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Abstract  

Real-time measurement of crowd dynamics has been attracting significant interest, as it 

has many applications including real-time monitoring of emergencies and evacuation 

plans. To effectively measure crowd behaviour, an accurate estimate for pedestrians’ 

locations is required. However, estimating pedestrians’ locations is a great challenge 

especially for open areas with poor Global Positioning System (GPS) signal reception 

and/or lack of infrastructure to install expensive solutions such as video-based systems.  

Street furniture assets such as rubbish bins have become smart, as they have been 

equipped with low-power sensors. Currently, their role is limited to certain applications 

such as waste management. We believe that the role of street furniture can be extended 

to include building real-time localisation systems as street furniture provides excellent 

coverage across different areas such as parks, streets, homes, universities.    

In this thesis, we propose a novel wireless sensor network architecture designed for 

smart street furniture. We extend the functionality of sensor nodes to act as soft Access 

Point (AP), sensing Wifi signals received from surrounding Wifi-enabled devices. Our 

proposed architecture includes a real-time and low-power design for sensor nodes. We 

attached sensor nodes to rubbish bins located in a busy GPS denied open area at 

Murdoch University (Perth, Western Australia), known as Bush Court. This enabled us 

to introduce two unique Wifi-based localisation datasets: the first is the Fingerprint 

dataset called MurdochBushCourtLoC-FP (MBCLFP) in which four users generated 

Wifi fingerprints for all available cells in the gridded Bush Court, called Reference 

Points (RPs), using their smartphones, and the second is the APs dataset called 

MurdochBushCourtLoC-AP (MBCLAP) that includes auto-generated records received 

from over 1000 users’ devices. 

Finally, we developed a real-time localisation approach based on the two datasets using 

a four-layer deep learning classifier. The approach includes a light-weight algorithm to 

label the MBCLAP dataset using the MBCLFP dataset and convert the MBCLAP 

dataset to be synchronous. With the use of our proposed approach, up to 19% 

improvement in location prediction is achieved.    
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Chapter 1 Introduction 

1.1 Overview 

The continuous increase in population and the volume of human 

activities leads to more frequent crowded scenes of pedestrians 

especially in open areas. Real-time measurement of crowd dynamics 

has been growing in interest as it has many applications including 

providing real-time identification and monitoring of potential risks 

and emergency situations, real-time alert systems for emergency 

personnel and pedestrians, and real-time effective evacuation plans 

for pedestrians.  However, understanding pedestrians’ movement and 

flow in real-time is a great challenge because it requires estimating 

pedestrians’ locations for open areas with GPS signal reception 

and/or lack of infrastructure to install expensive solutions such as 

video-based systems. 

There have been many developments in managing urban challenges, broadly 

subsumed under the concept of “Smart Cities”. For instance, many cities have 

utilized street furniture such as bins to achieve efficient waste management. 

They have equipped the bins with Internet of Things (IoT) devices which 

enable them to measure different environmental conditions including the level 

of garbage, air quality, and Ultra-violet (UV) radiation. Street furniture 

provides excellent coverage across different locations such as parks, streets, 

homes, universities, etc.    

This chapter describes smart street furniture and its current role in smart cities. 

We discuss the potential role of smart street furniture in providing real-time 

crowd measurements. The chapter provides a description of existing solutions 

that measure crowd behaviour and their limitations. Also, we list our research 

objectives and develop the basic rationale for the Ph.D. thesis. Finally, the 

organisation of the thesis is explained.   
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1.2 Smart Cities 

There has been significant progress in recent years in addressing and managing urban 

challenges, broadly characterised by the idea of “smart cities”. These challenges 

include significant energy consumption, traffic congestion, environmental pollution, 

urban planning, and huge waste. According to the IBM definition [1], a smart city is a 

city that is:  

• Instrumented, which tends to refer to using sensors, smart devices, and appliances 

to collect real data from the surrounding environment  

• Interconnected, which refers to the ability to connect and integrate data from 

different sources to provide information throughout city services  

• Intelligent, which can broadly be defined as using modeling, visualization and 

analytical techniques that improve decision making. 

A typical smart city ecosystem includes eight significant components: 

1) Smart Economy: Support of urban growth, employment and business development 

using technology and innovations. 

2) Smart People: Enhancement of people’s creativity and innovation. 

3) Smart Governance: Using technology to facilitate government services (i.e., quick, 

measurable, affordable and sustainable services). 

