
SEVENTH FRAMEWORK PROGRAMME
FP7-ICT-2009-6

BlogForever
Grant agreement no.: 269963

BlogForever: D2.5 Weblog spam filtering report
and associated methodology

Editor: Yunhyong Kim, Seamus Ross
Revision: Yunhyong Kim, Seamus Ross, Vangelis

Banos, Stella Kopidaki, Karen Stepanyan,
Morten Rynning, Nikolaos Kasioumis

Dissemination Level: PU
Author(s): Yunhyong Kim, Tracie Farrell

Due date of deliverable: 29 February 2012
Actual submission date: 29/02/12

Start date of project: 01 March 2011
Duration: 30 months

Lead Beneficiary name: UG

Abstract: This report is written as a first attempt to define the BlogForever spam detection strategy. It
comprises a survey of weblog spam technology and approaches to their detection. While the report was
written to help identify possible approaches to spam detection as a component within the BlogForver
software, the discussion has been extended to include observations related to the historical, social and
practical value of spam, and proposals of other ways of dealing with spam within the repository
without necessarily removing them. It contains a general overview of spam types, ready-made anti-
spam APIs available for weblogs, possible methods that have been suggested for preventing the
introduction of spam into a blog, and research related to spam focusing on those that appear in the
weblog context, concluding in a proposal for a spam detection workflow that might form the basis for
the spam detection component of the BlogForever software.

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

The BlogForever Consortium consists of:

Aristotle University of Thessaloniki (AUTH) Greece
European Organization for Nuclear Research (CERN) Switzerland
University of Glasgow (UG) UK
The University of Warwick (UW) UK
University of London (UL) UK
Technische Universitat Berlin (TUB) Germany
Cyberwatcher Norway
SRDC Yazilim Arastrirma ve Gelistrirme ve Danismanlik Ticaret Limited Sirketi (SRDC) Turkey
Tero Ltd (Tero) Greece
Mokono GMBH Germany
Phaistos SA (Phaistos) Greece
Altec Software Development S.A. (Altec) Greece

D2.5 Spam filtering report 29 February 2012

History

Version Date Modification reason Modified by
0.1 18/08/11 First draft Yunhyong Kim
0.2 25/08/11 References inserted and structure in place Yunhyong Kim
0.3 29/08/11 Section images inserted Yunhyong Kim
0.5 - Feedback received From Vangelis Banos,

Nikolaos Kasioumis,
Stell Kopidaki

0.8 - Contribution received From Tracie Farrell
1 13/01/12 Revision Yunhyong Kim
1.1 24/01/12 First level completion of revision Yunhyong Kim
1.2 30/01/12 Revision for distribution to all of WP2 Yunhyong Kim
- 31/01/12 Received feedback from Vangelis Banos (AUTH)

and Karen Stepanyan (UW)
-

1.5 31/01/12 Final revision for final draft for distribution within
WP2

Yunhyong Kim

2 02/13/12 Corrections made after feedback received from
AUTH (Vangelis Banos), Phaistos (Stella
Kopidaki), CERN (Nikolaos Kasioumis),
Cyberwatcher (Morten Rynning). Also change in
title.

Yunhyong Kim

2.1 02/27/12 To reflect concerns expressed at the project
meeting in Berlin (22-23 Feb 2012)

Yunhyong Kim

BlogForever Consortium Page 3 of 58

D2.5 Spam filtering report 29 February 2012

Table of Contents

 TABLE OF CONTENTS.. 4

 EXECUTIVE SUMMARY... 5

1 INTRODUCTION... 7

2 WEB SPAM TYPES.. 11

2.1 CONTENT SPAM..13
2.2 SPAM BLOGS (SPLOGS)..15

3 READY-MADE ANTI-SPAM TOOLS... 16

4 PREVENTIVE METHODS FOR FILTERING SPAM..18

5 SPAM DETECTION APPROACHES.. 19

5.1 STAGES OF DETECTION...20
5.2 TYPE OF FEATURES...24
5.3 FILTERING SPAM ADAPTIVELY..27
5.4 VIABILITY FEATURE TYPES MENTIONED IN THE LITERATURE..28

6 RECOMMENDED SPAM DETECTION STRATEGY...29

6.1 SPAM DETECTION STRATEGY AND THE BLOGFOREVER SPIDER PROTOTYPE...32
6.2 BLOGFOREVER SPAM DETECTION METHODOLOGY..34
6.3 OTHER MEANS OF HANDLING SPAM..41

7 CONCLUSIONS... 42

8 REFERENCES... 43

A. APPENDIX A. ANTI-SPAM API AND EXAMPLE USE CASES...47

B. APPENDIX B. BAYES AND SVM-LIGHT FOR PYTHON...55

BlogForever Consortium Page 4 of 58

D2.5 Spam filtering report 29 February 2012

Executive Summary

This report was written as a survey of web spam filtering methods that might be incorporated into
the BlogForever blog archiving software as a component designed to remove material deemed
unsuitable for inclusion into a blog archive. Spam comprises a significant proportion of the
information on the web. For, example, the Spam Clock1 claims that there are one million new spam
pages created every hour. Given that 300 million websites were estimated to have been added in
20112, this is an impressive number should it be true. In the case of spam that arrive at weblogs,
over 80% of comments submitted to blog spam filtering services (such as Akismet3) for assessment
have been classified as spam.

The large volumes of spam form a formidable body of noise for a web archive targeting specified
content, and, further, poses technical difficulties for the web spider in charge of discriminating
between material relevant to the archive and that which is not. The discussion in this report
highlights a range of approaches that have been used in different circumstances to detect spam on
the web. In particular, we focus on those methods concerned with isolating blog related spam.

The promising features of different approaches have been aggregated in a multi-layered workflow
as a proposal for the architecture for the BlogForver spam detection strategy. The first of this layer
(Section 6.2.1) relies on matching strategies using the Unique Resource Locator (URL) and Internet
Protocol (IP) address, blog identification, and on applying a range of ready-made anti-spam
application platform interfaces (APIs). The second of these layers (Section 6.2.2) adopts a statistical
machine learning strategy based on base classifiers built on simple content, link and temporal
features. A third layer using implicit relevance feedback (Section 6.3.3) from end-user activity
(number of visitations, downloads, clicks and queries) and reported spam (Section 6.3.2) to improve
search ranking algorithms and feed suspected URLs and content back to the first two layers is also
mentioned. It is also emphasised here that, ideally, it is recommended that the three layers of
detection should be preceded by a directed spidering strategy (Section 6.3.1) designed to harvest a
reduced number of blogs deemed truly relevant to the repository objectives which would
immediately reduce the demand on the URL management capacity of the weblog spider and spam
detector.

The work in this report was carried out to meet the practical demands of the BlogForever archive
software for a spam removal strategy. However, some of the discussions in this report will show
that spam is actually a valuable cultural artefact that tells a story about how human information
technology and space has developed into what it is now. In fact, recently there have been
discussions about spam culture and how attitudes towards different forms of spam differ according
to the country in which you reside4. We build technology to avoid spam (if only by creating tools to
find “truly relevant information”) and spam is created to outsmart these technologies. In effect,
socially, historically, and technologically spam is a cultural heritage of our time. As such it is
unclear whether we should be removing this part of our history for the immediate convenience of
what we think is valuable with respect to our own cultural standards.

The introduction (Chapter 1) discusses the history and value of spam a bit further, followed by a
discussion of web spam and blog spam types (Chapter 2). The overview of ready-made anti-spam
APIs are presented in Chapter 3 and other methods recommended for the prevention of spam
entering into blogs are mentioned in Chapter 4. A description of the research landscape in the area

1 A application created by blekko.com reportedly tracking spam. http://www.spamclock.com
2 http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/
3 http://www.akismet.com
4 http://blogs.computerworld.com/14830/spam_culture_part_1_china

BlogForever Consortium Page 5 of 58

http://www.spamclock.com/
http://blogs.computerworld.com/14830/spam_culture_part_1_china
http://www.akismet.com/
http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/

D2.5 Spam filtering report 29 February 2012

of spam filtering is given in the next chapter (Chapter 5). The proposed spam detection strategy for
BlogForever is presented in Chapter 6. The document concludes with a summary of the findings
and few additional observations in Chapter 7. Where appropriate, we have also included in the
Appendix, usage examples of the suggested anti-spam APIs (Appendix A) and statistical packages
related to machine learning approaches that might serve as a reference in adaptive methodologies
(Appendix B).

BlogForever Consortium Page 6 of 58

D2.5 Spam filtering report 29 February 2012

1 Introduction

Current archiving standards often place some emphasis on selection and appraisal, that is, selecting
material to be included in the archive and “evaluating records to determine which are to be retained
as archives, which are to be kept for specified periods and which are to be destroyed” 5. Those
archiving information from the web (e.g. the LiWA project6) have also become increasingly
interested in selective archiving practices. This has led to proposals for web archiving practices that
incorporate methods that might be able to detect and remove noise. One such perceived noise that
has been singled out in the web archiving context is spam.

Although the association between spam and electronic communication has now become
inseparable, spam, as “unsolicited bulk messages sent out indiscriminately”, already existed in
18647 when a dentist used the telegram as a medium of advertisement to promote his new practice.
In fact, unsolicited mail, advertising products, appealing for charities, promoting causes,
campaigning for candidates, and, leading the reader away from the truth, arrive at our door
everyday. The electronic communication systems that now allow users to generate and disseminate
content easily (e.g. through email, websites, wikis, blogs, and social networks) have merely
facilitated the invasion of unsolicited messages, irrelevant search engine results, and misleading
data and/or information, into our information space, on a much larger scale.

Before the heavy use of web search engines, spam was considered to be mostly related to email
messages. email spam is still a prolific form of spam: Message Labs monthly report, in May 2011,
estimated 75.8% of emails globally to be spam8. However, the predominance of unsolicited,
irrelevant content is now as visible within general web content as it is in email. For example, two of
the leading anti-spam services for blogs, Akismet9 and Mollom10, report that, respectively, 83% and
90% of blog comments examined by them were predicted to be spam. In fact, in the context of web
search, spam has come to mean more than unsolicited, irrelevant content to attract user responses.
Gyöngyi & Garcia-Molina (2005) define web spam as comprising “any deliberate human action
that is meant to improve a site’s ranking without changing the site’s true value”. Whereas, on email,
the aim is to fool and elicit a response from the recipients themselves, on the web, the intention,
often, extends further to fooling the search engine to raise the rank of target pages (a.k.a.
spamdexing11) and increase the number of visits.

This is done for a variety of reasons, for example, to promote pages that cause malware to be
installed on your local computer when it is visited, to market products, services and affiliated pages,
and to increase their revenue from advertisers that finance the site (e.g. see discussion in Egele et al.
2011). This leads to further polluted information generated by automated queries (submitted as part
of the process to plagiarise highly ranked content), misleading tags (to promote or demote a page),
click-frauds (to cause financial damage to advertisers without corresponding profit) and
undeserving product reviews motivated by self interest (see discussions in Heymann 2007; Duskin
& Feitelson 2009; Haddadi 2010; Catillo & Davison 2011).

It has been estimated by Kolari (2007) that 75% of pings received at ping servers are spings (that is,
pings sent out by non-blogs or spam blogs created for the purpose of promoting affiliated websites).
The same study predicts approximately 88% or more of the URLS received at the ping server to be

5 Ellis, J. (1993) (ed.). "Keeping Archives" 2nd edn (Melbourne: Australian Society of Archivists) p.461.
6 http://www.liwa-project.eu/
7 http://www.economist.com/node/10286400/
8 http://www.symanteccloud.com/mlireport/MLI_2011_05_May_FINAL-en.pdf
9 http://akismet.com/
10 http://mollom.com/
11 http://en.wikipedia.org/wiki/Spamdexing

BlogForever Consortium Page 7 of 58

http://en.wikipedia.org/wiki/Spamdexing
http://mollom.com/
http://akismet.com/
http://www.symanteccloud.com/mlireport/MLI_2011_05_May_FINAL-en.pdf
http://www.economist.com/node/10286400/
http://www.liwa-project.eu/

D2.5 Spam filtering report 29 February 2012

non-blogs or spam blogs. Further, approximately 20-25% of blog search engine (e.g. Technorati 12)
results have been estimated to be spam blogs. The prevalence of spam has led Google to take action
by offering the option to webpage managers (for example, blog owners and blog software
providers) for including a “nofollow” attribute with respect to selected content, that Google will
honour in calculating the page rank, to discourage spammers from submitting spam (e.g. see Marks
& Celik 2011).

There have been several recent surveys on web spam which are listed in Figure1.1. The survey by
Castillo & Davis (2011) on adversarial web search is the most comprehensive, covering an
extensive array of topics related to web spam in general, while the surveys by Mishne (2007) and
Kolari (2007) mostly limit their discussion to comment spam and spam blogs, respectively. To gain
a fuller picture of the research area, this report should be considered in conjunction with these other
surveys.

Note that, while the above discussion clearly demonstrates that spam is a formidable obstacle in
everyday search and exploration of information, from a web archival perspective, it is not clear that
this should lead to the conclusion that we must remove the spam from archival holdings. This
would depend on the archival objectives. For example, from a forensics or record keeping point of
view, spam could hold the key to vital evidence in a criminal investigation (for example, some use

12 http://technorati.com/

BlogForever Consortium Page 8 of 58

Figure 1.1 Mindmap snapshot of latest spam survey resources

http://technorati.com/

D2.5 Spam filtering report 29 February 2012

spam to conduct fraudulent activity). Likewise, from a cultural and social studies point of view,
spam is an essential part of our culture13. The examination of spam could provide clues to
understanding their long term effects, on technological development and how we relate to
information, because spamming techniques are developed to undermine search algorithms and
search algorithms are, in turn, developed to avoid spam (this is why Castillo and Davison (2011)
use the term “adversarial search”14). The history of changes in spam is the story of our technological
achievements. Another more immediate reason to retain spam is the undeniable reality that they are
the very examples and evidences of our failure to provide automated approaches to effective search
systems that find “truly relevant information”. They provide feedback to support the improvement
of our information systems.

