92 research outputs found

    An Innovative RAN Architecture for Emerging Heterogeneous Networks: The Road to the 5G Era

    Full text link
    The global demand for mobile-broadband data services has experienced phenomenal growth over the last few years, driven by the rapid proliferation of smart devices such as smartphones and tablets. This growth is expected to continue unabated as mobile data traffic is predicted to grow anywhere from 20 to 50 times over the next 5 years. Exacerbating the problem is that such unprecedented surge in smartphones usage, which is characterized by frequent short on/off connections and mobility, generates heavy signaling traffic load in the network signaling storms . This consumes a disproportion amount of network resources, compromising network throughput and efficiency, and in extreme cases can cause the Third-Generation (3G) or 4G (long-term evolution (LTE) and LTE-Advanced (LTE-A)) cellular networks to crash. As the conventional approaches of improving the spectral efficiency and/or allocation additional spectrum are fast approaching their theoretical limits, there is a growing consensus that current 3G and 4G (LTE/LTE-A) cellular radio access technologies (RATs) won\u27t be able to meet the anticipated growth in mobile traffic demand. To address these challenges, the wireless industry and standardization bodies have initiated a roadmap for transition from 4G to 5G cellular technology with a key objective to increase capacity by 1000Ã? by 2020 . Even though the technology hasn\u27t been invented yet, the hype around 5G networks has begun to bubble. The emerging consensus is that 5G is not a single technology, but rather a synergistic collection of interworking technical innovations and solutions that collectively address the challenge of traffic growth. The core emerging ingredients that are widely considered the key enabling technologies to realize the envisioned 5G era, listed in the order of importance, are: 1) Heterogeneous networks (HetNets); 2) flexible backhauling; 3) efficient traffic offload techniques; and 4) Self Organizing Networks (SONs). The anticipated solutions delivered by efficient interworking/ integration of these enabling technologies are not simply about throwing more resources and /or spectrum at the challenge. The envisioned solution, however, requires radically different cellular RAN and mobile core architectures that efficiently and cost-effectively deploy and manage radio resources as well as offload mobile traffic from the overloaded core network. The main objective of this thesis is to address the key techno-economics challenges facing the transition from current Fourth-Generation (4G) cellular technology to the 5G era in the context of proposing a novel high-risk revolutionary direction to the design and implementation of the envisioned 5G cellular networks. The ultimate goal is to explore the potential and viability of cost-effectively implementing the 1000x capacity challenge while continuing to provide adequate mobile broadband experience to users. Specifically, this work proposes and devises a novel PON-based HetNet mobile backhaul RAN architecture that: 1) holistically addresses the key techno-economics hurdles facing the implementation of the envisioned 5G cellular technology, specifically, the backhauling and signaling challenges; and 2) enables, for the first time to the best of our knowledge, the support of efficient ground-breaking mobile data and signaling offload techniques, which significantly enhance the performance of both the HetNet-based RAN and LTE-A\u27s core network (Evolved Packet Core (EPC) per 3GPP standard), ensure that core network equipment is used more productively, and moderate the evolving 5G\u27s signaling growth and optimize its impact. To address the backhauling challenge, we propose a cost-effective fiber-based small cell backhaul infrastructure, which leverages existing fibered and powered facilities associated with a PON-based fiber-to-the-Node/Home (FTTN/FTTH)) residential access network. Due to the sharing of existing valuable fiber assets, the proposed PON-based backhaul architecture, in which the small cells are collocated with existing FTTN remote terminals (optical network units (ONUs)), is much more economical than conventional point-to-point (PTP) fiber backhaul designs. A fully distributed ring-based EPON architecture is utilized here as the fiber-based HetNet backhaul. The techno-economics merits of utilizing the proposed PON-based FTTx access HetNet RAN architecture versus that of traditional 4G LTE-A\u27s RAN will be thoroughly examined and quantified. Specifically, we quantify the techno-economics merits of the proposed PON-based HetNet backhaul by comparing its performance versus that of a conventional fiber-based PTP backhaul architecture as a benchmark. It is shown that the purposely selected ring-based PON architecture along with the supporting distributed control plane enable the proposed PON-based FTTx RAN architecture to support several key salient networking features that collectively significantly enhance the overall performance of both the HetNet-based RAN and 4G LTE-A\u27s core (EPC) compared to that of the typical fiber-based PTP backhaul architecture in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. It will also been shown that the proposed HetNet-based RAN architecture is not only capable of providing the typical macro-cell offloading gain (RAN gain) but also can provide ground-breaking EPC offloading gain. The simulation results indicate that the overall capacity of the proposed HetNet scales with the number of deployed small cells, thanks to LTE-A\u27s advanced interference management techniques. For example, if there are 10 deployed outdoor small cells for every macrocell in the network, then the overall capacity will be approximately 10-11x capacity gain over a macro-only network. To reach the 1000x capacity goal, numerous small cells including 3G, 4G, and WiFi (femtos, picos, metros, relays, remote radio heads, distributed antenna systems) need to be deployed indoors and outdoors, at all possible venues (residences and enterprises)