4) Smart Transportation/Mobility: Transportation networks (public and private) with 

real-time control and monitoring systems (ex. Urban Bus Navigation (UBN) 

Systems). 

5) Smart Living: Improvement of quality of life using innovative applications. 

6) Smart Services: Exploitation of ICT for city services (health, education, safety, 

surveillance, etc.). 

7) Smart Environment: Efficient natural resource management using ICT (waste 

management system, pollution monitoring, etc.). 

8) Smart Infrastructures: City infrastructure (streets, building, water networks, etc.) 

with embedded smart technology (sensors, wireless connectivity, etc.). 
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Smart cities are intrinsically linked to IoT, the technology paradigm referring to a 

massive number of objects (electronic devices, mechanical and digital machines) that 

have a unique identification and are connected (together and to the Internet) using 

wireless networks. IoT has many applications including monitoring and control, big 

data, and business analytics; hence, it plays an essential role in all components of smart 

cities. 

1.3 Current Role of Smart Street Furniture in Smart Cities 

Street furniture refers to objects installed in streets for various purposes. These include 

benches, bins, traffic lights and bus shelters. This furniture can be considered smart as 

it is equipped with environmental sensors, wireless modules, processors and 

microcontrollers. Accordingly, it is possible to connect it to an IoT infrastructure 

which will enable it to become one of the drivers of future smart cities. Figure 1 shows 

an example of a smart rubbish bin used for waste management and advertisement.  

 

Figure 1: An example of a smart rubbish bin [2] 
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Although street furniture provides excellent coverage across different locations such as 

parks, streets, and homes, recent studies have focused only on limited applications 

related to smart waste management (SWM) and smart services [3-10]. 

For SWM, a recent article [11] highlighted that waste is becoming a severe problem 

for Australia as recently the cost of waste management has increased by 400–500 

percent. On the other hand, there is no optimization in the control of resources, for 

example, static schedules for trucks to empty rubbish bins in different suburbs 

regardless of different areas, different filling behaviour, and separate sessions. 

Consequently, it becomes a big challenge to build a scalable Wireless Sensor Network 

(WSN) to provide real-time recommendations for SWM.    

For smart services, due to the rapid increase in population and mobility, there is an 

urgent requirement to provide a real-time monitoring and reporting system for different 

resources including air, water, and power. Moreover, it is crucial to engage community 

members with governments. Accordingly, smart street furniture is being utilized to 

provide governments with platforms that provide real-time reporting systems and 

facilitate the interaction between authorities and people in a responsive manner to 

provide necessary recommendations.  

1.3.1 Smart Waste Management 

Many cities are utilizing garbage bins to enhance the process of waste management. 

These bins are called smart bins because they are equipped with multiple sensors that 

enable them to measure different environmental conditions including the level of 

rubbish and the contamination level [3, 4, 6, 7]. 

The recent research efforts can be classified into two main streams.  

1) Dynamic Waste Collection Solution 

The research works in this stream focus on proposing systems which achieve dynamic 

waste collection. The authors in [7] have proposed a system which has two main 
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modules: first, semi-static routing module (offline routing module) in which the 

module provides the necessary computations to provide the shortest path per suburb 

for covering all full smart bins, and second, dynamic module (online routing module) 

in which it finds an alternative route with minimum distance weight in case of any 

issue in the road segment. 

2) Efficient Data Collection Architecture 

In this stream, the relevant research efforts are trying to provide an efficient 

architecture for the data collection tier. The authors in [8] have proposed an 

architecture for data collection which aims to reduce the power consumption at each 

smart bin because they run using batteries. For smart bins, it has been noticed that the 

power consumption for communications is much higher than the power consumption 

for computations. The suggested architecture is based on using an 802.15.4 low power 

wireless module on each smart bin. The smart bins are clustered, and each cluster 

communicates with the gateway using a mesh topology. Moreover, authors have 

utilized a duty cycle method to reduce the power consumption of sensors by keeping 

sensors in sleep mode while they are idle. 

1.3.2 Smart Services 

Several initiatives are underway to utilize street furniture for providing smart services 

[12, 13]. The authors in [13] provide WSN architecture that can be attached to street 

furniture to measure air quality. The proposed architecture is scalable and uses cheap 

air quality sensors that enabled them to perform experiments in the Cambridge area in 

the United Kingdom. In [12], an interdisciplinary team from the University of New 

South Wales has been awarded a federal grant. The research project will utilize picnic 

tables, bins, barbecues, seats, ash receptacles, bubblers, and lights. Smart sensors will 

be installed on street furniture to monitor and respond in real time. These will measure 

usage, including water and power consumption, and will provide live messages to the 
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Council. The work is still in its early stages, as it does not provide a real-time solution 

to enable the Council to communicate with pedestrians.  