Regardless of the policies regarding their retention, their detection is undoubtedly valuable within
the contexts mentioned above. As such, an efficient method for the detection of spam is likely to be
an invaluable addition to a web archive. We propose to investigate here the spam detection methods
available and implementable as part of the BlogForever weblog archive. The proposal made here is
based on the following principles:

• consistent quality of service within the archive
• simplicity with respect to implementation
• adaptability of the method to new spam and technology
• compatibility with constraints within the repository

By consistent quality of service, it is intended that the spam detection method proposed here is
designed with an effort to avoid sudden fluctuations of performance in the future. As such, if third
party tools and APIs (details of which are closed to the archive) are employed there should be, in
conjunction, a backup plan for the sudden unavailability of these tools or if further development of
these tool become inactive. Simplicity not only lowers the effort of the repository with respect to
implementation, maintenance and adaptation, but also reduces processing time, taking into
consideration scalability (as the archive grows), and minimises the probability of crossing end-
user’s tolerance level, should any steps be carried out in real time. The method’s ability to adapt to
emerging spamming techniques is also essential: spam is designed to undermine ongoing
developments in search technology, and, to sustain the archive’s ability to deliver relevant content,
any spam detection mechanisms should ideally maintain the initial performance level. All of this
might still need to be governed by practical constraints imposed by the resources available (both
technical and human) within the repository, and compatibility with other best practice
recommendations of the archive.

In line with the BlogForever project Description of Work, we have focused on identifying anti-
spam methods that might constitute an efficient approach to the detection of three types of spam
specific to blogs15:

• splogs, i.e. blogs that exist to promote affiliated websites, by influencing users to visit a
webpage or buy a product, as well as spamdexing to undeservedly improve the ranking of a
page in a web search by plagiarising content, stuffing keywords or creating large number of
links,

• blog comments that contain abusive content or are irrelevant to the original post, and,
• fraudulent pings from non-blogs and/or splogs to attract visitors by misrepresenting content

as fresh.

13 http://blogs.computerworld.com/14830/spam_culture_part_1_china
14 A term borrowed from Game Theory:
 http://en.wikipedia.org/wiki/Talk%3ACombinatorial_game_theory#Adversarial_search
15 As outlined in Part B of the BlogForever Description of Work, Work Package 2 Deliverable 2.5 details.

BlogForever Consortium Page 9 of 58

http://en.wikipedia.org/wiki/Talk%3ACombinatorial_game_theory#Adversarial_search
http://blogs.computerworld.com/14830/spam_culture_part_1_china

D2.5 Spam filtering report 29 February 2012

In the next sections these spam types have been put into the context of general web spam (Chapter
2). This will be followed by a review of ready-made weblog anti-spam services for blogs that are
already available (Chapter 3). For a complete discussion, a summary of methods for preventing the
introduction of spam into blogs, recommended by blog service providers, have been included
(Chapter 4). However, most of these methods involve direct interaction with users of the blog, a
communication channel not usually available at the archive. Current research in web spam detection
is presented in Chapter 5. This overview is weighted by an emphasis on those related to blogs. In
Chapter 6, the discussion is reflected in a proposal for a weblog spam detection strategy that might
be reasonably incorporated into the BlogForever archive framework. The feasibility of its
implementation, however, still needs to be tested within the course of Work Package 4. In Chapter
7, we summarise our findings and make some final observations. We have also tried to include
examples of codes in the appendix, where appropriate, for illustrative purposes.

BlogForever Consortium Page 10 of 58

D2.5 Spam filtering report 29 February 2012

2 Web spam Types

Email spam is intended to elicit a direct response from the recipients themselves (e.g. leading them
to buy products, click on links, pass out information). While this is not outside the scope of web
spam objectives, web spam is often also constructed with the aim to fool the web search engines
(e.g. so that the search engine will rank the target pages higher in the returned list, rank other pages
lower in the list, create misleading associations, and lead to undeserving costs and profits). This
could be put into effect by generating links (e.g. link farms) that affect link-based ranking scores
(e.g. Google’s PageRank16), manipulating content (e.g. embedding spam in pages containing
plagiarised content form highly ranked pages), cloaking parts of the page to supply independent
content depending on the type of client requesting the page (e.g. whether it is a crawler or browser
request), automated generation of user logs and data (e.g. a large number of the same site address
in logs lead to a misrepresentation of site popularity, increased site visits, and raises the rank of the
website), and using pings to mask content as being fresh and attract visitors. The taxonomy of
different types of spam is summarised in Figure 2.1.

16 http://en.wikipedia.org/wiki/PageRank

BlogForever Consortium Page 11 of 58

Figure 2.1 Mindmap snapshot of general web spam taxonomy

Figure 2.2 Mindmap snapshot of blog spam taxonomy

D2.5 Spam filtering report 29 February 2012

In the context of blogs, content spam is largely dominated by comment spam, where spammers take
advantage of the commenting system to market products, post links, and propagate misleading
information.

In addition to comment spam, however, spam can take the form of splogs. These are websites that
exist to promote affiliated sites by increasing user visits to the target site and raise the rank of target
sites with respect to web services such as search engines. While splogs can also contain comment
spam, these blogs are more frequently used to create link farms, a large number nepotistic links to
manipulate search algorithms that associate importance of a website with its in-links, raising the
rank of target websites. There are many splogs that use ping servers to simulate fresh content to
attract visitors, sometimes even initiating the installation of malware (e.g. spyware) when it
successfully attracts a visitor. Splogs are different from other web spam (Lin et al. 2008) regarding
two main aspects:

1. Blogs are highly volatile and unlike the regular web where the content is relatively static, a
blog continuously generates fresh content.

2. Hyperlinks are often interpreted as an endorsement of other pages. It is less likely that a
web spam gets endorsements from normal sites. However, since spammers can create
hyperlinks using comment links or trackbacks in normal blogs, all links cannot be treated as
endorsements.

Because of these two significant differences, the splog problem is vastly different from that of
traditional web spam.

There are other forms of spamming that are polluting voting system (e.g. the “like” button) statistics
and automatically generated user data (e.g. automated generation of tags to obfuscate algorithms
that use tags to improve relevance judgements). There is extensive research in all of these areas
(e.g. see [9]): spamming techniques tend to employ automatic generation of blogs, comments, and
user data, the statistical behaviour patterns of automatically generated information has been shown
to be different from that of user generated information. For example, genuine usage data and
automatically generated usage data exhibit distinct statistical patterns ([9]). The taxonomy of blog
spam discussed in this report is summarised in Figure 2.2.

BlogForever Consortium Page 12 of 58

D2.5 Spam filtering report 29 February 2012

2.1 Content spam

There have been no shortage of proposals for web content spam detection: for example, people have
suggested using topic detection (e.g. Blei et al. 2003; Bìrò 2009), host classification (Fetterly et al.
2004), cloaking detection (Chellapila & Chickering 2006), user query statistics (Ntoulas et al.
2006), syntactic models such as part-of-speech n-grams (Piskorski et al. 2008), term distance model
(Attenberg & Suel 2008), and language model comparison (Mishne 2005) [see Figure 2.3].

There are characterisations of comment spam in terms of their content, e.g. comment-post
similarity, frequency of nouns, redundancy of words, anchor text frequency and stop word ratio
(Bhattarai, Rus, Dasgupta 200917), which have been used to propose supervised and semi-
supervised classification engines. The difficulty of spam is that as soon as an approach to eradicate
spam is devised, better spamming techniques will be developed in parallel.

Nevertheless most of the identified features have been incorporated into spam filtering methods
and/or services (e.g. Akismet18, Mollom19, Defensio20, and TypePad Anti-Spam21). While the
inference engines are sometimes published, the rules that are used are often hidden to prevent the
emergence of new spamming techniques that target these rules. However, the services are often
available for private use as an API that detects spam on the basis of submitted content.

The detection methods developed often work at different stages of the repository workflow: e.g.
submission, indexing, and ranking (more detail in Chapter 5). While ready made solutions are
convenient, they are generally limited to content spam (i.e. does not address splogs and spings – see
Chapter 3). They are also only externally adaptable, i.e. the repository has no control over the

17 http://issrl.cs.memphis.edu/files/papers/blog-spam_IEEE-SSCI-09.pdf
18 http://akismet.com/
19 http://mollom.com/
20 http://www.defensio.com/
21 http://antispam.typepad.com/

BlogForever Consortium Page 13 of 58

Figure 2.3 Mindmap snapshot of methods for combatting comment spam

http://antispam.typepad.com/
http://www.defensio.com/
http://mollom.com/
http://akismet.com/
http://issrl.cs.memphis.edu/files/papers/blog-spam_IEEE-SSCI-09.pdf

D2.5 Spam filtering report 29 February 2012

source, and, therefore, cannot easily change it internally to incorporate new methods for spam
detection that become available).

BlogForever Consortium Page 14 of 58

D2.5 Spam filtering report 29 February 2012

2.2 Spam blogs (Splogs)

In Section 2.1, we visited the area of content spam. In this section we turn our attention to Spam
blogs, a. k. a. Splogs, that are created solely for the purpose of promoting affiliated sites. Lin et al
(2008) observed temporal behaviour that distinguish such splogs, e.g. they noted that links in splogs
vary little over time, they are characterised by very narrow or very broad topics with respect to their
content, and they tend to be updated regularly at very precise times. Sato et al. (2008) also noticed
temporal features such as life span of keyword in splogs which was found to be very long lived or
very short lived.

Urvoy et al. (2008) found that web pages could be grouped according to stylistic similarity based on
HTML templates, which, in turn, can be used to infer whether or not a page is a spam by
association. Some have also tried to detect nepotistic links by measuring the similarity between
source and target document (Davison 2000; Benczúr et al. 2006; Qi et al. 2007; Martinez-Romo &
Araujo 2009). This is comparable to Mishne 2007 who compared the language model of post to that
of comment to detect comment spam.

Kolari (2007) developed a meta-ping system to tag triples (name, url, time-stamp) with a score of
legitimacy. He presented a comparative study of several previously identified features for spam
filtering (e.g. word grams, ratios). However, his contribution to spam filtering was in proposing a
multilevel approach to be applied to several stages (e.g. before fetching the page and after fetching
the page), and proposing the use of ensemble base learners to implement an adaptive spam filtering
technique in an adversarial search context.

An overview of the research landscape described above is captured as a mindmap in Figure 2.4.

BlogForever Consortium Page 15 of 58

Figure 2.4 Mindmap snapshot of methods for combatting splogs

D2.5 Spam filtering report 29 February 2012

3 Ready-made anti-spam tools

Currently, there are several widely adopted spam fighting services. Best known anti-spam services
for blog platforms are:

Bad Behaviour (http://bad-behavior.ioerror.us/)
Spam Karma (http://unknowngenius.com/blog/wordpress/spam-karma/)
Akismet (http://akismet.com/)
Defensio (http://www.defensio.com/)
Mollom (http://mollom.com/)
TypePad Anti-Spam (TAPAS, http://antispam.typepad.com/)

The first two, while it is still widely used within many circles, have now ceased further
development. Here, we will consider the four latter applications more carefully. There isn’t much
information regarding the inner workings of any of these applications, with good reason, as
spammers would take advantage of the information to try to get through. TypePad Anti-Spam
(TAPAS) is the only one of these four that provides open access to their inference engine (rules are
kept hidden). While some of these remove suspect comments even before moderation by the blog
owner (e.g. Mollom), others offer the owner the opportunity to provide feedback, exposing false
positives to the user. In the case of Defensio, the user is also provided with a spaminess (the
estimated likelihood that a message is spam) score, which could be informative.

Key characteristics of these tools are summarised in Table 3.1.

Table 3.1 Comparison of Anti-Spam Plugin Software

Akismet Defensio Mollom TAPAS

Company Automatic Websense Mollom Six Apart

When in doubt
challenge with
CAPTCHA?

No No Yes No

Own API? Yes Yes Yes Uses Akismet API

Open source engine? No No No Yes

Free for personal use? Yes Yes Yes (limited
volume and
features)

Yes

Free for commercial
use?

No ($5/month
for problogger
earning more
than
$500/month;
$50/month for
enterprise)

Yes (limited
traffic)

Yes (limited
volume and
features)

Yes

The APIs discussed here along with a few other APIs and libraries are proposed as a first stage
spam detection step within the BlogForever spam detection strategy (see discussion in Section
6.2.1). There are some concerns in relying solely on these APIs. We will discuss these concerns
further at the beginning of Chapter 6 which describes the recommended spam detection strategy.

BlogForever Consortium Page 16 of 58

http://antispam.typepad.com/
http://mollom.com/
http://www.defensio.com/
http://akismet.com/
http://unknowngenius.com/blog/wordpress/spam-karma/
http://bad-behavior.ioerror.us/

D2.5 Spam filtering report 29 February 2012

In addition to the above services, SplogSpot (http://splogspot.com/) provides a splog search engine,
which may, unlike these other services, be able to go beyond comment spam, and help determine
site level legitimacy. SplogSpot provides an API that allows access to the database of splogs.

BlogForever Consortium Page 17 of 58

http://splogspot.com/

D2.5 Spam filtering report 29 February 2012

4 Preventive methods for filtering spam

Even before the new comments or blogs are accepted into the blogosphere several preventive
mechanisms can be put into place to discourage their publication. Among these are:

• Turing test
• Throttling user actions (allow limited number or time period for comment submission)
• Regulating comments to old posts
• Software update
• Authentication
• Obfuscating comment script
• Add new required fields for comments
• Use of spam word and black/grey/white list databases

The assumption that motivates the use of Turing tests (e.g. Captcha22 and ReCaptcha23) is the notion
that spam is mostly created automatically, i.e. not by a human being. The same notion motivates
throttling repeated actions (e.g. putting a limit on absolute number of action and rate of repeated
actions), discontinuing comments to old posts (i.e. limited time for actions), updating the blog or
commenting system software so that automated scripts are forced to deal with changing
circumstances and different security protocols, and, authenticating login, obfuscating comment
script, and having a variable set of required fields for submitted comments.

These methods, while somewhat successful in reducing the number of spam, have been criticised
for discouraging users with legitimate posts. Captchas have been criticised for discouraging
interaction from the visually and/or aurally impaired persons. Likewise other forms of preventive
methods (e.g. authentication) require users to share information, which many are reluctant to do.
Adding required fields also discourages communication by increasing the labour of submitting
information.

