
Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr

Official URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5979751&tag=1

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 8006

Devaurs, Didier and Siméon, Thierry and Cortés Mastral, Juan Parallelizing

RRT on distributed-memory architectures. (2011) In: IEEE International

Conference on Robotics and Automation, ICRA '11, 9 - 13 May 2011, Shanghai,

China.

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/16754578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5979751&tag=1
http://oatao.univ-toulouse.fr/

Parallelizing RRT on Distributed-Memory Architectures

Didier Devaurs, Thierry Siméon and Juan Cortés

Abstract— This paper addresses the problem of improving
the performance of the Rapidly-exploring Random Tree (RRT)
algorithm by parallelizing it. For scalability reasons we do so on
a distributed-memory architecture, using the message-passing
paradigm. We present three parallel versions of RRT along
with the technicalities involved in their implementation. We
also evaluate the algorithms and study how they behave on
different motion planning problems.

I. INTRODUCTION

Due to a wide range of applications, sampling-based
path planning has benefited from a considerable research
effort [1], [2]. It has proven to be an effective framework
suitable for a large class of problems in domains such
as autonomous robotics, manufacturing, virtual prototyp-
ing, computer graphics, structural biology, and medicine.
These application fields yield increasingly difficult, highly-
dimensional problems with complex geometric and kinody-
namic constraints.

The Rapidly-exploring Random Tree (RRT) has become
a popular algorithm for solving single-query motion plan-
ning problems [3]. It is suited to solve robot motion plan-
ning problems involving holonomic, non-holonomic, kino-
dynamic, or kinematic closure constraints [3]–[5]. It is also
applied to the validation and control of hybrid systems [6],
[7]. In biology, it is used to analyze genetic network dy-
namics [8] or protein-ligand interactions [9], [10]. However,
when applied to complex problems, the incremental growth
of an RRT can become computationally expensive [9], [11],
[12]. Some techniques have been proposed to improve the
efficiency of RRT, by controlling the sampling domain [12],
reducing the complexity of the nearest neighbor search [13],
or employing gap reduction techniques [11].

Our objective is to further investigate RRT improvement
by exploiting speedup from parallel computation. Some re-
sults have been obtained in that sense (Section II). However,
existing work considers mainly shared-memory architectures
and thus small-scale parallelism, up to 16 processors [14]–
[17]. In this work, we are interested in what can be achieved
by larger-scale parallelism. We focus on parallelizing RRT
on distributed-memory architectures, using the message-
passing paradigm. Our contribution is three-fold. First, we
propose three parallel versions of RRT, based on classical
parallelization schemes: OR parallel RRT, Distributed RRT
and Manager-worker RRT (Section III). Second, beside the
abstract view provided by the algorithms themselves, we

All authors are with CNRS ; LAAS ; 7 avenue du colonel Roche, F-
31077 Toulouse Cedex 4, France and Université de Toulouse ; UPS, INSA,
INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse Cedex 4, France
{devaurs,nic,jcortes}@laas.fr

present the main technicalities involved in their development
(Section III). Third, we evaluate the algorithms on several
motion planning problems and show their differences in
behavior, depending on the problem type (Section IV).

II. RELATED WORK

A. Parallel Motion Planning

The idea of improving motion planning performance by
using parallel computation was raised in prior work. In a
survey of some early work [18], a classification scheme was
proposed to review different motion planning approaches and
some related parallel processing methods. A more recent
trend is to exploit the current multi-core technology available
on many of today’s PCs, that easily allows having multiple
threads collaboratively solving a problem [19].

Among the most classical approaches, the embarrassingly
parallel paradigm exploits the fact that some randomized
algorithms, such as the Probabilistic Road-Map (PRM), are
what is termed “embarrassingly parallel” [20]. The massive
inherent parallelism of the basic PRM algorithm enables a
significant speedup, even with relatively simplistic paralleliz-
ing strategies, especially on shared-memory architectures.
In this approach, computation time is minimized by having
several processes cooperatively building the road-map.