    Packet Scheduling Algorithms in LTE/LTE-A cellular Networks: Multi-agent Q-learning Approach

    Get PDF
    Spectrum utilization is vital for mobile operators. It ensures an efficient use of spectrum bands, especially when obtaining their license is highly expensive. Long Term Evolution (LTE), and LTE-Advanced (LTE-A) spectrum bands license were auctioned by the Federal Communication Commission (FCC) to mobile operators with hundreds of millions of dollars. In the first part of this dissertation, we study, analyze, and compare the QoS performance of QoS-aware/Channel-aware packet scheduling algorithms while using CA over LTE, and LTE-A heterogeneous cellular networks. This included a detailed study of the LTE/LTE-A cellular network and its features, and the modification of an open source LTE simulator in order to perform these QoS performance tests. In the second part of this dissertation, we aim to solve spectrum underutilization by proposing, implementing, and testing two novel multi-agent Q-learning-based packet scheduling algorithms for LTE cellular network. The Collaborative Competitive scheduling algorithm, and the Competitive Competitive scheduling algorithm. These algorithms schedule licensed users over the available radio resources and un-licensed users over spectrum holes. In conclusion, our results show that the spectrum band could be utilized by deploying efficient packet scheduling algorithms for licensed users, and can be further utilized by allowing unlicensed users to be scheduled on spectrum holes whenever they occur

    Resource and power management in next generation networks

    Get PDF
    The limits of today’s cellular communication systems are constantly being tested by the exponential increase in mobile data traffic, a trend which is poised to continue well into the next decade. Densification of cellular networks, by overlaying smaller cells, i.e., micro, pico and femtocells, over the traditional macrocell, is seen as an inevitable step in enabling future networks to support the expected increases in data rate demand. Next generation networks will most certainly be more heterogeneous as services will be offered via various types of points of access (PoAs). Indeed, besides the traditional macro base station, it is expected that users will also be able to access the network through a wide range of other PoAs: WiFi access points, remote radio-heads (RRHs), small cell (i.e., micro, pico and femto) base stations or even other users, when device-to-device (D2D) communications are supported, creating thus a multi-tiered network architecture. This approach is expected to enhance the capacity of current cellular networks, while patching up potential coverage gaps. However, since available radio resources will be fully shared, the inter-cell interference as well as the interference between the different tiers will pose a significant challenge. To avoid severe degradation of network performance, properly managing the interference is essential. In particular, techniques that mitigate interference such Inter Cell Interference Coordination (ICIC) and enhanced ICIC (eICIC) have been proposed in the literature to address the issue. In this thesis, we argue that interference may be also addressed during radio resource scheduling tasks, by enabling the network to make interference-aware resource allocation decisions. Carrier aggregation technology, which allows the simultaneous use of several component carriers, on the other hand, targets the lack of sufficiently large portions of frequency spectrum; a problem that severely limits the capacity of wireless networks. The aggregated carriers may, in general, belong to different frequency bands, and have different bandwidths, thus they also may have very different signal propagation characteristics. Integration of carrier aggregation in the network introduces additional tasks and further complicates interference management, but also opens up a range of possibilities for improving spectrum efficiency in addition to enhancing capacity, which we aim to exploit. In this thesis, we first look at the resource allocation in problem in dense multitiered networks with support for advanced features such as carrier aggregation and device-to-device communications. For two-tiered networks with D2D support, we propose a centralised, near optimal algorithm, based on dynamic programming principles, that allows a central scheduler to make interference and traffic-aware scheduling decisions, while taking into consideration the short-lived nature of D2D links. As the complexity of the central scheduler increases exponentially with the number of component carriers, we further propose a distributed heuristic algorithm to tackle the resource allocation problem in carrier aggregation enabled dense networks. We show that the solutions we propose perform significantly better than standard solutions adopted in cellular networks such as eICIC coupled with Proportional Fair scheduling, in several key metrics such as user throughput, timely delivery of content and spectrum and energy efficiency, while ensuring fairness for backward compatible devices. Next, we investigate the potentiality to enhance network performance by enabling the different nodes of the network to reduce and dynamically adjust the transmit power of the different carriers to mitigate interference. Considering that the different carriers may have different coverage areas, we propose to leverage this diversity, to obtain high-performing network configurations. Thus, we model the problem of carrier downlink transmit power setting, as a competitive game between teams of PoAs, which enables us to derive distributed dynamic power setting algorithms. Using these algorithms we reach stable configurations in the network, known as Nash equilibria, which we show perform significantly better than fixed power strategies coupled with eICIC