A more immediate concern, however, is whether these approaches are applicable within the context
of a crawler of an archive outside of the context of real-time blogging. For example, at the stage of
crawling the post and/or blog the archive may not have access to the user to ask them to complete a
Turing test, and even if such information were to be available, it is unclear that it is appropriate for
the archive to ask the user for information, since there was no explicit request from that user that the
information they submitted be included in an archive. Throttling, regulating, and authenticating
actions are also primarily options available for blog owners implement as a process at the time of
submission. Software update, obfuscating scripts, as well as, adding required fields are only
applicable within the context of the blog platform through which the user submitted the
information.

The only reasonable preventive methods from the list above is the use of databases compiling spam
words, and black/grey/white lists of IP addresses and URLs. As mentioned in Chapter 3, the use of
such database carries some preservation, sustainability and adaptability risks, especially when the
list is managed by a third party. Note that black lists refer to identified splogs, white lists refer to
legitimate blogs, while grey lists refer to temporarily rejected posts/blogs set aside for verification.

In Chapter 5 we will introduce some more sophisticated filtering methods that have been employed
at the time of crawling for blogs (Section 5.1). These can be considered preventive methods as well,
while being more likely to be applicable to a blog archive crawler.

22 http://en.wikipedia.org/wiki/CAPTCHA
23 http://en.wikipedia.org/wiki/ReCAPTCHA

BlogForever Consortium Page 18 of 58

http://en.wikipedia.org/wiki/ReCAPTCHA
http://en.wikipedia.org/wiki/CAPTCHA

D2.5 Spam filtering report 29 February 2012

5 Spam detection approaches

Spam detection approaches can be examined from several perspectives. On one hand, there are
approaches that are tailored to handle specific spam types (Chapter 2). On the other hand, spam
detection can be categorised by the timing of that the detection takes place, or by the type of
features that the detection algorithm incorporates.

In this section we look at the latter two perspectives. In particular, we give a brief summary of
methods that might be employed at the time of crawling (Section 5.1.1), at the time of indexing
(Section 5.1.2), and the time of ranking the results of searching a collection (Section 5.1.3). Then,
in Section 5.2, we will discuss different types of features, divided into spatial (i.e. features
associated with the webpages at a fixed point in time) and temporal properties (i.e. changes that
occur over time). The spatial features are further broken down in terms of the cost of their
extraction (i.e. how much of the content has to be extracted and processed to obtain the
information).

In this section, we also address the question of adaptability, as spam detection that is effective only
now incurs additional cost in the long term, while an evolving and/or adaptive framework would
reduce the cost in the long term. We feel that it is mandatory for the prototype spam filtering
approach within an archival context to be adaptive to new spamming techniques. This is crucial for
efficient and effective managing, quality maintenance, and preservation of the web archive material.

BlogForever Consortium Page 19 of 58

D2.5 Spam filtering report 29 February 2012

5.1 Stages of detection

5.1.1 At the time of crawling

The earlier stages of the framework described by Kolari (2007) (Section 2.2) are spam detection
method using features available at the time of crawling and harvesting pages. There is no serious
indexing of the content used at this point. Features used will tend to be local features found with the
target blog. While ready made anti-spam APIs (Chapter 3) can be used at the time of crawling, the
methods they employ could be based on information they have obtained from indexed content
stored elsewhere.

Ma et al. (2009) have proposed further filtering methods based on an analysis of IP addresses, and
geographic information, and Webb et al. (2008) have used information found within the HTTP
response, e.g. IP address to website ratio and identification of software being used, to single out
suspect sources. While the question of quality is distinct from spamicity (likelihood that a message
is spam – similar to spaminess discussed in Chapter 3), Castillo (2004) observes that prioritising
high quality sites can be helpful. Some have also remarked that the avoidance of crawler traps can
aid spam filtering [Lee et al. (2009)].

Within the context of email spam, P2P collaborative filtering has also been suggested24, however,
the extent of this sort of implementation and their effectiveness within the community of weblog
providers and users is unclear. A more common method of filtering would be a direct use of a IP
blacklist such as that found at Blog Spam Blacklist (http://blogspambl.com/) or databases of spam
pages such as that available at SplogSpot (http://splogspot.com/). A continuous survey of other lists
of this kind would be desirable to update the database on a regular basis.

Other methods may include identifying URL patterns (e.g. see Section 5.2.1). The mindmap in
Firgure 5.1 summarises the main methods.

24 http://dspam.nuclearelephant.com/

BlogForever Consortium Page 20 of 58

http://splogspot.com/
http://blogspambl.com/

D2.5 Spam filtering report 29 February 2012

In addition to the above, Graham (2002, 2003) suggests a simple Bayesian method for spam
filtering based on estimating the probability that a message containing a selected single word is
spam. Although his method does require some training data (in this sense, it could be considered to
be a detection method applicable only at the time of indexing – see Section 5.1.2) it may be handled
incrementally with only a small seed set obtained from elsewhere. The strategy was described in the
context of email spam but has potential to be modified for blog posts. One of his observations
relevant to web spam is that vocabulary of a message should include all header information
including formatting tags as they contribute to spam identification.

5.1.2 At the time of indexing

Detection of spam at the time of indexing is the most prolific approach to spam detection. While it
is more expensive than detection methods that might be employed at the time of crawling, the
amount of information that becomes available upon accessing and comparing home pages makes
the detection more robust and effective. We have grouped features that have been indexed for spam
detection into four groups: content based features (e.g. language models, words, popular queries,
redundancy, style, anchor text, structural elements such as titles and headings, and URL
characteristics), usage data based features (e.g. number of visits, query history, and browsing
history), link based features (e.g. number of out-links and in-links, neighbourhood size, linking
pattern, graph structure, and degrees), and temporal features (e.g. change over time and rate of
growth). The mindmap in Figure 5.2 summarises these key features.

BlogForever Consortium Page 21 of 58

Figure 5.1 Mindmap snapshot of methods for detecting spams at the time of crawling

D2.5 Spam filtering report 29 February 2012

Ntoulas et al. (2006) concentrated on content based features, noting the percentage of redundant
content and average word lengths distinguishing features of spam, and the fact that popular queries
appear frequently in spam. Other indicative features draw on anchor text characteristics and words
in the title and headings as well and URL. Mishne et al. (2005) used statistical language modelling
to compare the probability of both post and comment to be from the same language model, to weed
out comment spam. Urvoy (2008) demonstrated some success in clustering pages according to
HTML based stylistic similarity thereby propagating the spamicity of a seed authoritative set of
pages.

While the content based approaches are the most straightforward and obvious, link based
approaches that not only look at in-link out-link statistics (shown not to be too effective against
spam) but also more global graph structures and patterns as well as density (e.g. Gyöngyi et al.
2005), temporal features to detect the content change over time (Dai et al. 2009; Erdélyi et al. 2009;
Erdélyi 2011), and user data (e.g. click and query history) analysis have been shown to be effective
in spam detection. On the other hand, it should be noted that, this type of feature set can only be
gathered over a long period of time and after full indexing procedures.

5.1.3 At the time of ranking

Spam detection and demotion at the time of ranking the results of a search issued by an end-user
can be enormously challenging: by the time we arrive at this stage, all traditional detection
algorithms have been applied, and therefore, those spam content that persist to be in the collection
are likely to be those that are highly ranked with respect to content and links, i.e. those that have
already passed all the tests. However, at the stage of ranking, we are provided with additional
information from the query itself, i.e. spam demotion becomes a query specific task. To this effect
some have tried to use query term counts, e.g. with respect to different parts of the document

BlogForever Consortium Page 22 of 58

Figure 5.2 Mindmap snapshot of methods for detecting spams at the time of indexing

D2.5 Spam filtering report 29 February 2012

(Figure 5.3), to improve the ranking of authentic documents. Nevertheless, the effectiveness of
spam demotion is limited.

It is deemed that spam demotion at the time of ranking can become more effective if temporal
analysis, behaviour analysis and usage data be combined with ranking methods: for example, blog
life cycle characteristics, out-link characteristics of the blog, and/or the usage statistics and click
data analysis correlated to relevance judgements collected as the data is accessed through the web
archive could be used to improve or adapt the ranking in the long term.

Learning to rank in the general web retrieval context is already a difficult problem, so we can
expect the difficulty to be comparable in the context of weblogs. On the other hand, weblogs
change over time, contain dynamic content and are associated to life-cycles. This gives us the
potential to produce better ranking for weblogs.

BlogForever Consortium Page 23 of 58

Figure 5.3 Mindmap snapshot of methods for detecting spam at the time of ranking

D2.5 Spam filtering report 29 February 2012

5.2 Type of features

5.2.1 Spatial characteristics

URL pattern information

Methods using these type of features are based on the observation that:
• spammers tend to stuff the URL with combination, mutations, and permutations of context

rich keywords to benefit from the search engine ranking that rewards these URLs
• spammers tend to use hyphens and long length URLs
• domains that are cheap to acquire, such as “.info” domains, tend to be populated with a

higher proportion of spam sites than expensive sites such as “.edu”.

Classification based on URLs feature 3,4, and 5 n-grams (after tokenising) along with URL lengths
and tokenisation techniques that capture usage of special symbols have been suggested by several
researchers (e.g. Salvetti & Nicolov 2006; Kolari 2007). This approach is highly desirable because
it prevents the spam from entering the archive in the first place (optimising storage). It also carries
low cost (i.e. no page fetch required).

Home page content information

Methods here are based on the observation that:
• spammers tend to repeat the same links and keywords
• spam sites have short life span and grow very quickly
• spammers employ a high percentage of nouns and only a few pronouns characteristic of

expression of opinions
• coherence of spam content may be lower that authentic content, that is the content would

exhibit deviation from a general n-gram language model for n>1
• HTML templates created by automated blog creation software will be repetitive

Classification based on the home page use out-links, anchor text, words, word grams, character
grams, HTML tag (as a style template, see, for example, Urvoy et al. 2008), and archive dates to
determine blog age and life cycle. To emphasise the repetitive terms and high proportion of nouns
and named entities in spam, derived features using compression ratio and entity ratio have been
suggested but these do not actually perform as well as the raw features (Kolari 2007). Given that
derived features also incur increased processing and index storage overhead, it is unclear whether
using these derived features in a large scale blog archive would be beneficial.

Feed-based information

The feature set can be strengthened by using the life cycle of blog characterised by the structured
RSS feed (e.g. number of posts and age of blog). There has also been evidence (e.g. Section III.D of
Kolari 2007) that the characterisation of HTML template based on RSS feeds enables the classifier
to learn spam software detection at a faster rate than when using the home page content.

Link based relational information

The approaches using link based features are inspired by the Google PageRank25 which is based on
the intuition that pages that are cited often are more likely to be “important”. This intuition,

25 http://en.wikipedia.org/wiki/PageRank

BlogForever Consortium Page 24 of 58

http://en.wikipedia.org/wiki/PageRank

D2.5 Spam filtering report 29 February 2012

however, also inspires the spammer to create link farms (see Chung, Toyoda, & Kitsuregawa 2009)
that exist solely to promote affiliated web sites. Perhaps this is why Kolari (2007) finds that link
based features such as number of out-links (the pages to which the target page points), the number
of in-links (the pages that point to the target page), and the number of co-citations (pages to which
other pages point at the same time as pointing to the target page), processed on their own do not out
perform bag-of-words approach. On the other hand, there has been evidence that, link based
features combined with usage data such as query statistics (e.g. see Castillo et al. 2008), can be
effective. Also, link based network structure on a global level to determine a trust measure
(Gyöngyi 2008) could be effective.

5.2.2 Temporal features and user data

Most of the features discussed in Section 5.2.1 have been described in a fashion that renders them
time independent. These kinds of features can be quite limited in its ability to fight spam which is
adversarial in nature and perhaps can be best detected by characterising the content change
observed across time (e.g. Dai et al. 2009; Lin et al. 2007; Lin et al. 2008). In addition to content
change, Erdélyi et al. (2011) showed that changes in linkage across neighbours, in-link growth and
death also characterise spam. They measure link structural change surrounding a node using Jaccard
similarity coefficient26.

While these researchers have shown that temporal analysis could be effective, these still seem to
fall behind direct content analysis. Some have also suggested monitoring changes of sites that occur
as search results of a selected set of popular queries (e.g. Zhu et al. 2011). The latter highlights
three observations:

• a small set of popular queries are popular for a long time
• there are a few blogs that are featured frequently in top search results of popular blogs
• some of the top search results of popular queries do not attract noticeable increment of in-

link count

They suggest that weblogs that attract few in-link increments while appearing in the top search
results are most likely to be splogs (i.e. it is ranked highly but people do not link to it at a noticeable
rate). More generally, they propose that a concentrated effort to examine blogs that responds
frequently to popular queries could benefit spam filtering approaches. Their approach may be
especially suitable for implementation at the time of ranking (Section 5.1.3).

It has already been observed that splogs propagate, grow, and change in a way distinct from the
space of authentic weblogs (e.g. see Fetterly et al. 2004; Bhattarai et al. 2009; Erdélyi et al. 2011).
The keywords, repetitiveness, network structure, size, and density with respect to splogs change at a
different rate from that observed with respect to authentic blogs. It seems reasonable then to exploit
these temporal characteristics. Some of the temporal characteristics depends on usage data. For
example Liu et al. (2008) present the use of user page visitation behaviour to classify spam. Their
approach is based on the following observations:

• Users visit spam pages as a result of search results more often than as a result of
recommendation by friends or links from legitimate web sites.

• Spam pages are rarely recorded as source pages because links within spam pages are rarely
clicked.

• Navigation time within spam websites is expected to be short.
These observations lead to the construction of spam detectors that employ relative counts of types
of visits, types of clicks, and number of pages within sites visited.

26 http://en.wikipedia.org/wiki/Jaccard_index

BlogForever Consortium Page 25 of 58

D2.5 Spam filtering report 29 February 2012

These statistics, however, can also be affected by automated user data generation (e.g. see Buehrer
et al. 2008; Duskin and Feitelson 2009). The trick would be to combine different source of
information to learn from each other, such as an ensemble classifier implemented at several stages
of acquiring information (see the stages of information acquisition, Section 5.1 and adaptive
filtering approaches, Section 5.3).