Another simple approach is known as the OR parallel
paradigm. It was first applied to theorem proving, before
being used to provide a parallel formulation of the Ran-
domized Path Planner (RPP) [21]. Its principle is to have
several processes running the same sequential randomized
algorithm, each one trying to build its own solution. The
first process to reach a solution reports it and broadcasts a
termination message. The idea here is to minimize computing
time by finding a small-sized solution. Despite its simplicity,
the OR parallel paradigm has been successfully applied to
other algorithms, such as in [22].

A more sophisticated approach is a master-slave scheme
developed to distribute the computation of the Sampling-
based Roadmap of Trees (SRT) algorithm [23]. In a first
step, several trees, which can be RRTs or Expansive Space
Trees (ESTs), are computed in parallel by all processes. In a
second step, several master processes cooperate to distribute
the computation of edges linking these trees, evenly among
their respective slave processes.

An approach based on growing several independent trees
can lead to a straightforward parallelization. This is the case
for RRTLocTrees [24] and for the Rapidly exploring Random
Forest of Trees (RRFT) [7], [8]. However, the focus of this
paper lies elsewhere, our aim being to provide a parallel
version of the basic (single-tree) RRT algorithm.

B. Parallel RRT

There is relatively little work related to parallelizing RRT
[14]–[17]. The first one [14] applies the simple OR parallel
and embarrassingly parallel paradigms, and a combination
of both. To benefit from the simplicity of the shared-memory
case, the embarrassingly parallel algorithm is run on a single
SMP (symmetrical multiprocessor) node of a multi-nodes
parallel computer. The only communication involved is a
termination message that is broadcast when a solution is
reached, but some coordination is required to avoid concur-
rent modifications of the tree. This scheme does not make
use of the full computational power of the parallel platform,
contrary to the OR parallel algorithm, which is run on all
processors of all nodes. The same paradigms are also applied
on a dual-core CPU in [15], where they are renamed OR
and AND implementations. In the Open Motion Planning
Library1 (OMPL) of the ROS framework, the AND paradigm
is implemented via multi-threading, thus for shared memory.
In [16], the OR paradigm is used on shared memory.

To the best of our knowledge, there has been only one
attempt to develop a parallel version of RRT on a distributed-
memory architecture. In [17], the construction of the tree
is distributed among several autonomous agents, using a
message passing model. However, no explanation is given
on how the computation is distributed, and how the tree is
reconstructed from the parts built by the agents.

III. PARALLELIZING RRT

For scalability purposes, we will parallelize RRT on a
distributed-memory architecture, using the message-passing
paradigm: one of the most widespread approaches for pro-
gramming parallel computers. Since this paradigm imposes
no requirement on the underlying hardware and requires
an explicit parallelization of the algorithms, it enables a
wide portability. Any algorithm developed following this
approach can also be run on a shared-memory architecture,
even though this would mean not making an optimal use
of this architecture. Besides, scalable distributed-memory
architectures are rather commonly available, in the form of
networks of personal computers, clustered workstations or
grid computers. To develop our parallel algorithms, we have
chosen to comply to the standard and widely-used Message
Passing Interface2 (MPI). Its logical view of the hardware
architecture consists of p processes, each with its own exclu-
sive address space. Our message-passing programs are based
on the Single Program Multiple Data (SPMD) paradigm and
follow a loosely synchronous approach: all processes execute
the same code, containing mainly asynchronous tasks, but
also a few tasks that synchronize to perform interactions.

A. OR Parallel RRT

The simplest way to parallelize RRT is to apply the
OR parallel paradigm. Algorithm 1 presents our version of
an OR parallel RRT, which is similar to the one in [14].

