. Theoretical
Computer Science, 894:91–102, 2021. Building Bridges – Honoring Nataša Jonoska on the
Occasion of Her 60th Birthday. doi:10.1016/j.tcs.2021.08.038.

20 David Doty and Mahsa Eftekhari. Dynamic size counting in population protocols, 2022.
arXiv:2202.12864.

21 David Doty, Mahsa Eftekhari, Othon Michail, Paul G. Spirakis, and Michail Theofilatos. Brief
Announcement: Exact Size Counting in Uniform Population Protocols in Nearly Logarithmic
Time. In 32nd International Symposium on Distributed Computing (DISC 2018), volume
121 of Leibniz International Proceedings in Informatics (LIPIcs), pages 46:1–46:3, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
DISC.2018.46.

22 Bartłomiej Dudek and Adrian Kosowski. Universal protocols for information dissemination
using emergent signals. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pages 87–99, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3188745.3188818.

23 Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of computer and system sciences, 31(2):182–209, 1985.

24 Leszek Ga̧sieniec, Grzegorz Stachowiak, and Przemysław Uznański. Almost logarithmic-
time space optimal leader election in population protocols. In The 31st ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’19, pages 93–102. Association for
Computing Machinery, 2019. doi:10.1145/3323165.3323178.

25 Shafi Goldwasser, Rafail Ostrovsky, Alessandra Scafuro, and Adam Sealfon. Population
stability: regulating size in the presence of an adversary. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, pages 397–406. ACM, 2018.

26 Taisuke Izumi. On space and time complexity of loosely-stabilizing leader election. In Structural
Information and Communication Complexity, pages 299–312. Springer International Publishing,
2015.

27 Tomoko Izumi, Keigo Kinpara, Taisuke Izumi, and Koichi Wada. Space-efficient self-stabilizing
counting population protocols on mobile sensor networks. Theoretical Computer Science,
552:99–108, 2014. doi:10.1016/j.tcs.2014.07.028.

28 Guy Louchard and Helmut Prodinger. The moments problem of extreme-value related
distribution functions. Algorithmica, 2004.

SAND 2022

https://doi.org/10.1145/3357713.3384312
https://doi.org/10.4230/OASIcs.SOSA.2018.9
https://doi.org/10.1145/3087801.3087858
https://doi.org/10.1145/3087801.3087858
https://doi.org/10.1145/3465084.3467898
https://doi.org/10.1145/3293611.3331627
https://doi.org/10.1016/j.tcs.2021.08.038
http://arxiv.org/abs/2202.12864
https://doi.org/10.4230/LIPIcs.DISC.2018.46
https://doi.org/10.4230/LIPIcs.DISC.2018.46
https://doi.org/10.1145/3188745.3188818
https://doi.org/10.1145/3323165.3323178
https://doi.org/10.1016/j.tcs.2014.07.028

13:18 Dynamic Size Counting in Population Protocols

29 Guy Louchard, Helmut Prodinger, and Mark Daniel Ward. The number of distinct values
of some multiplicity in sequences of geometrically distributed random variables. In Discrete
Mathematics and Theoretical Computer Science, pages 231–256. Discrete Mathematics and
Theoretical Computer Science, 2005.

30 László Lovász and Peter Winkler. Reversal of markov chains and the forget time. Combinatorics,
Probability and Computing, 7(2):189–204, 1998.

31 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with population protocols. In 14th IEEE International Symposium on Network
Computing and Applications, pages 35–42, 2015.

32 Helmut Prodinger. Philippe flajolet’s early work in combinatorics. arXiv preprint, 2021.
arXiv:2103.15791.

33 Yuichi Sudo, Ryota Eguchi, Taisuke Izumi, and Toshimitsu Masuzawa. Time-optimal loosely-
stabilizing leader election in population protocols. In DISC 2021: The 35th International
Symposium on Distributed Computing, 2021.

34 Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa. Loosely-stabilizing leader election in population protocol model.
In Structural Information and Communication Complexity, pages 295–308, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

35 Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Logarithmic expected-time leader election in population protocol model. In
Stabilization, Safety, and Security of Distributed Systems, pages 323–337. Springer International
Publishing, 2019.

36 Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K.
Datta, and Lawrence L. Larmore. Loosely-Stabilizing Leader Election with Polylogarithmic
Convergence Time. In 22nd International Conference on Principles of Distributed Systems
(OPODIS 2018), volume 125 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.OPODIS.2018.30.

http://arxiv.org/abs/2103.15791
https://doi.org/10.4230/LIPIcs.OPODIS.2018.30

	1 Introduction
	1.1 Related work

	2 Definitions and Notation
	3 Dynamic Size Counting
	3.1 Basic properties of the dynamic size counting problem
	3.2 High-level overview of dynamic size counting protocol
	3.3 Formal description of loosely-stabilizing counting protocol

	4 Analysis of Dynamic Counting Protocol
	4.1 Bound on the group values
	4.2 Distribution of the groups
	4.3 Group detection
	4.4 Dynamic size counting protocol analysis
	4.5 Space optimization

	5 Conclusion and open problems