    Radio resource management strategies for interference mitigation in 4G heterogeneous wireless networks

    Get PDF
    The new era of mobile communications is dictated by the user demand for robust and high speed connections, data hungry applications and seamless connectivity. Operators and researchers all over the world are challenged to fulfill these requirements by providing enhanced coverage, increased capacity and efficient usage of the scarce spectrum. The introduction of the fourth generation systems (4G), LTE and LTE-A, have set the initiative for a technology evolution that offers new possibilities and is able to satisfy the user requirements and overcome the imposed challenges. However, and despite the improvements brought by the LTE and LTE-A systems, there are certain constraints that still need to be surpassed. LTE for example adopts innovating technologies, such as Orthogonal Frequency Division Multiplexing Access (OFDMA) that improves the spectral efficiency and reduces the Intra-Cell Interference. Nevertheless, Inter-Cell Interference (ICI) remains a constraining factor that can degrade the system capacity and limit the overall performance of the network. On that respect, Inter-Cell Interference Coordination (ICIC) techniques are adopted with target the interference mitigation. One of the limitations of these techniques is that follow static configurations lacking of flexibility and adaptation on network changes. Moreover, LTE-A employs enhanced and new techniques and involves alternative strategies. A promising solution lies on the introduction of Heterogeneous Networks (HetNets), which are networks that include low power small cells under the already existing macro cellular network and exploit several other technologies, such as WiFi. HetNets can further improve the network capacity, enhance the coverage and provide higher speed data transfer. However, due to the heterogeneous nature of the network, traditional methods for the user association, resource allocation and interference mitigation may not always be suitable since their design was based on homogeneous deployments. As such, new and enhanced methods are introduced, such as enhanced ICIC (eICIC), with their accompanied requirements and challenges. Motivated by the abovementioned aspects, this thesis has been focused on the study of ICIC and eICIC schemes, the identification of the related challenges, the enhancement of existing schemes and the proposal of novel solutions. In particular in the initial stages of the work, ICIC techniques have been studied and analyzed. A distributed algorithm that performs dynamic channel allocation has been developed for homogeneous deployments and extended later on to include heterogeneous networks. The solution has been optimized with the use of the Gibbs Sampler, while the setting of algorithm related parameters has been addressed through a detailed analysis. Moreover, a possible implementation of the solution has been presented in detail. The efficiency of the proposed schemes has been demonstrated through simulations and comparisons with benchmark schemes. In the next steps, the work has targeted eICIC techniques with purpose the investigation and analysis of the main constraining issues related to the user association, resource management and interference mitigation. Novel eICIC schemes that aim a better resource management and the overall capacity improvement have been developed and presented in detail, while the performance of the solutions has been shown through simulations and comparisons with reference schemes. Moreover, an optimized eICIC solution has been implemented based on genetic algorithms. Simulation results and comparisons with reference schemes have demonstrated the efficiency of the solution, while the selected configurations are discussed and analyzed.La nueva era de las comunicaciones