1http://www.ros.org/doc/api/ompl/html
2http://www.mpi-forum.org

Algorithm 1: OR parallel RRT
input : the configuration space C, the root qinit

output: the tree T
1 T ← initTree(qinit)
2 while not stopCondition(T) or received(endMsg) do
3 qrand ← sampleRandomConfiguration(C)
4 qnear ← findBestNeighbor(T , qrand)
5 qnew ← extend(qnear , qrand)
6 if not tooSimilar(qnear , qnew)3 then
7 addNewNodeAndEdge(T , qnear , qnew)

8 if stopCondition(T) then
9 broadcast(endMsg)

Each process computes its own RRT (lines 1-7) and the
first to reach a stopping condition broadcasts a termination
message (lines 8-9). This broadcast operation cannot actu-
ally be implemented as a regular MPI Broadcast routine,
as this collective operation would require all processes to
synchronize. Rather, the first process to finish sends a ter-
mination message to all others, using MPI Send routines,
matched with MPI Receive routines. As we do not know
beforehand when these interactions should happen, a non-
blocking receiving operation that will “catch” the termina-
tion message is initiated before entering the while loop.
The received(endMsg) operation is implemented as an
MPI Test routine checking the status (completed or pending)
of the request generated by the non-blocking receiving
operation. Finally, in case of several processes reaching a
solution at the same time, the program ends with a collective
operation for these processes to synchronize and agree on
which one should report its solution.

B. Collaborative Building of a Single RRT

Instead of constructing several RRTs concurrently, another
possibility is to have all processes working collaboratively
on building a single RRT. Parallelization is then achieved
by partitioning the task of building an RRT into sub-tasks,
assigned to the various processes. We propose two ways
of doing so, based on different decomposition techniques.
(1) Since constructing an RRT consists in exploring a search
space, we can use an exploratory decomposition [25]. Each
process performs its own sampling of the search space4 and
maintains its own copy of the tree, exchanging with the
others the newly constructed nodes. This leads to a dis-
tributed (or decentralized) scheme where no task scheduling
is required, aside from a termination detection mechanism.
(2) Another classical approach is to perform a functional
decomposition of the task [26]. In the RRT algorithm, two
kinds of sub-tasks can be distinguished: the ones that require
knowledge of the tree (initializing it, adding new nodes and
edges, finding the best neighbor of qrand, and evaluating
the stopping conditions) and those that do not (sampling a
random configuration and performing the extension step).

3Two configurations are deemed too similar if the distance between them
is less than the minimum validation step-size along the path.

4Note that space partitioning would be possible here, but is not required.

Algorithm 2: Distributed RRT
input : the configuration space C, the root qinit

output: the tree T
1 T ← initTree(qinit)
2 while not stopCondition(T) or received(endMsg) do
3 while received(nodeData(qnew, qnear)) do
4 addNewNodeAndEdge(T , qnear , qnew)

5 qrand ← sampleRandomConfiguration(C)
6 qnear ← findBestNeighbor(T , qrand)
7 qnew ← extend(qnear , qrand)
8 if not tooSimilar(qnear , qnew) then
9 addNewNodeAndEdge(T , qnear , qnew)

10 broadcast(nodeData(qnew, qnear))

11 if stopCondition(T) then
12 broadcast(endMsg)

This leads to the choice of a manager-worker (or master-
slave) scheme as the dynamic and centralized task-scheduling
strategy, the manager being in charge of maintaining the tree,
and the workers having no knowledge of it. We now present
both schemes in greater details.

1) Distributed RRT: Our version of a Distributed RRT is
given by Algorithm 2. In each iteration of the tree construc-
tion loop (lines 2-10), each process first checks whether it
has received new nodes from other processes (line 3). If this
is the case, the process adds them to its local copy of the
tree (line 4). Then, it performs its own expansion attempt
(lines 5-10). If it is successful (line 8), the process adds the
new node to its local copy of the tree (line 9) and broadcasts
it (line 10). Adding all the received nodes before attempting
an expansion, ensures that every process works with the most
up-to-date state of the tree. At the end, the first process to
reach a stopping condition broadcasts a termination message
(lines 11-12). This broadcast operation is implemented in
the same way as for the OR parallel RRT. Similarly, the
broadcast of new nodes (line 10) is not implemented as
a regular MPI Broadcast routine, which would cause all
processes to wait for each other. As a classical way to overlap
computation with interactions, we again use MPI Send rou-
tines matched with non-blocking MPI Receive routines. That
way, the received(nodeData) test (line 3) is performed
by checking the status of the request associated with a non-
blocking receiving operation initiated beforehand, the first
one being triggered before entering the while loop, and the
subsequent ones being triggered each time a new node is
received and processed. Note also that a Universally Unique
Identifier (UUID) is associated with each node, in order to
provide processes with a homogeneous way of referring to
the nodes. Finally, the case of several processes reaching a
solution at the same time has to be dealt with.