BlogForever Consortium Page 26 of 58

D2.5 Spam filtering report 29 February 2012

5.3 Filtering spam adaptively

Kolari (2007) suggested an adaptive filtering method that used an ensemble of classifiers each
trained on local features (i.e. no global link relation based features) URL n-gram, words, word-n-
grams, charactergrams, tags, out-links, and anchor text. An ensemble classification was performed
using these base classifiers on unlabelled instances to improve the effectiveness of each classifier.

His results, however, did not consider how his adaptive methods would fare in comparison to
adaptive methods that reflect the changes that occur to the content and network over time. Nor did
he consider usage based features (such as visitations, query history) and global link based features
(such as patterns of out-links and in-links). To maximise the benefit of temporal change in detecting
spam, it is suggested that this could be a direction to explore. Adapting the spam filter based on
usage data, which the web archive is in a position to collect, say, by capturing passive user
interaction could be highly cost effective. This data may include query statistics, session data, and
or click data. Active user feedback such as voting could also be considered.

BlogForever Consortium Page 27 of 58

D2.5 Spam filtering report 29 February 2012

5.4 Viability feature types mentioned in the literature

As a illustration of the viability of different feature types discussed in the literature, in Table 5.1,
selected feature types and their pros and cons have been summarised.

Features Pros Cons

URL analyser/template Low process cost Limited information – not very
adaptive to change

IP/Post frequency Could be difficult for spammers
to manipulate

Must have history of updates
and could become quite
involved – e.g. where is the
threshold for the frequency and
how will it adapt to changes in
the spam landscape?

Blacklist Straightforward methodology
and thrid party support
available

Could lead to exploding
blacklists.

RSS/content match Indicates some level of
agreement that the content is
what the RSS feed says it is.

This requires that RSS feed is
already available. Strictly
speaking this is not spam
filtering.

Full content analysis Could be useful for removing
duplicates. Difficult for spam to
completely confound.

Could be process intensive.

User feedback High precision Labour intensive. Low recall
because too many items for
humans to examine.

BlogForever Consortium Page 28 of 58

D2.5 Spam filtering report 29 February 2012

6 Recommended spam detection strategy

According to the BlogForever Description of Work, BlogForever will “develop robust digital
preservation, management and dissemination facilities for weblogs”27. The ability of this project to
reach these goals during the scope of this project, both effectively and efficiently, requires that we
consider what types of collections we can reasonably expect and to anticipate our needs for spam
filtering in relation to those expected use-cases.

Our current expectations of possible use-cases, according to the preliminary analysis of qualitative
interviews conducted with potential future users (e.g. reported as part of BlogForever deliverable
D4.1 “User requirements and platform specifications”), involve blog collections of two main types.
The first type would be the collection of distinct or expert blogs, targeted by an administrator for
specific preservation purposes and according to specific criteria. These types of collections are what
we expect of potential users such as libraries, universities or organizations that provide Blog
hosting, for example. The second type consists of those B2C consumer blogs, that would be
potentially collected in huge volume and without prior identification.

The BlogForever Description of Work targets two types of spam for detection28:
1. Blogs that are created for the sole purpose of raising the rank of affiliated target websites by

linking to and supporting these websites (spam blogs or splogs)
2. Comments that are submitted to the blogs for the sole purpose of disseminating content

irrelevant to the original post, including links to raise the rank of affiliated sites, and/or
relaying abusive content (comment spam)

For expert blog collections, the blogs to be preserved are expected to be chosen by an administrator,
entailing less potential for the inclusion of spam blogs within the chosen body of blogs. For this
reason, spam detection strategy with respect to expert blog collections will need to place more
weight on comment spam. There are several ready-made, anti-spam tools with learning capabilities
available that deal with comment spam (examples are discussed in Chapter 3). These learning
capabilities are triggered when errors of the anti-spam tool are reported back by blog content
moderators. These APIs will form the first stage of the BlogForever spam detection strategy. For
the second type of collection (B2C blogs), the current weblog spider prototype architecture (Section
6.1) suggests that ping servers will be used more extensively, making the detection of spam blogs
more of a problem. While it might be possible to customise existing anti-spam tools for the
detection of spam blogs (more on this in Section 6.2.1), the feasibility of this approach is yet
unclear. For both types of blogs (expert blogs and consumer blogs), it is recommended that
intelligent blog harvesting strategies be developed to alleviate overload of URLs arriving at the
spam detection component rather than trying to compromise the quality of the detection method
(Section 6.3.1)

As a point of observation, even in the case of the expert blog collection, the assumption that the
administrator will be able to list blogs relevant to the collection may become questionable in the
future. Blogs are created at a alarming rate: for example, the number of tumblr blogs is now over 41
million29 and the number of WordPress blogs has been reported to be 70 million 30. Last year,
Technorati was reported to be tracking over 100 million blogs31(note that Technorati no longer
indexes non-English blogs). In the plethora of emerging blogs, archivists of the future will not be

27 Part A1: Project summary , BlogForever project Description of Work
28 covering three spam types listed on Page 28, Part B, BlogForever project Description of Work
29 http://www.tumblr.com
30 http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/
31 http://www.infotoday.com/linkup/lud021510-stern.shtml

BlogForever Consortium Page 29 of 58

http://royal.pingdom.com/2012/01/17/internet-2011-in-numbers/
http://www.tumblr.com/

D2.5 Spam filtering report 29 February 2012

able to hand-pick blogs for archiving, nor will they be able to rely completely on popularity
rankings (which is almost impossible to surpass as a late-comer in the game even with high quality
content, unless the new blogger resorts to spamming techniques themselves), to find relevant blogs.
For example, in order to harvest and archive blogs addressing events of social significance across
the blogosphere (not an unlikely mandate on an archivist) such as those discussed by Chen (2010), a
blog archive administrator might need to automatically discover these blogs. In such a scenario,
spam blog detection (not just comment spam detection) to support selection of relevant blogs will
become necessary. In fact, in the future, it may be that the spam detection strategy will become an
essential component of selection and appraisal procedures carried out by the archivist.

Consequently, it is important to ensure that the spam detection mechanism set up by the
BlogForever archive should not falter in the continuation of its service and in the maintenance of
the quality of its service. As such, the design of a spam detection strategy for a robust weblog
archive should not depend solely on closed third-party tools. A third-party service could be
discontinued at any time and development could cease at any time (i.e. no longer evolving in
response to new emerging knowledge about spam). While the continuation and evolution of these
tools to meet the demands of the user community is likely, and modifications might be possible on a
need-to-do basis, there is no guarantee. To ignore the ramifications of such a risk goes against good
archiving, repository management, and digital preservation practices.

In response, in addition to the first stage of spam detection carried out by third-party APIs (Section
6.2.1), a second stage detection based on statistical methods is proposed as a backup strategy
(Section 6.2.2). The second stage detection will also be carried out at the time of web crawling, i.e.
the spam detection will be in full cooperation with the BlogForever weblog spider. In fact, the
design of the spam detection framework has been configured to meet the general recommendations
presented in the BlogForver deliverable D2.4 BlogForever weblog spider prototype (see discussion
in Section 6.1).

The basic step for a spam detection module takes an input candidate and determines the likelihood
of it being spam or not (Figure 6.1). Once the input is flagged as spam, it can be ignored, kept
within the archive, reported to a spam database, or collected in a separate location as part of an
internal spam database of the archive. The course of action would depend on the goals, policies,
objectives, mandates, and legal requirements imposed on the archive.

While the retention of spam will pose a considerable burden on a web archive (in light of the
organisation’s data storage capacity), as illustrated in the introduction to this report, spam has
distinctive historical, research, and commercial value. To repeat, spam tells a story about how the

BlogForever Consortium Page 30 of 58

Figure 6.1 Basic step in the spam detection module

D2.5 Spam filtering report 29 February 2012

adversarial development of technology versus spam has evolved over the years. Thus, we
recommend that all spam or some selected portion of spam should be preserved as part of future
web archiving initiatives. Regardless of the policy on storing (or not storing) spam, however, the
URL of the flagged spam should be communicated to the Source Database (see Section 6.1)
specified in the BlogForever deliverable D2.4 Weblog Spider Prototype and Associated
Methodology to be used for URL blacklist analysis.

Finally, in Section 6.3, we have proposed some end-user mechanisms that might be integrated into
the User Interface design and repository Data Management framework that could further support
the spam handling strategy of the BlogForver archive.

BlogForever Consortium Page 31 of 58

D2.5 Spam filtering report 29 February 2012

6.1 Spam detection strategy and the BlogForever spider
prototype

The final spam detection strategy must be designed to fit in with other components of the
BlogForver archive implementation. Further, the spam detection component should involve low
cost in implementation, processing, and maintenance. To support low cost, the spam detection will
be limited to take place during or right after the web crawling or spidering process, so as it
decreases involvement with the more complex architecture of the repository. The BlogForever
spider will be prototyped, designed and implemented as part of BlogForever deliverables D2.4,
D4.2, and D4.3, respectively. Already, in the deliverable D2.4, it was proposed that the spam
detection takes place in two places: using a URL blacklist stored in the Source Database (“Source
DB” in Figure 6.2), coming from previous instances of spam detection, and using the fetched
content (see “Spam filter” component in Figure 6.2) in relation to either the Host Analyzer or the
Worker stage of the spidering process. By adhering to the architecture suggested in D2.4, we can
ensure compatibility between the spam detection strategy and the general BlogForever archive
implementation.

The discussion in the D2.4 deliverable suggests (Section 4.2.4, D2.4), as first line of defence against
spam, the elimination of URLs that:

• do not match acceptable blog formats (based on an ID3 decision tree algorithm),
• have splog-like characteristics (e.g. high volume of associated updates and pings),
• do not lead to the identification of valid RSS feeds for blogs and blog posts,
• lead to mismatch of RSS and HTML content using Levenshtein distance.

BlogForever Consortium Page 32 of 58

Figure 6.2 BlogForever Spider Prototype Architecture (Section 4.2.4, BlogForever deliverable D2.4
“Weblog spider prototype”). Spam detection is part of the “Worker” stage of the prototype.

D2.5 Spam filtering report 29 February 2012

Further suggestions made by deliverable D2.432 includes the use of heuristic scoring functions based
on in-link statistics and spam scores of posts, mentioned by Wu (2007), as well as, a list of derived
features, mentioned by Kolari (2007). While the steps to examine URL characteristics are
reasonable precautions within any web spidering frameworks that aim to retrieve authentic blogs,
the features proposed in Section 3.5 of the deliverable pose a couple of immediately observable
problems. The distributional characteristics proposed by Wu (2007) is based on data and even usage
data (e.g. query logs) collected over a considerable time period. At the initial period of launching
the archive this kind of data is limited. Also, characteristics such as in-link increase rate can be
manipulated by a clever spammer, say, for instance, more easily than linguistic elements such as
indent and coherence.

Also, the derived features described by Kolari (2007) take time to extract, and, further, it should be
noted that Kolari (2007) observes, in his experimentations, that the performance of spam detection
based on these derived features do not lead to as good a performance as that obtained from raw
features (e.g. bag of words, n-grams, anchor text). For example, he reports that derived features at
its best achieve an accuracy rate of 0.75, while classification on the bag of words method achieves
0.9 accuracy. Consequently, we recommend that the initial approaches be limited to the use of raw
features.

Graham (2003) who also uses statistical methods on words (he does not distinguish header
information from content) reports that 99.75% of his email spam was caught by his Bayes spam
filtering method33 and he measured a false positive rate of 0.06%. Admittedly, his method was
applied on email, and it is questionable whether the same methodology would apply to blog posts,
but his philosophy seems sound: he contends that strategies based on heuristics can eventually be
out smarted by a clever spammer, and that strategies based on deep language processing techniques
are more robust because the message of the spam has to be explicitly or implicitly (as the target of a
link, for example) embedded in the post.

Based on the finding of Kolari (2007) and Graham (2003), it is recommended that any
implementation of the BlogForever spam detection strategy going beyond the integration of ready
made API (e.g. those mentioned in Chapter 3), use raw features such as words in the content rather
than derived or heuristic features.

32 Section 3.5, D2.4
33 http://paulgraham.com/better.html

BlogForever Consortium Page 33 of 58

D2.5 Spam filtering report 29 February 2012

6.2 Blogforever spam detection methodology

In this section, we have described two core phases intended to form the basis of the BlogForever
spam filtering strategy. The initial stages of the first phase described in Section 6.2.1 (based on
looking up blacklisted IP/URLs and/or URL pattern rules) is largely independent of the content of
the target page, post or comment. However, it might be commented here that URL lists or pattern
based methods are not reliable in the long term, as this is something that spammers change
frequently for the very reason that it is the first line of defence used in any spam detection
methodology. On the other hand the volume of URLs arriving at the ping server (the source of
harvest suggested suggested within BlogForever deliverable D2.4) makes it difficult to examine the
target content of each URL. There seem to be only two immediate solutions available for dealing
with this dilemma:

1. The creation and maintenance of multiple spam filtering agents on several servers
assigned with limited number of URLs.

2. The design of an intelligent spidering strategy for harvest in parallel to the update strategy
suggested in D2.4. that moves away from the breadth-first harvest at the ping server to
depth-first harvest sourced through identified non-spam blogs (see Section 6.3.1). The
depth-first harvest increases the likelihood that material relevant to material already in the
collection is being collected, and also encourages the collection to approximate the single
network of linked pages (i.e. the statistics used in link-based ranking becomes more
accurate).

The first of these may be only a temporary solution as the number of URLs at the ping server may
grow at an accelerated rate in the future. While the possibility of extensive investigations in the
direction of the second solution may be limited within the BlogForever project, it is recommended
that future archiving initiatives give it serious consideration.

