7 research outputs found

    Simulating and Modeling the Signal Attenuation of Wireless Local Area Network for Indoor Positioning

    Get PDF
    Location is a key filter for mobile services, including navigation or advertising. However, positioning and localization inside buildings and in indoor spaces, where users spend most of their time and where the signals of the most widely-used positioning system, i.e. Global Navigation Satellite Systems such as GPS (Global Positioning System), are not available, can be challenging. In this regard, Wireless Local Area Networks (WLAN), e.g. Wi-Fi, can be used for positioning purposes by using a WLAN-enabled device, e.g. a smartphone, to measure and match the Received Signal Strength (RSS) of a signal broadcast by an access point. The challenges of this approach are that accurate maps of RSS are required, and that measuring RSS can be affected by many factors, including the dynamics of the environment and the orientation and type of a device. This paper provides a path-loss model to produce RSS maps automatically from floor plans and introduces an agent-based simulation approach to investigate different positioning methods. This provides a pathway to reduce the time and effort associated with WLAN positioning research

    Real-time localisation system for GPS denied open areas using smart street furniture

    Get PDF
    Real-time measurement of crowd dynamics has been attracting significant interest, as it has many applications including real-time monitoring of emergencies and evacuation plans. To effectively measure crowd behaviour, an accurate estimate for pedestrians’ locations is required. However, estimating pedestrians’ locations is a great challenge especially for open areas with poor Global Positioning System (GPS) signal reception and/or lack of infrastructure to install expensive solutions such as video-based systems. Street furniture assets such as rubbish bins have become smart, as they have been equipped with low-power sensors. Currently, their role is limited to certain applications such as waste management. We believe that the role of street furniture can be extended to include building real-time localisation systems as street furniture provides excellent coverage across different areas such as parks, streets, homes, universities. In this thesis, we propose a novel wireless sensor network architecture designed for smart street furniture. We extend the functionality of sensor nodes to act as soft Access Point (AP), sensing Wifi signals received from surrounding Wifi-enabled devices. Our proposed architecture includes a real-time and low-power design for sensor nodes. We attached sensor nodes to rubbish bins located in a busy GPS denied open area at Murdoch University (Perth, Western Australia), known as Bush Court. This enabled us to introduce two unique Wifi-based localisation datasets: the first is the Fingerprint dataset called MurdochBushCourtLoC-FP (MBCLFP) in which four users generated Wifi fingerprints for all available cells in the gridded Bush Court, called Reference Points (RPs), using their smartphones, and the second is the APs dataset called MurdochBushCourtLoC-AP (MBCLAP) that includes auto-generated records received from over 1000 users’ devices. Finally, we developed a real-time localisation approach based on the two datasets using a four-layer deep learning classifier. The approach includes a light-weight algorithm to label the MBCLAP dataset using the MBCLFP dataset and convert the MBCLAP dataset to be synchronous. With the use of our proposed approach, up to 19% improvement in location prediction is achieved

    Long-Term WiFi Fingerprinting Dataset for Research on Robust Indoor Positioning

    Get PDF
    WiFi fingerprinting, one of the most popular methods employed in indoor positioning, currently faces two major problems: lack of robustness to short and long time signal changes and difficult reproducibility of new methods presented in the relevant literature. This paper presents a WiFi RSS (Received Signal Strength) database created to foster and ease research works that address the above-mentioned two problems. A trained professional took several consecutive fingerprints while standing at specific positions and facing specific directions. The consecutive fingerprints may enable the study of short-term signals variations. The data collection spanned over 15 months, and, for each month, one type of training datasets and five types of test datasets were collected. The measurements of a dataset type (training or test) were taken at the same positions and directions every month, in order to enable the analysis of long-term signal variations. The database is provided with supporting materials and software, which give more information about the collection environment and eases the database utilization, respectively. The WiFi measurements and the supporting materials are available at the Zenodo repository under the open-source MIT license.publishedVersionPeer reviewe
    corecore