2) Manager-Worker RRT: Algorithm 3 presents our ver-
sion of a Manager-worker RRT. The program contains the
code executed by the manager (lines 2-10) and the workers
(lines 12-16). The manager is the only process having access
to the tree. It performs the operations related to its construc-
tion, and delegates the expansion attempts to workers. In

Algorithm 3: Manager-worker RRT
input : the configuration space C, the root qinit

output: the tree T
1 if processID = mgr then
2 T ← initTree(qinit)
3 while not stopCondition(T) do
4 while received(nodeData(qnew, qnear)) do
5 addNewNodeAndEdge(T , qnear , qnew)

6 qrand ← sampleRandomConfiguration(C)
7 qnear ← findBestNeighbor(T , qrand)
8 w ← chooseWorker()
9 send(expansionData(qrand, qnear), w)

10 broadcast(endMsg)
11 else
12 while not received(endMsg) do
13 receive(expansionData(qrand, qnear), mgr)
14 qnew ← extend(qnear , qrand)
15 if not tooSimilar(qnear , qnew) then
16 send(nodeData(qnew, qnear), mgr)

general, the expansion is the most computationally expensive
stage in the RRT construction, since it involves motion
simulation and validation. The manager could also delegate
the sampling step, but this would not be worthwhile because
of the low computational cost of this operation in our settings
(i.e. in the standard case of a uniform random sampling
in the whole search space): the communication cost would
then outweigh any potential benefit. At each iteration of the
tree building (lines 3-9) the manager first checks whether
it has received new nodes from workers (line 4). If so, it
adds them to the tree (line 5). Then, it samples a random
configuration (line 6) and identifies its best neighbor in the
tree (line 7). Next, it looks for an idle worker (line 8), which
means potentially going through a waiting phase, and sends it
the data necessary to perform an expansion attempt (line 9).
Finally, when a stopping condition is reached, it broadcasts
a termination message (line 10). On the other hand, workers
are active as long as they have not received this message
(line 12), though they can go through waiting phases. During
each computing phase, a worker receives some data from
the manager (line 13) and performs an expansion attempt
(line 14). If it is successful (line 15), it sends the newly
constructed node to the manager (line 16).

Contrary to the previous algorithms, this one does not
require non-blocking receiving operations for broadcasting
the termination message. Workers being idle if they re-
ceive no data, there is no need to overlap computation
with interactions. Before entering a computing phase, a
worker waits on a blocking MPI Receive routine implement-
ing both the receive(expansionData) operation and the
received(endMsg) test. The type of message received de-
termines its next action: stopping or attempting an expansion.
On the manager side, blocking MPI Send routines implement
the broadcast(endMsg) and send(expansionData) op-
erations. The remaining question about the latter is to which
worker should the data be sent. An important task of

the manager is to perform load-balancing among workers,
through the chooseWorker() function. For that, it keeps
track of the status (busy or idle) of all workers and sends
one sub-task at a time to an idle worker, choosing it in a
round robin fashion. If all workers are busy, the manager
waits until it receives a message from one of them, which
then becomes idle. This has two consequences. First, on
the worker side, the send(nodeData) operation covers
two MPI Send routines: one invoked to send the new node
when the expansion attempt is successful, and the other
containing no data used otherwise. Second, on the manager
side, two matching receiving operations are implemented via
non-blocking MPI Receive routines, allowing for the use of
MPI Wait routines if necessary. This also enables to im-
plement the received(nodeData) test with an MPI Test
routine. These non-blocking receiving operations are initiated
before entering the while loop, and re-initiated each time the
manager receives and processes a message. Finally, to reduce
the communication costs of the send(nodeData) operation,
workers do not send back the configuration qnear . Rather,
the manager keeps track of the data it sends to each worker,
which also releases us from having to use UUIDs.