The latter part of the first phase (blog identification and the use of anti-spam APIs) and the second
phase (section 6.2.2) of the spam detection (adaptive ensemble classifiers) relies on some form of
blog content. It should be pointed out, however, that the term content here does not necessarily refer
to comment, post, or page content associated to the URL. Even with the information received at the
ping server only, access to title, url and links to RSS is available. These features may be used in the
first instance as content submitted to APIs and/or to apply the other approaches outlined in Section
6.2.2 at an early stage to eliminate obvious instances of spam. For this reason, the strategy has made
no distinction between splog detection and content spam detection: the philosophy behind the
simplified strategy suggested here, at least within the limits of present resources, is to cast the
detection of different types of spam instances as a question of considering content and links and
changes thereof at different levels of granularity, and at different time periods in the repository life
cycle.

Finally, it should be noted that none of the strategies outlined here is intended for blog platform
providers and is intended for use within retrospective weblog repositories created after blogs and
their content have been published within the blogosphere.

6.2.1 IP and URL Blacklist/Whitelist lookup, blog detection, and third-party
APIs

This stage of the spam detection is designed to reduce the spam detection process overhead by
carrying out simple IP and URL matching against blacklisted and whitelisted IP addresses and
URLs, leaving more sophisticated methods for later to be applied on a smaller set of data. All three

BlogForever Consortium Page 34 of 58

D2.5 Spam filtering report 29 February 2012

steps are expected to be carried out during the Host Analyzer stage of the weblog spider (see
Figure 6.2).

Blacklist/Whitelist Lookup

As mentioned in Section 6.1, the BlogForever weblog spider prototype already incorporates part of
the first and second steps (URL lookup and blog detection) of this detection stage. However, we
propose here three improvements of the already implemented steps:

1. In addition to URLs, IP addresses, if available, could be checked against a blacklist
database. It has been observed (e.g. by Kolari 2007) that the same IP addresses use different
URLs to avoid being caught as spam.

2. The dnspython toolkit34 could be used to look up URLs associated to a selected IP address
mapped to a rejected URL. Associated URL can be added to the Source Database suspected
URL list.

3. In addition to storing internally detected suspect URLS in the Source Database, it might be
worth exploring external APIs, for example, that from SplogSpot (http://splogspot.com/) to
check for blacklisted IP addresses and URL. This is to circumvent the fact that, at the
beginning, there are very few suspect addresses recorded in the Source Database.

Blog detection/identification

The weblog spider also already incorporates simple blog detection techniques using URL format
analysis, RSS check (URLs without RSS links are rejected), and RSS validation against content. In
conjunction with query logs (see discussion of usage data in Section 6.3), a detection method based
on the number of popular query words in the URL has been shown to be an indicator of spam blogs
(Kolari 2007).

While an additional backup strategy based on weblog structure (drawing on the elements of blogs
that have been identified as part of the work presented in the BlogForever deliverable D2.2, “Report
on Weblog Data Model”), and Kolari’s support vector machine detection method using a
combination of binary features coming from words in the content and page URL (this combination
was reported to have best performance resulting in precision 0.985 and recall of 0.966) would be
useful, the increase in overhead may make it not worth implementation. It is proposed that, if
resources are available, a test be conducted to evaluate the accuracy of this strategy against the
projected increase in overhead.

Third-party API

In Chapter 3, we discussed a range of ready-made third-party anti-spam APIs. There is a wrapper in
many languages for most of these APIs. Python API, wrappers, or code examples for most of these
APIs have been provided in Appendix A. The focus on python is due to the awareness that the
BlogForever repository software Invenio is based on python and also that python is recognised an
ideal language for efficient string processing35. We have not included BadBehaviour and
SpamKarma in the discussion here. Although there is still a strong support from the community for
these anti-spam services, they have been known to be described process intensive36.

34 http://www.dnspython.org
35 http://stackoverflow.com/questions/635155/best-language-for-string-manipulation
36 http://wordpress.org/support/topic/bad-behavior-and-admin-ajaxphp-crawl-backend

BlogForever Consortium Page 35 of 58

http://wordpress.org/support/topic/bad-behavior-and-admin-ajaxphp-crawl-backend
http://stackoverflow.com/questions/635155/best-language-for-string-manipulation
http://splogspot.com/
http://www.dnspython.org/

D2.5 Spam filtering report 29 February 2012

The methods available to each of these APIs are slightly different. Akismet python API37 is
undoubtedly the simplest including four methods for verifying a submitted key, checking a
comment for spam, and reporting back spam and ham, respectively. A sample code is presented in
Appendix A.1.2. The same API can be used for TypePad antispam (Appendix A.4) with the
appropriate key.

Defensio also comes with a python library38 (see Appendix A.3). Unlike Akismet, Defensio
provides a score of spaminess. The latter functionality might be useful in other ways as well. For
example, if the spaminess level is low then we might allow its inclusion into the repository but
make use of this as a feature in tagging or ranking the blog post at the time of displaying it to the
end-user of the archive. Further functionalities of the Defensio API is available as a pdf document
at: http://download.defensio.com/docs/api/defensio_api_2.0.pdf

In addition to APIs mentioned in Chapter 3, there are also services like BlogSpam 39 (Appendix
A.5). Comments can be submitted through a server proxy API using XML-RPC standards. Unlike
other offerings listed here, with BlogSpam, you can run your own service by downloading the
code40. However, there may be little support for the python and/or other languages in this case.

There is also the Trac project SpamFilter41, which operates as a bridge across these different API to
allow customised selection of any of these API. It also provides a gateway to specialised spam
filters such as StopForumSpam42 and LinkSleeve43, as well as, access to a range of internal spam
filtering strategies including tools for implementing a trained Bayes spam filter. Python codes using
the Trac SpamFilter and each of these API are at the SpamFilter website. As an example, however,
the sample code for the implementation of Akismet within this context has been included in
Appendix A.6.

One widely used external anti-spam service that is not included in the Trac SpamFiltering
framework is Mollom (see Chapter 3). An independent python wrapper for the Mollom API is
available at http://www.itkovian.net/base/python-wrapper-mollom/

Ideally, we would like to propose that several APIs be used in parallel. We could not find a
reference to such a use case at the time of writing this report but perhaps three or more spam filter
APIs can be operated as a committee of spam filters. This can be applied to incoming posts and
comments. The output can be also tagged with Defensio’s spaminess index for later use (see
discussion above). If a post is identified as spam then the website is suspect and can be greylisted.
Greylisted websites can be assumed to be spam blogs or further examined by retrieving further
posts and comments from the site for examination.

A committee of spam filters can be either implemented through Trac SpamFilter (this has not been
tested for feasibility yet), or independently scripted. The effort in creating a committee should be
minimal.

Additionally, the use of blekko44 should be investigated. blekko claims to be a spam free search
engine for the web. They use slashtags (indicated topic/genre) curated by experts to eliminate spam

37 http://www.voidspace.org.uk/python/akismet_python.html
38 http://www.defensio.com/downloads/python/
39 http:// www. blog spam.net
40 http://blogspamnetapi.codeplex.com/releases/view/62472
41 http://trac.edgewall.org/wiki/SpamFilter
42 http://stopforumspam.com/
43 http://linksleeve.org/
44 http://www.blekko.com

BlogForever Consortium Page 36 of 58

http://www.blekko.com/
http://www.itkovian.net/base/python-wrapper-mollom/
http://linksleeve.org/
http://stopforumspam.com/
http://trac.edgewall.org/wiki/SpamFilter
http://blogspamnetapi.codeplex.com/releases/view/62472
http://www.blogspam.net/
http://www.blogspam.net/
http://www.blogspam.net/
http://www.blogspam.net/
http://download.defensio.com/docs/api/defensio_api_2.0.pdf
http://www.defensio.com/downloads/python/
http://www.voidspace.org.uk/python/akismet_python.html

D2.5 Spam filtering report 29 February 2012

websites. They claim that an API is available that will allow external applications to use the
slashtags. However, how easy it is to use the API is yet unknown, and whether it can be applied to
the blog context is questionable. For example, the content they index may not include many blogs.

6.2.2 Ensemble adaptation framework

The steps in Section 6.2.1 will reduce the scope of sites that need serious analysis. The next stage of
spam filtering is designed to support simplicity while enabling adaptability. An automatically
adapting spam detection strategy may involve some cost at the beginning of its implementation but
will have an advantage in the long run by reducing the necessity of manual intervention for the
maintenance, improvement, and retraining of the spam detector.

Many researchers engineer features (see derived features – e.g. compression ratio and entity ratios
described by Kolari 2007; and link structural coefficients used by Erdélyi et al. 2011) or select the
best ones from a big pool of features. This approach generally creates a fast learning curve at the
beginning, and is perfect for finding local optima, but does not necessarily lead to a global
optimum. In fact, Kolari (2007) shows that the use of poor base classifiers to build an ensemble
adaptive framework is effective in achieving relatively high performance levels at a later stage of
the learning process (reaching precision and recall of approximately 92% and 94% across all
classifiers – some of these classifiers started off at less than 84% precision and 71% recall).

He also presents evidence that supervised classifiers using Support Vector Machine algorithms on
raw content features (e.g. words) performs better than those based on derived features (e.g. ratio
between words belonging to different part of speech). He also shows that simple link features (e.g.
number of in-links; number of out-links; number of sites co-cited with the target site) are not as
effective as word features. While some researchers (e.g. Wu 2007) have shown that in-link growth
rate is a good indicator of spaminess, these are features that can be captured over a considerable
period of time (see also discussion at end of Section 6.1). Also, note that the more derived the
feature is, the more expensive the process will be to capture it, and difficult to efficiently integrate
into the rest of crawling, and indexing system of the repository.

Here we suggest an ensemble frame work with poor base classifiers distributed across those trained
on content features (e.g. base classifiers presented by Kolari 2007), link structural features (e.g. in-
link counts, out-link counts, network node degrees; see also Erdélyi et al. 2011), temporal features
(e.g. changes of content and link features). These can then be used independently as the basis for a
classifier using a variation of Naïve Bayes (see Appendix B.1 for a simple implementation of, for
example, Graham’s Bayes spam filter45) and/or Support Vector Machine46 (see how it is used in
Appendix B.2) to form an ensemble of classifiers that can learn from each other, without manual
input. In the first instance, the ensemble classifier labels a new candidate for spam detection using
the averaged probability across all classifiers. The new labelled instance is used to re-trained and
hopefully improve each individual classifier (see Figure 6.3).

Initially we suggest only three sets of features (resulting in three classifiers):

• tokenized content (this is the entire HTML for the content retrieved before parsing the
HTML),

• link structure features including number of in-links, number of out-links, number of co-
cited sites (if possible),

45 http://www.paulgraham.com/spam.html
46 http://tfinley.net/software/svmpython1

BlogForever Consortium Page 37 of 58

http://tfinley.net/software/svmpython1
http://www.paulgraham.com/spam.html

D2.5 Spam filtering report 29 February 2012

• temporal features that track changes in the tokenized content, link numbers and co-citation
numbers since the last update as a ratio with respect to time.

Not all of the features will be available in the first instance. To compensate we could first work with
a single content based classifier, followed by new classifiers based on link features and temporal
features (and, even later, classifiers based on features derived from end-user activity) added to the
ensemble at a later date. In fact, the ensemble spam detection strategy can be introduced at a later
date based on a small samples of posts and comments labelled as spam or non-spam as a result of
the spam detection carried out by the committee of ready-made anti-spam APIs (Section 6.2.1).

Because the features described above are very basic features of a webpage, the implementation of
the framework will not be incur extra labour with respect to data extraction (that is, these features
need to be extracted as a matter of course during indexing and can be partially communicated back
to the spam detector). Support vector machines can, however, be quite process intensive (which is
why a lighter version of the algorithm has been suggested – Appendix B.2) so depending on the
volume of classification, it might be better to select a simplified Bayes classification approach (such
as that presented in Appendix B.1).

Note that the features for the individual classifiers are all features that need to be extracted anyway
as important aspects of the blog as part of the data extraction framework. Later, if resources permit
it, an advanced module could be developed to build other classifiers into the ensemble including
one based on user data features (visitation statistics and browsing history, such as that presented by
Zhu et al. 2011; query log statistics such as that presented by Castillo et al. 2008) to augment the
ensemble.

BlogForever Consortium Page 38 of 58

Figure 6.3 The three stages of an adaptive ensemble classifier workflow

D2.5 Spam filtering report 29 February 2012

6.2.3 Requirements for the implementation of the spam detection strategy

In Sections 6.1, 6.2.1, 6.2.2, we described the steps for an efficient spam detection strategy to be
employed within the BlogForever weblog archive. We summarise the workflow in three phases
(Figure 6.4). The first two phases (Phase 1, described in Section 6.2.1, and, Phase 2, described in
Section 6.2.2) form the core components of the detection strategy. In this section we discuss the
requirements of these two phases. The details of Phase 3 is discussed in Section 6.3.

Training data for the ensemble classifier

Since it is unlikely that the spam detection component will have access to explicit user feedback,
the Phase 2 component of the spam detection strategy will lack the training data to initiate the base
classifiers. Although, this data could be obtained externally (say, for example, through SplogSpot or
Technorati), a better strategy for the archive is to feed a portion of the labelled result of Phase 1,
initially, as training data for Phase 2. This would make the data more domain specific (that is,
relevant to the collection objectives – both for BlogForever, and for future archives), and the
classifiers are likely to perform better when trained on representative datasets.

Considerations with respect to indexing

The training of the ensemble classifier does not necessarily depend on the full indexing of the
collection, as you might do within the repository. The initial statistics that drives the classification
can be based on the statistics of all the spam considered together as one document and all the non-
spam (a.k.a ham) considered together as one document. Also, the document vectors can be reduced
in dimension on the basis of the top 20 most distinguishing words in the document.

Not all features will be available from the beginning

BlogForever Consortium Page 39 of 58

Figure 6.4 Spam detection workflow in three phases

D2.5 Spam filtering report 29 February 2012

While there is always some content associated to a blog candidate for inclusion into the repository,
links (incoming and outgoing) and changes of content and links may not be available at the outset.
This can be handled by initially only introducing the content-based classifier augmented by a link-
based classifier and a classifier using temporal features (changes in content and links) when
information on these features become available.

