6,474 research outputs found

    POISED: Spotting Twitter Spam Off the Beaten Paths

    Get PDF
    Cybercriminals have found in online social networks a propitious medium to spread spam and malicious content. Existing techniques for detecting spam include predicting the trustworthiness of accounts and analyzing the content of these messages. However, advanced attackers can still successfully evade these defenses. Online social networks bring people who have personal connections or share common interests to form communities. In this paper, we first show that users within a networked community share some topics of interest. Moreover, content shared on these social network tend to propagate according to the interests of people. Dissemination paths may emerge where some communities post similar messages, based on the interests of those communities. Spam and other malicious content, on the other hand, follow different spreading patterns. In this paper, we follow this insight and present POISED, a system that leverages the differences in propagation between benign and malicious messages on social networks to identify spam and other unwanted content. We test our system on a dataset of 1.3M tweets collected from 64K users, and we show that our approach is effective in detecting malicious messages, reaching 91% precision and 93% recall. We also show that POISED's detection is more comprehensive than previous systems, by comparing it to three state-of-the-art spam detection systems that have been proposed by the research community in the past. POISED significantly outperforms each of these systems. Moreover, through simulations, we show how POISED is effective in the early detection of spam messages and how it is resilient against two well-known adversarial machine learning attacks

    Analyzing Social and Stylometric Features to Identify Spear phishing Emails

    Full text link
    Spear phishing is a complex targeted attack in which, an attacker harvests information about the victim prior to the attack. This information is then used to create sophisticated, genuine-looking attack vectors, drawing the victim to compromise confidential information. What makes spear phishing different, and more powerful than normal phishing, is this contextual information about the victim. Online social media services can be one such source for gathering vital information about an individual. In this paper, we characterize and examine a true positive dataset of spear phishing, spam, and normal phishing emails from Symantec's enterprise email scanning service. We then present a model to detect spear phishing emails sent to employees of 14 international organizations, by using social features extracted from LinkedIn. Our dataset consists of 4,742 targeted attack emails sent to 2,434 victims, and 9,353 non targeted attack emails sent to 5,912 non victims; and publicly available information from their LinkedIn profiles. We applied various machine learning algorithms to this labeled data, and achieved an overall maximum accuracy of 97.76% in identifying spear phishing emails. We used a combination of social features from LinkedIn profiles, and stylometric features extracted from email subjects, bodies, and attachments. However, we achieved a slightly better accuracy of 98.28% without the social features. Our analysis revealed that social features extracted from LinkedIn do not help in identifying spear phishing emails. To the best of our knowledge, this is one of the first attempts to make use of a combination of stylometric features extracted from emails, and social features extracted from an online social network to detect targeted spear phishing emails.Comment: Detection of spear phishing using social media feature

    Fame for sale: efficient detection of fake Twitter followers

    Get PDF
    Fake followers\textit{Fake followers} are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere - hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel Class A\textit{Class A} classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier. The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers

    Emerging Phishing Trends and Effectiveness of the Anti-Phishing Landing Page

    Full text link
    Each month, more attacks are launched with the aim of making web users believe that they are communicating with a trusted entity which compels them to share their personal, financial information. Phishing costs Internet users billions of dollars every year. Researchers at Carnegie Mellon University (CMU) created an anti-phishing landing page supported by Anti-Phishing Working Group (APWG) with the aim to train users on how to prevent themselves from phishing attacks. It is used by financial institutions, phish site take down vendors, government organizations, and online merchants. When a potential victim clicks on a phishing link that has been taken down, he / she is redirected to the landing page. In this paper, we present the comparative analysis on two datasets that we obtained from APWG's landing page log files; one, from September 7, 2008 - November 11, 2009, and other from January 1, 2014 - April 30, 2014. We found that the landing page has been successful in training users against phishing. Forty six percent users clicked lesser number of phishing URLs from January 2014 to April 2014 which shows that training from the landing page helped users not to fall for phishing attacks. Our analysis shows that phishers have started to modify their techniques by creating more legitimate looking URLs and buying large number of domains to increase their activity. We observed that phishers are exploiting ICANN accredited registrars to launch their attacks even after strict surveillance. We saw that phishers are trying to exploit free subdomain registration services to carry out attacks. In this paper, we also compared the phishing e-mails used by phishers to lure victims in 2008 and 2014. We found that the phishing e-mails have changed considerably over time. Phishers have adopted new techniques like sending promotional e-mails and emotionally targeting users in clicking phishing URLs

    BlogForever: D2.5 Weblog Spam Filtering Report and Associated Methodology

    Get PDF
    This report is written as a first attempt to define the BlogForever spam detection strategy. It comprises a survey of weblog spam technology and approaches to their detection. While the report was written to help identify possible approaches to spam detection as a component within the BlogForver software, the discussion has been extended to include observations related to the historical, social and practical value of spam, and proposals of other ways of dealing with spam within the repository without necessarily removing them. It contains a general overview of spam types, ready-made anti-spam APIs available for weblogs, possible methods that have been suggested for preventing the introduction of spam into a blog, and research related to spam focusing on those that appear in the weblog context, concluding in a proposal for a spam detection workflow that might form the basis for the spam detection component of the BlogForever software
    • 

    corecore