C. Implementation Framework

Among the various implementations of MPI, we have
chosen OpenMPI5. Since the sequential implementation of
RRT we wanted to parallelize was written in C++, and MPI
being primarily targeted at C and Fortran, we had to use
a C++ binding of MPI. We were also confronted with the
low-level way in which MPI deals with communications,
requiring the programmer to explicitly specify the size of
each message. In our application, messages were to contain
instances of high-level classes, whose attributes were often
pointers or STL containers. Thus, we have decided to exploit
the higher-level abstraction provided by the C++ library
Boost.MPI6. Coupled with the Boost.Serialization library7,
Boost.MPI enables processes to exchange instances of high-
level classes in a straightforward manner, making the tasks
of gathering, packing and unpacking the underlying data
transparent to the programmer. Finally, we have used Qt’s
implementation of UUIDs8.

IV. EXPERIMENTS

A. Performance Metrics

When evaluating a parallel algorithm on a given problem,
we want to know how much performance gain it achieves
over its sequential counterpart. Aimed at measuring so, the
speedup S of a parallel algorithm is defined as the ratio of
the runtime of its sequential counterpart to its own runtime:
S(p) = TS / TP (p) [25], [26]. In theory S(p) is bounded
by p, but in practice super-linear speedup (S(p) > p) can
be observed. The parallel runtime TP (p) is measured on
a parallel computer, using p processors, and the sequential

5http://www.open-mpi.org
6http://www.boost.org/doc/libs/1 43 0/doc/html/mpi.html
7http://www.boost.org/doc/libs/1 43 0/libs/serialization
8http://doc.trolltech.com/4.3/quuid.html

Problem name BCL CALB GAB

Problem type
TS (s) 1.4 ± 0.81 148 ± 129 62 ± 12

N 46 ± 19 1629 ± 1365 615 ± 90 Sequen
tial RRT

E 821 ± 474 81023 ± 69917 770 ± 121
Fig. 1. Simplified schematic representation of the configuration spaces
of our three problems, and numerical results obtained with the sequential
RRT. Average values over 100 runs (and standard deviation) are given for
the sequential runtime TS (in seconds), the number of nodes in the final
tree, N , and the number of expansion attempts, E.

runtime TS is measured on one processor of the same
computer. We define TP (p) (resp. TS) as the mean time
needed to reach a solution, by averaging the runtime obtained
over 100 executions of a parallel (resp. sequential) algorithm.
We can then evaluate the scalability of a parallel algorithm,
i.e. study whether the speedup increases in proportion to the
number of processors. We can also measure the efficiency of
a parallel algorithm (E(p) = S(p) / p) which is a decreasing
function of p theoretically having values in [0, 1] [25], [26].

B. Parallel Computer Architecture
The numerical results presented in this section have been

obtained by running the algorithms on an HP cluster platform
composed of 24 HP ProLiant DL160 G5 servers connected
by a high-speed InfiniBandTM switch warranting 10 Gbit/s
of bandwidth. Each server includes two 64-bit quad-core
Intel R© Xeon R© E5430 processors at 2.66 GHz, with 12
MB of L2 cache, and sharing 7.79 GB of memory.

C. Motion Planning Problems Studied
We have evaluated the algorithms on three motion plan-

ning problems involving molecular models9. However, it is
important to note that our algorithms are not application-
specific and can be applied to any kind of motion planning
problem. The studied problems involve free-flying objects
(i.e. six degrees of freedom10) and are characterized by
different configuration-space topologies (cf. Fig. 1). BCL is
a protein-ligand exit problem, where a ligand exits the active
site of a protein through a pathway that is relatively short and
large but locally constrained by several side-chains. CALB
is a similar problem, but with a longer and very narrow exit
pathway, i.e. more geometrically constrained than BCL. In
GAB, a protein goes around another one in an empty space,
thus involving the weakest geometrical constraints, but the
longest distance to cover of all problems. Fig. 1 also presents
the numerical results obtained when solving these problems
with the sequential RRT.