Defining what we mean by content

In extracting content to be submitted to the APIs and ensemble classifier, while we suggest
tokenizing of HTML and URL content, it is not assumed that we will be removing structural and
header information in the form of HTNL or XML from the page or message before submitting it to
the relevant classifiers. For example, Graham (2003) found that, in the case of email, the inclusion
of header information as part of the content improved classification. It is suggested that initially we
do not rip content from HTML and evaluate efficacy before taking this step. If we do not need to
parse html, time and processing intensity can be reduced.

Mapping the spam detection Phase 1 and 2 onto the weblog spider

Both Phases 1 and 2 can be implemented at several stages of the weblog spider (Section 6.1). As
mentioned earlier, while the amount of information available at different stages of the crawl
(updates from the ping, updates from the RSS feed, and update of the target page content) will
differ, it should also be noted that there will always some content available.

Step 1: Weblog spider Host Analyzer

At this stage of the weblog spider we will only have information received from the ping server.
Nevertheless, even at this stage, we have access to the title, url, rss link (while not all updates
received at the ping server is accompanied by rss links, it has already been suggested that only
URLs with RSS feeds be considered for inclusion into the repository. Hence, it seems reasonable to
discard updates at the ping server that come without RSS links). This content satisfies the minimum
requirements for information to be submitted to the APIs and ensemble classifiers.

Step 2: Weblog spider Worker

The RSS feed for the URLs that have passed the title, URL, and RSS link check in Step 1, will be
retrieved at this stage. Once the RSS feed is available, we will have content from posts and
comments available as well as url, title and RSS link. This in turn can be submitted to the suggested
committee of APIs and the ensemble classifier.

Step 3: after the full content has been fetched by the weblog spider

For URLs surviving the classification at Step 1 and 2, we arrive at Step 3 which is based on the
submission of full webpage content to the APIs and ensemble classifier.

In the next section we will discuss some approaches that can be implemented within the wider
content of the repository to support spam detection, and, more generally, selection and appraisal.
For example, user feedback (e.g. spam reports from users of the archive) could be collected to
inform the Source Database of the weblog spider and the API servers to improve Phase 1 (by
updating black lists and utilising the API adaptive functionalities) and Phase 2 (by updating the
training data). Also, it might be possible to improve the weblog spidering strategy with respect to
aggregating repository content beyond that received from a general ping server to avoid large
volumes of URL at earlier stages of the detection.

BlogForever Consortium Page 40 of 58

D2.5 Spam filtering report 29 February 2012

6.3 Other means of handling spam

In addition to the two proposed phases described in Sections 6.2.1, 6.2.2, and 6.2.3, in this section,
we list a few related areas of research regarding repository design that we believe to be relevant to
spam detection. Apart from the direct spam filtering method that have been proposed so far in this
report, another way to fight spam cost-effectively is to make improvements to the information
retrieval strategy. That is, by ranking truly relevant material higher, we can make spam effectively
invisible without actively removing them. In relation to this, we point to four different research
areas for improving retrieval.

6.3.1 What we crawl and have in the collection affects retrieval performance

It has been noted that crawling policy on retrieval performance (Fetterly et al. 2009) affects the
performance of the retrieval algorithm. That is, different collections respond differently to the
algorithms we use. For example, web spidering approaches could follow the “breadth-first” or
“depth-first” approach. Some have observed that prioritising depth could improve the usability of
the collection. While this is in the context of general web, analogous strategies may exist with
respect to blogs. Hypothetically, for example, while comments can be submitted from outside the
blog author’s circle, it may be less likely that posts are submitted by suspect contributors. Hence, if
the blog has already been identified as authentic information found within the posts might be a
source for finding more authentic blogs by association. It is recommended that such strategies be
investigated.

6.3.2 Option to report spam: a way to improve the user interface?

The ready-made APIs discussed in this report rely on user reports of erroneously labelled spam and
ham (non-spam) to learn to classify spam more accurately. In the way we are using the APIs, it is
difficult to report back spam to the API servers, because explicit human moderation of the data
labelled as ham and spam is not configured into the design (as it is in the context of active blog
plugins). It could result in continued poor performance of the APIs on blogs that meet the
requirements of the archive. If we use the blogs labelled by the APIs for Phase 2, this error may be
propagated. Incorporating a mechanism to allow users of the archive to report spam within the user
interface could, therefore, prove useful. Recorded spam reports can be also used to improve the
search results displayed within the user interface.

6.3.3 Using click, query and usage data regarding blogs to improve search

User implicit feedback models (e.g. Joachims and Radlinski 2007) information retrieval
performance has been reported in recent years. For example, some have observed that, while clicks
do not indicate relevance in itself, clicks may indicate that the clicked item is more relevant than
those preceding the item in the list. Also, some of the strategies that have been suggested for spam
filtering in recent years depend on the use of user data features (visitation statistics and browsing
history, such as that presented by Zhu et al. 2011; query log statistics such as that presented by
Castillo et al. 2008). It is, therefore, recommended that user data (visitation statistics, download
frequency, queries and click data) be recorded and managed as part of the repository design, if
possible. Usage data of selected blogs may become especially useful for improvements in ranking
and spam detection. Some of the data here could be used for IP analysis (see discussion of
dnspython toolkit in Section 6.2.1) to populate and update whitelists with respect to the Source
Database.

BlogForever Consortium Page 41 of 58

D2.5 Spam filtering report 29 February 2012

7 Conclusions

In this report, we have presented a survey of web spam filtering methods relevant to blog spam
detection. We have looked at different types of spam that have infiltrated the Blogosphere (Chapter
2), discussed the pros and cons of different ready-made APIs and tools (Chapter 3 and Section
6.2.1), presented an overview of the research landscape in the area of spam detection (Chapter 5),
and proposed what we view to be a feasible two-phase spam detection strategy for implementation
as a component in the BlogForever weblog archive (Sections 6.2.1, 6.2.2 and 6.2.3): consisting of,

1. Phase 1: spam detection carried out by a committee of APIs
2. Phase 2: spam detection carried out by an ensemble of adaptive base classifiers built on

three independent sets of features.

The proposed strategy has been designed to conform to the architecture of the weblog spider
described in Deliverable D2.4 of the BlogForever project. The strategy described, however, is
subject to modifications dependent on further discussions and research results within the
BlogForver project, especially with respect to future finding related to repository and weblog spider
design (Work Package 4 of the BlogForever project).

We have also discussed some factors involving the design of the repository that might affect the
handling of spam (Section 6.3), as points of consideration in the next steps of the BlogForever
repository design. Where appropriate, we have also suggested improvements that might be
introduced in the future, should the resources of the BlogForever project, or organisations adopting
the platform, allow investigations in that direction. Spam detection is a complex problem and the
proposed strategy for its detection is a naïve approach at best. The main objective of the
BlogForever project is not in the development of spam detectors. As such resources for its
development are deemed to be limited.

As a concluding comment, we would like to add that there was one final component missing in the
strategy described: this must consist of a vigilant continuation of investigations into new
technologies that might become available. Spam is adversarial, that is, the better we make our
technologies for discovery, research, interpretation, and search, the cleverer the spam will become.
It is very unlikely that the solution developed now will last into the future.

BlogForever Consortium Page 42 of 58

D2.5 Spam filtering report 29 February 2012

8 References
[1] J. Attenberg and T. Suel, “Cleaning search results using term distance features,” in

Proceedings of the Fourth International Workshop on Adversarial Information Retrieval on
the Web (AIRWeb), pp. 21–24, New York, NY, USA: ACM, 2008.

[2] A. A. Benczúr, I. B ́ o, K. Csalog ́ny, and M. Uher, “Detecting nepotistic links by language
model disagreement,” in Proceedings of the 15th International Conference on World Wide
Web (WWW), pp. 939–940, ACM Press, 2006.

[3] A. Bhattarai, V. Rus, D. Dasgupta, “Characterizing comment spam in the blogosphere
through content analysis”, In Distribution. IEEE Press, pp. 37-44. 2009. Available at:
http://dx.doi.org/10.1109/CICYBS.2009.4925088.

[4] I. Bíró, D. Sikl ́si, J. Szab ́, and A. Bencz ́r, “Linked latent dirichlet allocation in Web spam
filtering,” in Proceedings of the 5th International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), pp. 37–40, ACM Press, 2009.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of Machine
Learning Research, vol. 3, pp. 993–1022, 2003.

[6] G. Buerer, J. W. Stokes, K. Chellapilla, “A large-scale study of automated web search
traffic”, Proceedings of the 4th international workshop on Adversarial information retrieval
on the web (AIRWeb ‘08), ACM, pp 1-8, ISBN 978-1-60558-159-0, New York, NY, USA.
2008. http://doi.acm.org/10.1145/1451983.1451985

[7] C. Castillo, “Effective Web Crawling,” PhD thesis, University of Chile, 2004.

[8] C. Castillo, C. Corsi, D. Donato, P. Ferragina, and A. Gionis, “Query-log mining for
detecting spam” In Proceedings of the 4th international workshop on Adversarial
information retrieval on the web (AIRWeb '08), Carlos Castillo, Kumar Chellapilla, and
Dennis Fetterly (Eds.). ACM, New York, NY, USA, pp17-20, 2008.
DOI=10.1145/1451983.1451987 http://doi.acm.org/10.1145/1451983.1451987

[9] C. Castillo and B. D. Davison, “Adversarial Web Search”, Found. Trends Inf. Retr. 4, 5 (May
2011), pp377-486, 2011. DOI=10.1561/1500000021 http://dx.doi.org/10.1561/1500000021

[10] J. Caverlee, “Tamper-Resilient Methods for Web-Based Open Systems,” PhD thesis, College
of Computing, Georgia Institute of Technology, August 2007.

[11] K. Chellapilla and D. M. Chickering, “Improving cloaking detection using search query
popularity and monetizability,” in Proceedings of the 2nd International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb), pp. 17–24, August 2006.

[12] X. Chen, “Blog Archiving Issues: A Look at Blogs on major Events and Popular Blogs.”,
Internet Reference Services Quarterly, 15, pp21-33, 2010. DOI: 10.1080/10875300903529571.

[13] Y.-J. Chung, M. Toyoda, and M. Kitsuregawa, “A study of link farm distribution and
evolution using a time series of Web snapshots,” in Proceedings of the 5th International
Workshop on Adversarial Information Retrieval on the Web (AIRWeb), pp. 9–16, ACM
Press, 2009.

[14] N. Dai, B. Davison, and X. Qi, “Looking into the past to better classify Web spam,” in
Proceedings of the 5th International Workshop on Adversarial Information Retrieval on the
Web (AIRWeb), pp. 1–8, ACM Press, 2009.

[15] B. D. Davison, “Recognizing nepotistic links on the Web,” in Artificial Intelligence for Web
Search, pp. 23–28, AAAI Press, July 2000.

BlogForever Consortium Page 43 of 58

http://dx.doi.org/10.1561/1500000021
http://doi.acm.org/10.1145/1451983.1451985
http://dx.doi.org/10.1109/CICYBS.2009.4925088

D2.5 Spam filtering report 29 February 2012

[16] O. Duskin and D. G. Feitelson, “Distinguishing humans from robots in web search logs:
preliminary results using query rates and intervals”, in Proceedings of the 2009 workshop on
Web Search Click Data (WSCD '09), 978-1-60558-434-8}, pp. 15-19, ACM, Barcelona,
Spain, 2009. http://doi.acm.org/10.1145/1507509.1507512

[17] M. Egele, C. Kolbitsch, C. Platzer, “Removing web spam links from search engine results”,
J. Comput. Virol, vol. 7, no. 1, pp. 51-62, Springer, February 2011.
http://dx.doi.org/10.1007/s11416-009-0132-6

[18] M. Erdélyi, A. A. Benczúr, J. Masanes, and D. Siklósi, “Web spam filtering in internet
archives,” in Proceedings of the 5th International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), pp. 17–20, ACM Press, 2009.

[19] M. Erdélyi, and A. A. Benczúr, "Temporal Analysis for Web Spam Detection: An Overview
", In the Proceedings of the 1st Intl. Temporal Web Analytics Workshop (TWAW 2011),
Hyderabad, India, March 28, 2011, pp.17-24.

[20] M. Erdélyi, A. Garzó, and A. A. Benczúr, "Web spam classification: a few features worth
more", In the Proceedings of the Joint WICOW/AIRWeb Workshop on Web Quality
(WebQuality 2011), Hyderabad, India, March 28, 2011, ACM Press 2011.

[21] D. Fetterly, M. Manasse, and M. Najork, “Spam, damn spam, and statistics: Using statistical
analysis to locate spam Web pages,” in Proceedings of the Seventh Workshop on the Web
and databases (WebDB), pp. 1–6, June 2004.

[22] D. Fetterly, “Adversarial Information Retrieval: the manipulation of Web content,” ACM
Computing Reviews, July 2007.

[23] D. Fetterly, N. Craswell., and V. Vinay, "The impact of Crawl Policy on Web Search
Effectiveness", Proceeding of SIGIR'09, Boston MA, USA, pp580-587, 2009.
http://doi.acm.org/10.1145/1571941.1572041

[24] P. Graham, “A Plan for Spam”, article online, published August 2002.
http://www.paulgraham.com/spam.html (accessed 23 january 2012).

[25] P. Graham, “Better Bayesian Filtering”, article online, published january 2003.
http://www.paulgraham.com/better.html (accessed 23 january 2012).

[26] Z. I. Gyö̈ngyi and H. Garcia-Molina, “Web spam taxonomy,” in Proceedings of the First
International Workshop on Adversarial Information Retrieval on the Web (AIRWeb), pp. 39–
47, May 2005.

[27] Z. I. Gyöngyi, “Applications of Web link analysis,” PhD thesis, Stanford University,
Adviser: Hector Garcia-Molina, 2008.

[28] H. Haddadi, “Fighting online click-fraud using bluff ads”, SIGCOMM Comput. Commun.
Rev., vol. 40, no. 2, ISSN 0146-4833, pp. 21-25, April 2010.
http://doi.acm.org/10.1145/1764873.1764877

[29] A. Heydon and M. Najork, “Mercator: A scalable, extensible web crawler,” World Wide
Web, vol. 2, no. 4, pp. 219–229, 1999.