móviles viene marcada por la demanda de los usuarios por conseguir conexiones robustas de alta velocidad que permitan soportar aplicaciones de datos de elevados requerimientos. El cumplimiento de estos requisitos conlleva la necesidad de mejorar la cobertura, incrementar la capacidad y utilizar el espectro eficientemente. La introducción de los sistemas de cuarta generación (4G), LTE y LTE-A, ha dado lugar a una tecnología que ofrece nuevas posibilidades y es capaz de satisfacer las necesidades de los usuarios y superar los retos impuestos. Sin embargo, y a pesar de las mejoras introducidas por estos sistemas, hay ciertas limitaciones que todavía tienen que ser superadas. LTE, por ejemplo, adopta tecnologías tales como OFDMA que mejora la eficiencia espectral y reduce la interferencia intracelular. Sin embargo, la interferencia intercelular (ICI) sigue siendo un factor limitante que puede degradar la capacidad del sistema y limitar el rendimiento global de la red. En ese sentido, se requieren técnicas de coordinación de interferencias intercelulares (ICIC) con el objetivo de mitigar dicha interferencia. Una de las limitaciones de estas técnicas es que siguen configuraciones estáticas que carecen de flexibilidad y capacidad de adaptación a los cambios de la red. Por otra parte, LTE-A introduce nuevas mejoras, como las redes heterogéneas (HetNets), que son redes que incluyen pequeñas células de baja potencia conjuntamente con la red macrocellular y también pueden explotar diferentes tecnologías, como WiFi. Las HetNets pueden mejorar aún más la capacidad de la red, mejorar la cobertura y facilitar la transferencia de datos de mayor velocidad. Sin embargo, debido a la naturaleza heterogénea de la red, los métodos tradicionales para la asociación de usuarios, asignación de recursos y reducción de la interferencia pueden no ser siempre adecuados, ya que su diseño se basó en despliegues homogéneos. En este sentido, es preciso introducir técnicas mejoradas de ICIC, denominadas en inglés eICIC (enhanced-ICIC), que involucran nuevos requerimientos y retos. En base a todos estos aspectos, esta tesis se ha centrado en el estudio de los sistemas de ICIC y eICIC en redes celulares, incluyendo la identificación de los retos relacionados con la mejora de los sistemas existentes y la propuesta de soluciones novedosas. En particular, en las etapas iniciales de la tesis se han estudiado y analizado las técnicas ICIC, y se ha desarrollado un algoritmo distribuido que realiza la asignación dinámica de canales para despliegues homogéneos, ampliándose posteriormente para su utilización en redes heterogéneas. La solución opera de forma optimizada mediante el uso de la técnica denominada Gibbs Sampler, mientras que el ajuste de parámetros relacionado con el algoritmo se ha abordado a través de un análisis detallado basado en simulaciones. Por otra parte, una posible implementación de la solución se ha presentado en detalle. La eficiencia de los esquemas propuestos se ha demostrado a través de simulaciones y comparaciones con sistemas de referencia. En los siguientes pasos, el trabajo se ha centrado en las técnicas eICIC con el propósito de investigar y analizar los principales problemas relacionadas con la asociación de usuarios, gestión de recursos y mitigación de la interferencia. A partir de aquí se han desarrollado nuevos esquemas de eICIC que tienen como objetivo una mejor gestión de los recursos y la mejora general de la capacidad. El rendimiento de las soluciones se ha demostrado a través de simulaciones y comparaciones con sistemas de referencia. Por otra parte, se ha propuesto una solución eICIC optimizada basada en algoritmos genéticos. La eficacia de dicha solución se ha demostrado mediante simulaciones, a la vez que se han analizado las diferentes configuraciones seleccionadas por el proceso de optimización.Postprint (published version