9The application we have used is the molecular motion planning toolkit
we are currently developing [27].

10To facilitate the algorithms’ evaluation, we have chosen not to increase
dimensionality. Increasing it would mainly raise the computational cost of
the nearest neighbor search. Note that, however, the cost of this operation
becomes almost dimension-independent when using projections on a lower-
dimensional space, without a significant loss in accuracy [28].

BCL

0
2
4
6
8

10
12

0 10 20 30 40 50 60

Sp
ee

du
p

S
Or parallelDistributedManager/Worker CALB

0
5

10
15
20
25
30

0 20 40 60 80 100 120 140
Number of processors p

Or parallelDistributedManager/Worker GAB

0
1
2
3
4
5
6

0 10 20 30 40 50

Or parallelDistributedManager/Worker

p = 8

01
23
45
67
89

1 10 100 1000

Sp
ee

du
p

S

Or parallelDistributedManager/Worker p = 16

02
46
8101214161820

1 10 100 1000
Number of iterations over the collision detection I

Or parallelDistributedManager/Worker p = 32

05
101520253035

1 10 100 1000

Or parallelDistributedManager/Worker

Fig. 2. First row: scalability of our algorithms on the BCL, CALB and GAB problems. Second row: evolution of the algorithms’ speedup (and efficiency,
as they are proportional in that case) in relation to the expansion cost, while solving the BCL problem on 8, 16 and 32 processors.

D. Speedup Achieved by the Parallel Algorithms

The first row of Fig. 2 presents the scalability achieved
by the algorithms on each problem. Unsurprisingly, the
scalability of the OR parallel RRT is strongly correlated with
the variability of the computing time, measured by the ratio
of the standard deviation to the mean of the runtime TS

(cf. Fig. 1). This algorithm can achieve good results only
on problems where this variability is large, such as CALB.
When this variability is low, e.g. in GAB, it provides almost
no improvement over the sequential RRT. The Manager-
worker RRT shows a very poor speedup on all problems.
This is partly explained by the fact that it involves much
more communication than the other schemes. Each expansion
attempt is preceded and followed by a communication be-
tween the manager and a worker, contrary to the Distributed
RRT, in which communications between processes happen
only after a new node is built. In the Distributed scheme,
the total number of messages exchanged over the network
increases linearly with p, but at each processor’s level, the
number of messages is bounded by N . Thus, as long as the
network bandwidth can withstand the communication load,
the Distributed RRT can show a good scalability.

Although speedup curves of the Distributed RRT flatten
when p increases, we would have to use many more proces-
sors to see a decrease, contrary to other schemes. The best
speedup it achieves on BCL, CALB and GAB is 10, 25.3 and
5.3, which correspond to quite a low efficiency of 0.2, 0.2 and
0.1 respectively. The greatest number of processors for which
its efficiency is greater than 0.5 is 14, 10 and 3 respectively.
Several factors contribute to this low efficiency. (1) Runtime
is quite short on these problems, especially BCL. When

more and more processors are added, the communication
load increases significantly, thus outweighing the reduction in
computing time and leading to a smaller increase in speedup.
(2) When an RRT is built collaboratively, a side-effect of
adding more processors is to change the balance between
exploration and refinement (these terms being defined as
in [12]) in favor of more refinement. This translates into
generating larger trees (i.e. the number of nodes N increases
with p), thus reducing the increase in speedup, especially on
not very constrained problems, such as GAB.

