5,059 research outputs found

    A Unifying View of Loosely Time-Triggered Architectures

    No full text
    Cyber-Physical Systems require distributed architectures to support safety critical real-time control. Hermann Kopetz' Time-Triggered Architecture (TTA) has been proposed as both an architecture and a comprehensive paradigm for systems architecture, for such systems. TTA offers the programmer a logical discrete time compliant with synchronous programming, together with timing bounds. A clock synchronization protocol is required, unless the local clocks used themselves provide the recquired accuracy. To relax the strict requirements on synchronization imposed by TTA, Loosely Time-Triggered Architectures (LTTA) have been proposed. In LTTA, computation and communication units are all triggered by autonomous, unsynchronized, clocks. Communication media act as shared memories between writers and readers and communication is non blocking. This is at the price of communication artifacts (such as duplication or loss of data), which must be compensated for by using some "LTTA protocol". In this paper we pursue our previous work by providing a unified presentation of the two variants of LTTA (token- and time-based), with simplified analyses. We compare these two variants regarding performance and robustness and we provide ways to combine them. This report was prepared for a lecture in Gérard Berry's seminar series at the Collège de France, March 5, 2014; it is a corrected version of a paper, which appeared at Emsoft'2010. It is dedicated to our close friend Paul Caspi who died in April 2012.Les infrastructures de calcul distribuées pour le contrôle des systèmes embarqués critiques requièrent des propriétés particulières destinées à préserver les caractéristiques attendues du contrôleur. Les architectures TTA (Time-Triggered Architectures) ont été proposées par Hermann Kopetz, à la fois comme une architecture de calcul et comme une méthodologie de conception des systèmes. TTA offre au programmeur un temps logique conforme à celui de la programmation synchrone, avec en outre un contrôle strict du temps. Il requiert un protocole de synchronisation entre les horloges du système réparti. Pour affaiblir ces hypothèses, les architectures LTTA (Loosely Time-Triggered Architectures) ont été proposées récemment. Dans LTTA, les calculs et les communications sont rythmées par des horloges locales, non synchronisées. Les supports de communication se comportent comme des mémoires partagées. La communication est donc non-bloquante. Ce type de communiccation crée évidemment des artefacts à combattre par un protocole dit "LTTA". Dans cet article nous présentons une approche unifiée des deux techniques connues pour ce type de protocole, reposant sur l'usage, soit de jetons, soit du temps. On compare ces deux variantes et on étudie leur performance. Le présent rapport est une version corrigée d'un article paru à Emsoft'2010. Il est dédié à notre très cher ami Paul Caspi, décédé en Avril 2012

    Parallelizing RRT on distributed-memory architectures

    Get PDF
    This paper addresses the problem of improving the performance of the Rapidly-exploring Random Tree (RRT) algorithm by parallelizing it. For scalability reasons we do so on a distributed-memory architecture, using the message-passing paradigm. We present three parallel versions of RRT along with the technicalities involved in their implementation. We also evaluate the algorithms and study how they behave on different motion planning problems

    Parallelizing RRT on large-scale distributed-memory architectures

    Get PDF
    This paper addresses the problem of parallelizing the Rapidly-exploring Random Tree (RRT) algorithm on large-scale distributed-memory architectures, using the Message Passing Interface. We compare three parallel versions of RRT based on classical parallelization schemes. We evaluate them on different motion planning problems and analyze the various factors influencing their performance

    A Unifying View of Loosely Time-Triggered Architectures

    Get PDF
    Cyber-Physical Systems require distributed architectures to support safety critical real-time control. Hermann Kopetz' Time-Triggered Architecture (TTA) has been proposed as both an architecture and a comprehensive paradigm for systems architecture, for such systems. TTA offers the programmer a logical discrete time compliant with synchronous programming, together with timing bounds. A clock synchronization protocol is required, unless the local clocks used themselves provide the recquired accuracy. To relax the strict requirements on synchronization imposed by TTA, Loosely Time-Triggered Architectures (LTTA) have been proposed. In LTTA, computation and communication units are all triggered by autonomous, unsynchronized, clocks. Communication media act as shared memories between writers and readers and communication is non blocking. This is at the price of communication artifacts (such as duplication or loss of data), which must be compensated for by using some "LTTA protocol". In this paper we pursue our previous work by providing a unified presentation of the two variants of LTTA (token- and time-based), with simplified analyses. We compare these two variants regarding performance and robustness and we provide ways to combine them. This report was prepared for a lecture in Gérard Berry's seminar series at the Collège de France, March 5, 2014; it is a corrected version of a paper, which appeared at Emsoft'2010. It is dedicated to our close friend Paul Caspi who died in April 2012.Les infrastructures de calcul distribuées pour le contrôle des systèmes embarqués critiques requièrent des propriétés particulières destinées à préserver les caractéristiques attendues du contrôleur. Les architectures TTA (Time-Triggered Architectures) ont été proposées par Hermann Kopetz, à la fois comme une architecture de calcul et comme une méthodologie de conception des systèmes. TTA offre au programmeur un temps logique conforme à celui de la programmation synchrone, avec en outre un contrôle strict du temps. Il requiert un protocole de synchronisation entre les horloges du système réparti. Pour affaiblir ces hypothèses, les architectures LTTA (Loosely Time-Triggered Architectures) ont été proposées récemment. Dans LTTA, les calculs et les communications sont rythmées par des horloges locales, non synchronisées. Les supports de communication se comportent comme des mémoires partagées. La communication est donc non-bloquante. Ce type de communiccation crée évidemment des artefacts à combattre par un protocole dit "LTTA". Dans cet article nous présentons une approche unifiée des deux techniques connues pour ce type de protocole, reposant sur l'usage, soit de jetons, soit du temps. On compare ces deux variantes et on étudie leur performance. Le présent rapport est une version corrigée d'un article paru à Emsoft'2010. Il est dédié à notre très cher ami Paul Caspi, décédé en Avril 2012

