85 research outputs found

    Guided Unfoldings for Finding Loops in Standard Term Rewriting

    Full text link
    In this paper, we reconsider the unfolding-based technique that we have introduced previously for detecting loops in standard term rewriting. We improve it by guiding the unfolding process, using distinguished positions in the rewrite rules. This results in a depth-first computation of the unfoldings, whereas the original technique was breadth-first. We have implemented this new approach in our tool NTI and compared it to the previous one on a bunch of rewrite systems. The results we get are promising (better times, more successful proofs).Comment: Pre-proceedings paper presented at the 28th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2018), Frankfurt am Main, Germany, 4-6 September 2018 (arXiv:1808.03326

    Loops under Strategies ... Continued

    Full text link
    While there are many approaches for automatically proving termination of term rewrite systems, up to now there exist only few techniques to disprove their termination automatically. Almost all of these techniques try to find loops, where the existence of a loop implies non-termination of the rewrite system. However, most programming languages use specific evaluation strategies, whereas loop detection techniques usually do not take strategies into account. So even if a rewrite system has a loop, it may still be terminating under certain strategies. Therefore, our goal is to develop decision procedures which can determine whether a given loop is also a loop under the respective evaluation strategy. In earlier work, such procedures were presented for the strategies of innermost, outermost, and context-sensitive evaluation. In the current paper, we build upon this work and develop such decision procedures for important strategies like leftmost-innermost, leftmost-outermost, (max-)parallel-innermost, (max-)parallel-outermost, and forbidden patterns (which generalize innermost, outermost, and context-sensitive strategies). In this way, we obtain the first approach to disprove termination under these strategies automatically.Comment: In Proceedings IWS 2010, arXiv:1012.533

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    Proving termination through conditional termination

    Get PDF
    We present a constraint-based method for proving conditional termination of integer programs. Building on this, we construct a framework to prove (unconditional) program termination using a powerful mechanism to combine conditional termination proofs. Our key insight is that a conditional termination proof shows termination for a subset of program execution states which do not need to be considered in the remaining analysis. This facilitates more effective termination as well as non-termination analyses, and allows handling loops with different execution phases naturally. Moreover, our method can deal with sequences of loops compositionally. In an empirical evaluation, we show that our implementation VeryMax outperforms state-of-the-art tools on a range of standard benchmarks.Peer ReviewedPostprint (author's final draft

    Revisiting Semantics of Interactions for Trace Validity Analysis

    Full text link
    Interaction languages such as MSC are often associated with formal semantics by means of translations into distinct behavioral formalisms such as automatas or Petri nets. In contrast to translational approaches we propose an operational approach. Its principle is to identify which elementary communication actions can be immediately executed, and then to compute, for every such action, a new interaction representing the possible continuations to its execution. We also define an algorithm for checking the validity of execution traces (i.e. whether or not they belong to an interaction's semantics). Algorithms for semantic computation and trace validity are analyzed by means of experiments.Comment: 18 pages of contents and 2 pages for references, 10 figures. Published in ETAPS-FASE2020 : "23rd International Conference on Fundamental Approaches to Software Engineering" in the "research papers" categor

    Logic programming : operational semantics and proof theory

    Get PDF

    Static Behavioral Malware Detection over LLVM IR

    Get PDF
    Tato práce se zabývá metodami pro behaviorální detekci malware, které využívají techniky formální analýzy a verifikace. Základem je odvozování stromových automatů z grafů závislostí systémových volání, které jsou získány pomocí statické analýzy LLVM IR. V rámci práce je implementován prototyp detektoru, který využívá překladačovou infrastrukturu LLVM. Pro experimentální ověření detektoru je použit překladač jazyka C/C++, který je schopen generovat mutace malware za pomoci obfuskujících transformací. Výsledky předběžných experimentů a případná budoucí rozšíření detektoru jsou diskutovány v závěru práce.In this thesis we study methods for behavioral malware detection, which use techniques of formal verification. In particular we build on the works, which use inference of tree automata from syscall dependency graphs, obtained by static analysis of LLVM IR. We design and implement a prototype detector using the LLVM compiler framework. For experiments with the detector we use an obfuscating compiler capable of generating mutations of malware from C/C++ source code. We discuss preliminary experiments which show the capabilities of the detector and possible future extensions to the detector.
    corecore