Generally, efficiency improves as the problem difficulty in-
creases. In artificially increasing it, we will also show that the
Manager-worker RRT can perform better in some settings.
Intuitively, it is worth using this scheme when the manager
can delegate costly sub-tasks to its workers. However, in our
settings the cost of the expansion step is quite low, as qnew is
generated by a simple linear interpolation between qnear and
qrand, and motion validation is limited to collision detection.
Expansion could be much more expensive, e.g. if a dynamic
simulator was producing robot motions, or if some potential
energy was computed in the case of molecular models. To
test whether this could have an impact on the algorithms’
performance, we have run a controlled experiment in which
we have artificially increased the cost of the expansion step
to emulate different settings. To do so, during an expansion
attempt we repeat I times the collision detection routine
in the extend() function. Tests were performed on the
BCL problem, as it is characterized by a medium-level
difficulty in its configuration-space topology. The second row
of Fig. 2 shows the evolution of the algorithms’ speedup in
relation to I , on 8, 16 and 32 processors. As I goes up,
we observe first a dramatic increase in the speedup of the

Manager-worker RRT, followed by a slower decrease due to
the fact that the manager becomes a bottleneck waiting for
busy workers. This higher speedup is enabled by the growth
in computational load making the communication load not
significant anymore. The maximum speedup corresponds to
an optimal use of this scheme, which depends on p: when p
is increased, this maximum raises and is reached for higher
values of I . The best efficiency values obtained for p = 8,
16 and 32 are 1.1, 1.1 and 0.9 respectively. Similarly, though
not so dramatically, an increase in the expansion cost also
translates into a better use of the Distributed RRT, which
is more visible as p goes up. As expected, no benefit is
observed for the OR parallel RRT, whose optimal use relates
to variability in runtime and not to computational load.

V. CONCLUSION

We have proposed three parallel versions of the RRT algo-
rithm, designed for distributed-memory architectures using
message passing: OR parallel RRT, Distributed RRT and
Manager-worker RRT. Our OR parallel RRT is similar to the
one in [14] and to those developed for shared memory [15],
[16]. Our Distributed RRT and Manager-worker RRT are
the counterparts for distributed memory of the AND (or
embarrassingly parallel) RRT [14], [15]. None of these
algorithms can be held as the best parallelization of RRT: it
really depends on the studied problem. The Distributed RRT
shows the most consistent results across experiments, but its
efficiency does not scale well when the problem becomes
more difficult. It could also suffer from memory scalability
issues, since each process maintains its own tree. It is outper-
formed by the OR parallel RRT on problems yielding a great
variability in computing time. It is also outperformed by the
Manager-worker RRT in settings involving high expansion
costs. The Manager-worker RRT shows the best efficiency
scalability when the problem difficulty increases.

This paper was focused on a high-level parallelization of
RRT. It could be extended by parallelizing its sub-routines,
such as the nearest neighbor search. For that, we could use
data decomposition and evaluate the speedup achieved de-
pending on the search paradigm (brute force, kd-trees, etc.).
Algorithms involving the construction of several independent
RRTs can directly benefit from this work. For example, in the
simple variant of the bidirectional-RRT where both trees are
extended toward the same random configuration, processes
can be separated in two building groups getting random
configurations from an extra process. When the RRTs are not
independently built, specific algorithms have to be developed.

As part of our future work, we plan to investigate ap-
proaches combining the three paradigms. We are currently
extending our molecular motion planning application to
allow for potential energy computation, in order to pursue
our study started by artificially increasing the tree expansion
costs. We also plan to better exploit the architecture of our
cluster platform, by combining multi-threading and message
passing approaches. Allowing the eight processes sharing the
same memory to work on a common tree would mitigate the
memory scalability issue of the Distributed RRT.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[3] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
progress and prospects,” in Algorithmic and Computational Robotics:
New Directions. A K Peters, 2001, pp. 293–308.

[4] ——, “Randomized kinodynamic planning,” Int. J. Robot. Research,
vol. 20, no. 5, 2001.

[5] J. Cortés and T. Siméon, “Sampling-based motion planning under
kinematic loop-closure constraints,” in Algorithmic Foundations of
Robotics VI. Springer-Verlag, 2005, pp. 75–90.