    Towards UAV Assisted 5G Public Safety Network

    Get PDF
    Ensuring ubiquitous mission-critical public safety communications (PSC) to all the first responders in the public safety network is crucial at an emergency site. The first responders heavily rely on mission-critical PSC to save lives, property, and national infrastructure during a natural or human-made emergency. The recent advancements in LTE/LTE-Advanced/5G mobile technologies supported by unmanned aerial vehicles (UAV) have great potential to revolutionize PSC. However, limited spectrum allocation for LTE-based PSC demands improved channel capacity and spectral efficiency. An additional challenge in designing an LTE-based PSC network is achieving at least 95% coverage of the geographical area and human population with broadband rates. The coverage requirement and efficient spectrum use in the PSC network can be realized through the dense deployment of small cells (both terrestrial and aerial). However, there are several challenges with the dense deployment of small cells in an air-ground heterogeneous network (AG-HetNet). The main challenges which are addressed in this research work are integrating UAVs as both aerial user and aerial base-stations, mitigating inter-cell interference, capacity and coverage enhancements, and optimizing deployment locations of aerial base-stations. First, LTE signals were investigated using NS-3 simulation and software-defined radio experiment to gain knowledge on the quality of service experienced by the user equipment (UE). Using this understanding, a two-tier LTE-Advanced AG-HetNet with macro base-stations and unmanned aerial base-stations (UABS) is designed, while considering time-domain inter-cell interference coordination techniques. We maximize the capacity of this AG-HetNet in case of a damaged PSC infrastructure by jointly optimizing the inter-cell interference parameters and UABS locations using a meta-heuristic genetic algorithm (GA) and the brute-force technique. Finally, considering the latest specifications in 3GPP, a more realistic three-tier LTE-Advanced AG-HetNet is proposed with macro base-stations, pico base-stations, and ground UEs as terrestrial nodes and UABS and aerial UEs as aerial nodes. Using meta-heuristic techniques such as GA and elitist harmony search algorithm based on the GA, the critical network elements such as energy efficiency, inter-cell interference parameters, and UABS locations are all jointly optimized to maximize the capacity and coverage of the AG-HetNet

    Stochastic Geometry Based Analysis of Capacity, Mobility and Energy Efficiency for Dense Heterogeneous Networks

    Get PDF
    In recent years, the increase in the population of mobile users and the advances in computational capabilities of mobile devices have led to an exponentially increasing traffic load on the wireless networks. This trend is foreseen to continue in the future due to the emerging applications such as cellular Internet of things (IoT) and machine type communications (MTC). Since the spectrum resources are limited, the only promising way to keep pace with the future demand is through aggressive spatial reuse of the available spectrum which can be realized in the networks through dense deployment of small cells. There are many challenges associated with such densely deployed heterogeneous networks (HetNets). The main challenges which are considered in this research work are capacity enhancement, velocity estimation of mobile users, and energy efficiency enhancement. We consider different approaches for capacity enhancement of the network. In the first approach, using stochastic geometry we theoretically analyze time domain inter-cell interference coordination techniques in a two-tier HetNet and optimize the parameters to maximize the capacity of the network. In the second approach, we consider optimization of the locations of aerial bases stations carried by the unmanned aerial vehicles (UAVs) to enhance the capacity of the network for public safety and emergency communications, in case of damaged network infrastructure. In the third approach, we introduce a subsidization scheme for the service providers through which the network capacity can be improved by using regulatory power of the government. Finally, we consider the approach of device-to-device communications and multi-hop transmissions for enhancing the capacity of a network. Velocity estimation of high speed mobile users is important for effective mobility management in densely deployed small cell networks. In this research, we introduce two novel methods for the velocity estimation of mobile users: handover-count based velocity estimation, and sojourn time based velocity estimation. Using the tools from stochastic geometry and estimation theory, we theoretically analyze the accuracy of the two velocity estimation methods through Cramer-Rao lower bounds (CRLBs). With the dense deployment of small cells, energy efficiency becomes crucial for the sustained operation of wireless networks. In this research, we jointly study the energy efficiency and the spectral efficiency in a two-tier HetNet. We optimize the parameters of inter-cell interference coordination technique and study the trade-offs between the energy efficiency and spectral efficiency of the HetNet
    corecore