[30] P. Heymann, G. Koutrika, and H. Garcia-Molina, “Fighting spam on social Web sites: A
survey of approaches and future challenges,” IEEE Internet Computing, vol. 11, no. 6, pp.
36–45, 2007.

[31] T. Joachims and F. Radlinski, “Search Engines that Learn from Implicit Feedback”, IEEE
Computer, Volume 40 (8), pp34 – 40, 2007. http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=4292009

BlogForever Consortium Page 44 of 58

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4292009
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4292009
http://doi.acm.org/10.1145/1764873.1764877
http://www.paulgraham.com/better.html
http://www.paulgraham.com/spam.html
http://doi.acm.org/10.1145/1571941.1572041
http://dx.doi.org/10.1007/s11416-009-0132-6
http://doi.acm.org/10.1145/1507509.1507512

D2.5 Spam filtering report 29 February 2012

[32] J. Köhne, “Optimizing a large dynamically generated Website for search engine crawling and
ranking,” Master’s thesis, Technical University of Delft, 2006.

[33] P. Kolari, “Detecting Spam Blogs: An Adaptive Online Approach,” PhD thesis, Department
of Computer Science and Electrical Engineering, University of Maryland-Baltimore County,
2007.

[34] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, “Irlbot: Scaling to 6 billion pages and
beyond,” ACM Transactions on the Web, vol. 3, no. 3, pp. 1–34, 2009.

[35] Y.-R. Lin, H. Sundaram, Y. Chi, J. Tatemura, and L. B. Tseng, “Splog detection using self-
similarity analysis on blog temporal dynamics,” in Proceedings of the 3rd International
Workshop on Adversarial Information Retrieval on the Web (AIRWeb), pp. 1–8, New York,
NY, USA: ACM Press, 2007.

[36] Y.-R. Lin, H. Sundaram, Y. Chi, J. Tatemura, and L. B. Tseng, “Detecting splogs via
temporal dynamics using self-similarity analysis,” ACM Transations on the Web, vol. 2, no.
1, pp. 1–35, 2008.

[37] T. Liu, “Analyzing the importance of group structure in the Google Page- Rank algorithm,”
Master’s thesis, Rensselaer Polytechnic Institute, November 2004.

[38] Y. Liu, R. Cen, M. Zhang, S. Ma, and L. Ru, “Identifying web spam with user behavior
analysis”, In Proceedings of the 4th international workshop on Adversarial information
retrieval on the web (AIRWeb '08), Carlos Castillo, Kumar Chellapilla, and Dennis Fetterly
(Eds.). ACM, New York, NY, USA, pp9-16, 2008. DOI=10.1145/1451983.1451986
http://doi.acm.org/10.1145/1451983.145198 6

[39] J. Ma, K. L. Saul, S. Savage, and M. G. Voelker, “Beyond blacklists: Learning to detect
malicious web sites from suspicious urls,” in Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1245–1254, New
York, NY, USA: ACM, 2009.

[40] K. Marks and T. Celik, “Microformats: The rel=nofollow attribute,” Technical Report,
Technorati, 2005. Online at http://microformats.org/wiki/rel-nofollow. Last accessed 25
August 2011.

[41] J. Martineau, A. Java, P. Kolari, T. Finin, A. Joshi, and J. Mayfield, BlogVox: learning
sentiment classifiers. In Proceedings of the 22nd national conference on Artificial
intelligence - Volume 2 (AAAI'07), Anthony Cohn (Ed.), Vol. 2. AAAI Press 1888-1889,
2007.

[42] J. Martinez-Romo and L. Araujo, “Web spam identification through language model
analysis,” in Proceedings of the 5th International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), pp. 21–28, ACM Press, 2009.

[43] K. Mason, “Detecting Colluders in PageRank: Finding Slow Mixing States in a Markov
Chain,” PhD thesis, Department of Engineering Economic Systems and Operations Research,
Stanford University, September 2005.

[44] G. Mishne, D. Carmel, and R. Lempel, “Blocking blog spam with language model
disagreement,” in Proceedings of the 1st International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), May 2005.

[45] A. G. Mishne, “Applied Text Analytics for Blogs,” PhD thesis, University of Amsterdam,
April 2007.

[46] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting spam Web pages through

BlogForever Consortium Page 45 of 58

http://microformats.org/wiki/rel-nofollow
http://doi.acm.org/10.1145/1451983.1451986
http://doi.acm.org/10.1145/1451983.1451986

D2.5 Spam filtering report 29 February 2012

content analysis,” in Proceedings of the 15th International Conference on World Wide Web
(WWW), pp. 83–92, May 2006.

[47] A. Perkins, “The classification of search engine spam,” Available online at
http://www.silverdisc.co.uk/articles/spam-classification/, September 2001.

[48] J. Piskorski, M. Sydow, and D. Weiss, “Exploring linguistic features for Web spam
detection: A preliminary study,” in Proceedings of the 4th International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb), pp. 25–28, New York, NY, USA:
ACM, 2008.

[49] X. Qi, L. Nie, and D. B. Davison, “Measuring similarity to detect qualified links,” in
Proceedings of the 3rd International Workshop on Adversarial Information Retrieval on the
Web (AIRWeb), pp. 49–56, May 2007.

[50] F. Salvetti and N. Nicolov. “Weblog Classification for Fast Splog Filtering: A URL
Language Model Segmentation Approach”. In Proceedings of the Human Language
Technology Conference of the NAACL, Companion Volume: Short Papers, pages 137–140,
New York City, USA, June 2006.

[51] Y. Sato, T. Utsuro, Y. Murakami, T. Fukuhara, H. Nakagawa, Y. Kawada, and N. Kando,
“Analysing features of Japanese splogs and characteristics of keywords,” in Proceedings of
the Fourth International Workshop on Adversarial Information Retrieval on the Web
(AIRWeb), pp. 33–40, New York, NY, USA: ACM, 2008.

[52] D. Sheldon, “Manipulation of PageRank and Collective Hidden Markov Models,” PhD
thesis, Cornell University, 2009.

[53] A. Thomason, “Blog spam: A review,” in Proceedings of Conference on Email and Anti-
Spam (CEAS), August 2007.

[54] T. Urvoy, E. Chauveau, P. Filoche, and T. Lavergne, “Tracking Web spam with HTML style
similarities,” ACM Transactions on the Web, vol. 2, no. 1, 2008.

[55] S. Webb, “Automatic Identification and Removal of Low Quality Online Information,” PhD
thesis, College of Computing, Georgia Institute of Technology, December 2008.

[56] B. Wu, “Finding and Fighting Search Engine Spam,” PhD thesis, Department of Computer
Science and Engineering, Lehigh University, March 2007.

[57] B. Zhou, “Mining page farms and its application in link spam detection,” Master’s thesis,
Simon Fraser University, 2007.

[58] B. Zhou, J. Pei, and Z. Tang, “A spamicity approach to Web spam detection,” in Proceedings
of the SIAM International Conference on Data Mining (SDM), April 2008.

[59] L. Zhu, A. Sun, and B. Choi, “Detecting spam blogs from blog search results”, Information
Processing and Management 47 pp246–262 , 2011.

BlogForever Consortium Page 46 of 58

http://www.silverdisc.co.uk/articles/spam-classification/

D2.5 Spam filtering report 29 February 2012

A. Appendix A - Anti-spam API and example use cases

A.1 Akismet

A.1.1 Akismet python API

Located at http://www.voidspace.org.uk/python/akismet_python.html

A.1.2 Example use case for Akismet python API

A.2 Mollom

A.2.1 Python wrapper for Mollom API

Located at https://github.com/itkovian/PyMollom

A.2.2 Example methods available for Mollom python API

• getServerList
• checkContent
• sendFeedback
• getImageCaptcha
• getAudioCaptcha
• checkCaptcha
• getStatistics
• verifyKey

BlogForever Consortium Page 47 of 58

api = Akismet(agent='Test Script')
if apikey.txt is in place,
the key will automatically be set
or you can call ``api.setAPIKey()``
#
if api.key is None:
 print "No 'apikey.txt' file."
elif not api.verify_key():
 print "The API key is invalid."
else:
 # data should be a dictionary of values
 # They can all be filled in with defaults
 # from a CGI environment
 if api.comment_check(comment, data):
 print 'This comment is spam.'
 else:
 print 'This comment is ham.'

https://github.com/itkovian/PyMollom

D2.5 Spam filtering report 29 February 2012

A.3 Defensio

A.3.1 Python package for Defensio API

Located at http://www.defensio.com/downloads/python/

A.3.2 Example unit test code for Defensio python package47

From:https://github.com/defensio/defensio-python/blob/master/test/defensio_test.py

import unittest
import sys
sys.path.append('.')
from defensio import *

class TestDefensio(unittest.TestCase):

 def is_python3(self):
 return sys.version_info[0] == 3

 def setUp(self):
 # Set this to an actual key before running tests
 self.api_key = 'retrainer_key'
 self.client = Defensio(self.api_key)

 def testGenerateUrls(self):
 self.assertEqual("/2.0/users/" + self.api_key + ".json", self.client._generate_url_path())
 self.assertEqual("/2.0/users/" + self.api_key + "/action1.json"%locals(),
self.client._generate_url_path('action1'))
 self.assertEqual("/2.0/users/" + self.api_key + "/action1/id1.json"%locals(),
self.client._generate_url_path('action1', 'id1'))

 def testGetUser(self):
 status, result = self.client.get_user()
 self.assertEqual(200, status)
 self.assertEqual(dict, type(result['defensio-result']))
 result_body = result['defensio-result']
 self.assertEqual('success', result_body['status'])
 self.assertEqual('', result_body['message'])
 self.assertEqual('2.0', result_body['api-version'])

 if self.is_python3():
 self.assertEqual(str, type(result_body['owner-url']))
 else:
 self.assertEqual(unicode, type(result_body['owner-url']))

 self.assertTrue(len(result_body['owner-url']) > 0)

 def testPostDocumentWhenFail(self):
 doc = {'content': 'Hi Hola Salut'}

47 The code is from: https://github.com/defensio/defensio-python/blob/master/test/defensio_test.py

BlogForever Consortium Page 48 of 58

https://github.com/defensio/defensio-python/blob/master/test/defensio_test.py
https://github.com/defensio/defensio-python/blob/master/test/defensio_test.py
http://www.defensio.com/downloads/python/

D2.5 Spam filtering report 29 February 2012

 status, result = self.client.post_document(doc)
 self.assertEqual(200, status)
 self.assertEqual(dict, type(result['defensio-result']))
 result_body = result['defensio-result']
 self.assertEqual('fail', result_body['status'])
 self.assertEqual('The following fields are missing but required: platform, type',
result_body['message'])
 self.assertEqual('2.0', str(result_body['api-version']))

 def testPostDocumentWhenSuccessThenPutThenGet(self):
 doc = {'content': 'Hi Hola Salut', 'type' : 'comment', 'platform' : 'python-test'}
 status, result = self.client.post_document(doc)
 self.assertEqual(200, status)
 self.assertEqual(dict, type(result['defensio-result']))

 result_body = result['defensio-result']
 self.assertEqual('success', result_body['status'])
 self.assertEqual('', result_body['message'])
 self.assertEqual('2.0', str(result_body['api-version']))
 self.assertAlmostEqual(0.05, result_body['spaminess'])
 self.assertEqual('legitimate', result_body['classification'])
 self.assert_(result_body['profanity-match'] == False or result_body['profanity-match'] == None)
 self.assertTrue(result_body['allow'])

 if self.is_python3():
 self.assertEqual(str, type(result_body['signature']))
 else:
 self.assertEqual(unicode, type(result_body['signature']))

 signature = result_body['signature']

 status, put_result = self.client.put_document(signature, {'allow' : 'false'})
 self.assertEqual(200, status)
 put_result_body = put_result['defensio-result']
 self.assertEqual('success', put_result_body['status'])

 status, get_result = self.client.get_document(signature)
 self.assertFalse(get_result['defensio-result']['allow'])

 def testProfanityFilter(self):
 doc = {'bad' : 'some fucking cursing here', 'good' : 'Hey... how is it going?'}
 status, res = self.client.post_profanity_filter(doc)
 self.failIfEqual(403, status, "Seems like the profanity filter is not enabled for key: " +
self.api_key + " ")
 self.assertEqual(200, status)
 self.assertEqual('Hey... how is it going?', res['defensio-result']['filtered']['good'])
 self.assertEqual('some ****ing cursing here', res['defensio-result']['filtered']['bad'])

 def testBasicStats(self):
 status, res = self.client.get_basic_stats()
 self.assertEqual(200, status)
 result_body = res['defensio-result']

BlogForever Consortium Page 49 of 58

D2.5 Spam filtering report 29 February 2012

 self.assertEqual('success', result_body['status'])
 self.assertEqual(set(['status', 'false-positives', 'false-negatives', 'unwanted', 'legitimate', 'learning',
'api-version', 'learning-status', 'message', 'accuracy']), set(result_body.keys()))

 def testExtendedStats(self):
 data = {'from' : '2010-01-01', 'to' : '2010-01-04'}
 status, res = self.client.get_extended_stats(data)
 self.assertEqual(200, status)
 result_body = res['defensio-result']
 self.assertEqual('success', res['defensio-result']['status'])

 def testHandlePostDocumentAsyncCallback(self):
 if self.is_python3():
 handle_post_document_async_callback(b'{"defensio-result": {"status": "success"}}')
 else:
 handle_post_document_async_callback('{"defensio-result": {"status": "success"}}')

if __name__ == '__main__':
 unittest.main()

A.4 TypePad Anti-Spam

The python package for TypePad Anti-Spam is provided through the Akismet API, and, therefore,
there is no separate implementation. See Appendix A.1.