[6] M. S. Branicky, M. M. Curtiss, J. A. Levine, and S. B. Morgan, “RRTs
for nonlinear, discrete, and hybrid planning and control,” in Proc. IEEE
Conf. Decision Contr., 2003.

[7] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validat-
ing hybrid robotic control systems,” in Algorithmic Foundations of
Robotics VI. Springer-Verlag, 2005, pp. 107–121.

[8] C. Belta, J. M. Esposito, J. Kim, and V. Kumar, “Computational
techniques for analysis of genetic network dynamics,” Int. J. Robot.
Research, vol. 24, no. 2-3, 2005.

[9] J. Cortés, L. Jaillet, and T. Siméon, “Molecular disassembly with RRT-
like algorithms,” in Proc. IEEE ICRA, 2007.

[10] J. Cortés, D. T. Le, R. Iehl, and T. Siméon, “Simulating ligand-induced
conformational changes in proteins using a mechanical disassembly
method,” Phys. Chem. Chem. Phys., vol. 12, no. 29, 2010.

[11] P. Cheng, E. Frazzoli, and S. M. LaValle, “Improving the performance
of sampling-based planners by using a symmetry-exploiting gap re-
duction algorithm,” in Proc. IEEE ICRA, 2004.

[12] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon, “Adaptive
tuning of the sampling domain for dynamic-domain RRTs,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2005.

[13] A. Yershova and S. M. LaValle, “Improving motion planning algo-
rithms by efficient nearest-neighbor searching,” IEEE Trans. Robot.,
vol. 23, no. 1, 2007.

[14] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
in Proc. Int. Conf. Italian Assoc. Artif. Intell., 2002.

[15] I. Aguinaga, D. Borro, and L. Matey, “Parallel RRT-based path
planning for selective disassembly planning,” Int. J. Adv. Manufact.
Technol., vol. 36, no. 11-12, 2008.

[16] S. Sengupta, “A parallel randomized path planner for robot naviga-
tion,” Int. J. Adv. Robot. Syst., vol. 3, no. 3, 2006.

[17] D. Devalarazu and D. W. Watson, “Path planning for altruistically
negotiating processes,” in Proc. Int. Symp. Collab. Technol. Syst., 2005.

[18] D. Henrich, “Fast motion planning by parallel processing - a review,”
J. Intell. Robot. Syst., vol. 20, no. 1, 1997.

[19] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning
by interior-exterior cell exploration,” in Algorithmic Foundations of
Robotics VIII. Springer-Verlag, 2010, pp. 449–464.

[20] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are
embarrassingly parallel,” in Proc. IEEE ICRA, 1999.

[21] D. Challou, D. Boley, M. Gini, V. Kumar, and C. Olson, “Parallel
search algorithms for robot motion planning,” in Practical Motion
Planning in Robotics: Current Approaches and Future Directions.
Wiley & Sons, 1998, pp. 115–131.

[22] S. Caselli and M. Reggiani, “ERPP: an Experience-based Randomized
Path Planner,” in Proc. IEEE ICRA, 2000.

[23] E. Plaku and L. E. Kavraki, “Distributed sampling-based roadmap of
trees for large-scale motion planning,” in Proc. IEEE ICRA, 2005.

[24] M. Strandberg, “Augmenting RRT-planners with local trees,” in Proc.
IEEE ICRA, 2004.

[25] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing, 2nd ed. Pearson Education, 2003.

[26] I. Foster, Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering. Addison-Wesley, 1995.

[27] J. Cortés, T. Siméon, V. Ruiz de Angulo, D. Guieysse, M. Remaud-
Siméon, and V. Tran, “A path planning approach for computing large-
amplitude motions of flexible molecules,” Bioinformatics, vol. 21
(Suppl. 1), 2005.

[28] E. Plaku and L. E. Kavraki, “Quantitative analysis of nearest-neighbors
search in high-dimensional sampling-based motion planning,” in Al-
gorithmic Foundations of Robotics VII. Springer-Verlag, 2008, pp.
3–18.