    The SIGNAL Approach to the Design of System Architectures

    Get PDF
    International audienceModeling plays a central role in system engineering. It significantly reduces costs and efforts in the design by providing developers with means for cheaper and more relevant experimentations. So, design choices can be assessed earlier. The use of a formalism, such as the synchronous language SIGNAL which relies on solid mathematical foundations for the modeling, allows validation. This is the aim of the methodology defined for the design of embedded systems where emphasis is put on formal techniques for verification, analysis, and code generation. This paper mainly focuses on the modeling of architecture components using SIGNAL. For illustration, we consider the modeling of a bounded FIFO queue, which is intended to be used for communication protocols. We bring out the capabilities of SIGNAL to allow specifications in an elegant way, and we check few elementary properties on the resulting model for correctness

    Scaling up classification rule induction through parallel processing

    Get PDF
    The fast increase in the size and number of databases demands data mining approaches that are scalable to large amounts of data. This has led to the exploration of parallel computing technologies in order to perform data mining tasks concurrently using several processors. Parallelization seems to be a natural and cost-effective way to scale up data mining technologies. One of the most important of these data mining technologies is the classification of newly recorded data. This paper surveys advances in parallelization in the field of classification rule induction

    Loosely Time-Triggered Architectures

    Full text link

    MGSim - Simulation tools for multi-core processor architectures

    Get PDF
    MGSim is an open source discrete event simulator for on-chip hardware components, developed at the University of Amsterdam. It is intended to be a research and teaching vehicle to study the fine-grained hardware/software interactions on many-core and hardware multithreaded processors. It includes support for core models with different instruction sets, a configurable multi-core interconnect, multiple configurable cache and memory models, a dedicated I/O subsystem, and comprehensive monitoring and interaction facilities. The default model configuration shipped with MGSim implements Microgrids, a many-core architecture with hardware concurrency management. MGSim is furthermore written mostly in C++ and uses object classes to represent chip components. It is optimized for architecture models that can be described as process networks.Comment: 33 pages, 22 figures, 4 listings, 2 table

    COIN: Opening the internet of things to people's mobile devices

    Get PDF
    People's interaction with IoT devices such as proximity beacons, body-worn sensors, and controllable light bulbs is often mediated through personal mobile devices. Current approaches usually make applications operate in separate silos, as the functionality of IoT devices is fixed by vendors and typically accessed only through low-level proprietary APIs. This limits the flexibility in designing applications and requires intense wireless interactions, which may impact energy consumption. COIN is a system architecture that breaks this separation by allowing developers to flexibly run a slice of a mobile app's logic onto IoT devices. Mobile apps can dynamically deploy arbitrary tasks implemented as loosely coupled components. The underlying runtime support takes care of the coordination across tasks and of their real-time scheduling. Our prototype indicates that COIN both enables increased flexibility and improves energy efficiency at the IoT device, compared to traditional architectures

    Loosely Time-Triggered Architectures: Improvements and Comparisons

    Get PDF
    International audienceLoosely Time-Triggered Architectures (LTTAs) are a proposal for constructing distributed embedded control systems. They build on the quasi-periodic architecture, where computing units execute 'almost periodically', by adding a thin layer of middleware that facilitates the implementation of synchronous applications.In this paper, we show how the deployment of a synchronous application on a quasi-periodic architecture can be modeled using a synchronous formalism. Then we detail two protocols, Back-Pressure LTTA, reminiscent of elastic circuits, and Time-Based LTTA, based on waiting. Compared to previous work, we present controller models that can be compiled for execution and a simplified version of the Time-Based protocol. We also compare the LTTA approach with architectures based on clock synchronization
    • 

    corecore