A.5 BlogSpam

The BlogSpam server is available through an XML-RPC based API. More information is available
at http://blogspam.net/api/

A sample python code for accessing this API is provided below:

#! /usr/bin/python

from xmlrpclib import ServerProxy, Error

if __name__=='__main__':
 server=ServerProxy('http://test.blogspam.net:8888/')

 comment_details={
 'ip':'1.2.3.4',
 'email':'pvsnpnutter@nutters.com',
 'name':'nutcase',
 'comment':'some comment'
 }
 try:
 print server.testComment(comment_details)
 except Error, v:
 print v

BlogForever Consortium Page 50 of 58

http://blogspam.net/api/

D2.5 Spam filtering report 29 February 2012

A.6 Akismet within Trac SpamFilter48

From:
http://trac.edgewall.org/browser/plugins/0.12/spam-filter-captcha/tracspamfilter/filters/akismet.py

-*- coding: utf-8 -*-
#
Copyright (C) 2005-2006 Edgewall Software
Copyright (C) 2005-2006 Matthew Good <trac@matt-good.net>
Copyright (C) 2006 Christopher Lenz <cmlenz@gmx.de>
All rights reserved.
#
This software is licensed as described in the file COPYING, which
you should have received as part of this distribution. The terms
are also available at http://trac.edgewall.com/license.html.
#
This software consists of voluntary contributions made by many
individuals. For the exact contribution history, see the revision
history and logs, available at http://projects.edgewall.com/trac/.
#
Author: Matthew Good <trac@matt-good.net>
Christopher Lenz <cmlenz@gmx.de>

from email.Utils import parseaddr
from urllib import urlencode
import urllib2
from pkg_resources import get_distribution

from trac import __version__ as TRAC_VERSION
from trac.config import IntOption, Option
from trac.core import *
from trac.mimeview.api import is_binary
from tracspamfilter.api import IFilterStrategy

class AkismetFilterStrategy(Component):
 """Spam filter using the Akismet service (http://akismet.com/).

 Based on the `akismet` Python module written by Michael Ford:
 http://www.voidspace.org.uk/python/modules.shtml#akismet
 """
 implements(IFilterStrategy)

 noheaders = ['HTTP_COOKIE', 'HTTP_HOST',
'HTTP_REFERER','HTTP_USER_AGENT',
 'HTTP_AUTHORIZATION']

 karma_points = IntOption('spam-filter', 'akismet_karma', '5',
 """By how many points an Akismet reject impacts the overall karma
of
 a submission.""")

 api_key = Option('spam-filter', 'akismet_api_key', '',
 """Wordpress key required to use the Akismet API.""")

48 From http://trac.edgewall.org/browser/plugins/0.12/spam-filter-captcha/tracspamfilter/filters/akismet.py

BlogForever Consortium Page 51 of 58

http://trac.edgewall.org/browser/plugins/0.12/spam-filter-captcha/tracspamfilter/filters/akismet.py
http://trac.edgewall.org/browser/plugins/0.12/spam-filter-captcha/tracspamfilter/filters/akismet.py

D2.5 Spam filtering report 29 February 2012

 api_url = Option('spam-filter', 'akismet_api_url',
'rest.akismet.com/1.1/',
 """URL of the Akismet service.""")

 user_agent = 'Trac/%s | SpamFilter/%s' % (
 TRAC_VERSION, get_distribution('TracSpamFilter').version
)

 def __init__(self):
 self.verified_key = None

 # IFilterStrategy implementation

 def is_external(self):
 return True

 def test(self, req, author, content, ip):
 if not self._check_preconditions(req, author, content):
 return

 try:
 url = 'http://%s.%scomment-check' % (self.api_key,
self.api_url)
 self.log.debug('Checking content with Akismet service at %s',
url)
 resp = self._post(url, req, author, content, ip)
 if resp.strip().lower() != 'false':
 self.log.debug('Akismet says content is spam')
 return -abs(self.karma_points), 'Akismet says content is
spam'

 except urllib2.URLError, e:
 self.log.warn('Akismet request failed (%s)', e)

 def train(self, req, author, content, ip, spam=True):
 if not self._check_preconditions(req, author, content):
 return

 try:
 which = spam and 'spam' or 'ham'
 url = 'http://%s.%ssubmit-%s' % (self.api_key, self.api_url,
which)
 self.log.debug('Submitting %s to Akismet service at %s',
which, url)
 self._post(url, req, author, content, ip)

 except urllib2.URLError, e:
 self.log.warn('Akismet request failed (%s)', e)

 # Internal methods

 def _check_preconditions(self, req, author, content):
 if self.karma_points == 0:
 return False

BlogForever Consortium Page 52 of 58

D2.5 Spam filtering report 29 February 2012

 if not self.api_key:
 self.log.warning('Akismet API key is missing')
 return False

 if is_binary(content):
 self.log.warning('Content is binary, Akismet content check
skipped')
 return False

 try:
 if not self.verify_key(req):
 self.log.warning('Akismet API key is invalid')
 return False
 return True
 except urllib2.URLError, e:
 self.log.warn('Akismet request failed (%s)', e)

 def verify_key(self, req, api_url=None, api_key=None):
 if api_url is None:
 api_url = self.api_url
 if api_key is None:
 api_key = self.api_key

 if api_key != self.verified_key:
 self.log.debug('Verifying Akismet API key')
 params = {'blog': req.base_url, 'key': api_key}
 req = urllib2.Request('http://%sverify-key' % api_url,
 urlencode(params),
 {'User-Agent' : self.user_agent})
 resp = urllib2.urlopen(req).read()
 if resp.strip().lower() == 'valid':
 self.log.debug('Akismet API key is valid')
 self.verified = True
 self.verified_key = api_key

 return self.verified_key is not None

 def _post(self, url, req, author, content, ip):
 # Split up author into name and email, if possible
 author = author.encode('utf-8')
 author_name, author_email = parseaddr(author)
 if not author_name and not author_email:
 author_name = author
 elif not author_name and author_email.find("@") < 1:
 author_name = author
 author_email = None

 params = {'blog': req.base_url, 'user_ip': ip,
 'user_agent': req.get_header('User-Agent'),
 'referrer': req.get_header('Referer') or 'unknown',
 'comment_author': author_name,
 'comment_type': 'trac',
 'comment_content': content.encode('utf-8')}
 if author_email:
 params['comment_author_email'] = author_email
 for k, v in req.environ.items():

BlogForever Consortium Page 53 of 58

D2.5 Spam filtering report 29 February 2012

 if k.startswith('HTTP_') and not k in self.noheaders:
 params[k] = v
 urlreq = urllib2.Request(url, urlencode(params),
 {'User-Agent' : self.user_agent})

 #self.log.warn('AkismetPOST2 %s URL %s', urlencode(params), url)
 resp = urllib2.urlopen(urlreq)
 return resp.read()

BlogForever Consortium Page 54 of 58

D2.5 Spam filtering report 29 February 2012

B. Appendix B - Bayes and SVM-light for python

B.1 Example code: Bayes classifier training with python49

###script to train some data Paul Graham style###
import datetime
print datetime.datetime.now()

from nltk.corpus import movie_reviews
import random
from nltk import FreqDist
from operator import itemgetter
import pickle

pos_input = open('posTrainData', 'rb')
neg_input = open('negTrainData','rb')
#min_sample_size = 50 #for each category

pos_ids = pickle.load(pos_input)
neg_ids = pickle.load(neg_input)

pos_rev_num = len(pos_ids)
neg_rev_num = len(neg_ids)
total_rev_num = pos_rev_num + neg_rev_num
min_sample_size = 200 #change this to suit your purpose

if (pos_rev_num < min_sample_size) or (neg_rev_num < min_sample_size):
print "your training sample is not large enough. come back when you have more!"

else:
#select training samples
train_pos_ids = random.sample(pos_ids,min_sample_size)
train_neg_ids = random.sample(neg_ids,min_sample_size)
#segregate test set
#test_pos_ids = [i for i in pos_ids if not(i in train_pos_ids)]
#test_neg_ids = [i for i in neg_ids if not(i in train_neg_ids)]

#get words from reviews for training
pos_rev_words = movie_reviews.words(fileids = train_pos_ids)
neg_rev_words = movie_reviews.words(fileids = train_neg_ids)

#vocab for both
vocabulary = list(set(list(pos_rev_words) + list(neg_rev_words)))

#get word frequency distribution
pos_fdist = FreqDist(pos_rev_words)
neg_fdist = FreqDist(neg_rev_words)

49 This example is Yunhyong Kim’s own implementation of Paul Graham’s approach to spam classification
found at http://www.paulgraham.com/spam.html Because there was no spam data easily available the
movie review corpus from the NLTK toolkit was used, pretending that negative reviews are spam.

BlogForever Consortium Page 55 of 58

http://www.paulgraham.com/spam.html

D2.5 Spam filtering report 29 February 2012

#create probaility table
hasht={}
for word in vocabulary:

pn =0
nn =0
if word in pos_fdist.keys():

pn = pos_fdist[word]
if word in neg_fdist.keys():

nn = neg_fdist[word]
if nn + pn >5:

nquant = min(1,float(nn)/float(min_sample_size))
pquant = min(1,float(pn)/float(min_sample_size))
prob = max(0.1, min(0.99,float(nquant)/float(pquant+nquant)))
hasht[word] =prob

output1 = open('TrainResult', 'wb')
pickle.dump(hasht, output1)
output1.close()

#output2 = open('s250testData', 'wb')
#test = test_pos_ids + test_neg_ids
#pickle.dump(test, output2)
#output2.close()

print datetime.datetime.now()

B.2 Using SVM Light in Python50

B.2.1 A multi-class learner implementation example:
multiclassify.py

"""A module for SVM^python for multiclass learning."""

The svmlight package lets us use some useful portions of the C
code.
import svmlight

These parameters are set to their default values so this
declaration
is technically unnecessary.
svmpython_parameters = {'index_from_one':True}

def read_struct_examples(filename, sparm):
 # This reads example files of the type read by SVM^multiclass.
 examples = []
 sparm.num_features = sparm.num_classes = 0
 # Open the file and read each example.
 for line in file(filename):
 # Get rid of comments.
 if line.find('#'): line = line[:line.find('#')]

50 These scripts are from http://tfinley.net/software/svmpython1/

BlogForever Consortium Page 56 of 58

http://tfinley.net/software/svmpython1/

D2.5 Spam filtering report 29 February 2012

 tokens = line.split()
 # If the line is empty, who cares?
 if not tokens: continue
 # Get the target.
 target = int(tokens[0])
 sparm.num_classes = max(target, sparm.num_classes)
 # Get the features.
 tokens = [tuple(t.split(':')) for t in tokens[1:]]
 features = [(int(k),float(v)) for k,v in tokens]
 if features:
 sparm.num_features = max(features[-1][0],
sparm.num_features)
 # Add the example to the list
 examples.append((features, target))
 # Print out some very useful statistics.
 print len(examples),'examples read with',sparm.num_features,
 print 'features and',sparm.num_classes,'classes'
 return examples

def loss(y, ybar, sparm):
 # We use zero-one loss.
 if y==ybar: return 0
 return 1

def init_struct_model(sample, sm, sparm):
 # In the corresponding C code, the counting of features and
 # classes was done in the model initialization, not here.
 sm.size_psi = sparm.num_features * sparm.num_classes
 print 'size_psi set to',sm.size_psi

def classify_struct_example(x, sm, sparm):
 # I am a very bad man. There is no class 0, of course.
 return find_most_violated_constraint(x, 0, sm, sparm)

def find_most_violated_constraint(x, y, sm, sparm):
 # Get all the wrong classes.
 classes = [c+1 for c in range(sparm.num_classes) if c+1 is not
y]
 # Get the psi vectors for each example in each class.
 vectors = [(psi(x,c,sm,sparm),c) for c in classes]
 # Get the predictions for each psi vector.
 predictions = [(svmlight.classify_example(sm, p),c) for p,c in
vectors]
 # Return the class associated with the maximum prediction!
 return max(predictions)[1]

def psi(x, y, sm, sparm):
 # Just increment the feature index to the appropriate stack
position.
 return svmlight.create_svector([(f+(y-1)*sparm.num_features,v)
 for f,v in x])

BlogForever Consortium Page 57 of 58

D2.5 Spam filtering report 29 February 2012

The default action of printing out all the losses or labels is
irritating for the 300 training examples and 2200 testing
examples
in the sample task.
def print_struct_learning_stats(sample, sm, cset, alpha, sparm):
 predictions = [classify_struct_example(x,sm,sparm) for x,y in
sample]
 losses = [loss(y,ybar,sparm) for (x,y),ybar in
zip(sample,predictions)]
 print 'Average loss:',float(sum(losses))/len(losses)

def print_struct_testing_stats(sample, sm, sparm, teststats): pass

B.2.2 How to train and test the classifier

Once you've written a Python module in the file multiclassify.py based on svmstruct.py and you

want to use SVMpython with this module, you would use the following command line commands
to learn a model and classify with a model respectively.

./svm_python_learn --m multiclassify [options] <train>
<model>
./svm_python_classify --m multiclassify [options] <test>
<model> <output>

Note that SVMpython accepts the same arguments as SVMstruct plus this extra --m option. If the
--m option is omitted it is equivalent to including the command line arguments --m svmstruct. Note
that though we put this command line option first, the --m option may occur anywhere in the option
list.

BlogForever Consortium Page 58 of 58

	Table of Contents
	Executive Summary
	1 Introduction
	2 Web spam Types
	2.1 Content spam
	2.2 Spam blogs (Splogs)

	3 Ready-made anti-spam tools
	4 Preventive methods for filtering spam
	5 Spam detection approaches
	5.1 Stages of detection
	5.1.1 At the time of crawling
	5.1.2 At the time of indexing
	5.1.3 At the time of ranking

	5.2 Type of features
	5.2.1 Spatial characteristics
	5.2.2 Temporal features and user data

	5.3 Filtering spam adaptively
	5.4 Viability feature types mentioned in the literature

	6 Recommended spam detection strategy
	6.1 Spam detection strategy and the BlogForever spider prototype
	6.2 Blogforever spam detection methodology
	6.2.1 IP and URL Blacklist/Whitelist lookup, blog detection, and third-party APIs
	6.2.2 Ensemble adaptation framework
	6.2.3 Requirements for the implementation of the spam detection strategy

	6.3 Other means of handling spam
	6.3.1 What we crawl and have in the collection affects retrieval performance
	6.3.2 Option to report spam: a way to improve the user interface?
	6.3.3 Using click, query and usage data regarding blogs to improve search

	7 Conclusions
	8 References