1.4 Crowd Measurement and Street Furniture 

The continuous increase in population and the volume of human activities 

leads to more frequent crowded scenes of pedestrians such as travellers, 

workers, athletes, or students. Efficient management of crowds is essential in 

achieving customer satisfaction in events, effective urban planning and 

decision making for governments, efficient public transportation services, 

active community engagement and education, effective advertisement by 

companies, safety and security of people. Efficient crowd management 

requires measurements of crowd dynamics including crowd density and flow. 

For example, crowd density and crowd flow enable different entities to 

provide a secure, healthy and safe environment. Also, in life-threatening 

situations such as fires and explosions, they could be utilized to provide 

efficient evacuation plans.  

The techniques and methods used for dynamic crowd measurements 

can be classified into two streams: 1) Simulations and Modelling 

Stream, and 2) Crowd Behaviour Tracking Stream. In Simulations 

and Modelling stream, many research works utilize complex 

simulations and models to measure crowd behaviour [14-18]. The 

proposed solutions, however, have significant shortcomings as the 

simulations and models are based on conditions and assumptions 

which can lead to inaccurate results.  

In the second stream, several relevant works have proposed different methods 

based on crowed video analysis, Geotagged Social Media (GTM), Radio 

Frequency Identification (RFID), Public Transportation Smart Card (PTSC), 

GPS, Cellular Service Records (CSR), Received Signal Strength (RSS), and 

Bluetooth Detection Records (BDR) to understand human mobility [19-22]. 



        7   

                                         

  

This stream generally faces scalability challenges as it has not been possible 

until now to apply the methods in large scale due to high setup costs and huge 

required computational power. This stream uses identification information 

about people, therefore it also raises privacy-preserving, data security, and 

ethical issues [23].  

RSS-based methods exploit the Wifi-enabled devices standard to measure crowd 

behaviour in which mobile devices frequently send Wifi probe requests to the 

surrounding Access Points (APs) to accelerate the Wi-Fi connection process. These 

probe requests contain Media Access Control (MAC) addresses and RSSs are recorded 

by the receiver. They outperform other methods because 1) unlike GPS they provide 

fine-grained spatial and temporal data given that there are suitable amount of APs 

covering the area [22, 24], 2) they provide high precision localization [24-26], and 3) 

they can measure crowd behaviour for different types of crowds in different locations 

and modes such as transportation modes, between buildings, inside buildings, and 

between city zones [22]. 

Although smart street furniture has recently attracted some research work, 

there is still much to do for solving urban problems especially crowd 

measurement and urban planning. It goes without saying that street furniture 

provides excellent coverage across open areas such as parks, streets and 

universities. Figure 2 shows two examples of street furniture distribution: 1) 

macro level distribution as in a part of city of Canning, Western Australia 

(Figure 2 (a)), and 2) micro level distribution as in a central open area at 

Murdoch University (Western Australia), known as Bush Court (Figure 2 (b)). 
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(a) Distribution of street furniture in a part of the 

city of Canning, Western Australia [2] 

(b) Distribution of street furniture in Bush Court 

of Murdoch University 

Figure 2: Two examples of street furniture distribution in macro and micro levels 

 

1.5 Thesis Objectives   

This thesis aims to propose a novel localisation approach based on a suitably 

augmented smart street infrastructure rather than depending on a device-based 

profiling-data collection for localization. The proposed approach ensures scalability, 

less cost, privacy preservation and real-time crowd localisation. This is done by 

achieving the following objectives: 

1) Proposal of an innovative WSN for smart street furniture. There are many 

concerns which limit the smart street furniture role to particular applications such as 

waste management. The biggest challenge is power supply, with smart furniture such 

as smart bins working on batteries which makes it hard to add more sensors. Other 

issues are related potential risks associated with data security and privacy, and 

possible adverse events related to ethical issues. Consequently, we aim to design an 

adaptive real-time low-power wireless sensor network for crowd and environmental 

measurements. The proposed architecture includes a real-time low-power design for 

wireless sensor nodes which efficiently communicate the updated data instead of 
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sending the same data on a regular basis. The proposed solution maintains data 

privacy and security in different system tiers.  

2) Generation of the first Wifi-based localisation datasets for GPS denied open 

areas, which will be made publicly available.  Over the past decade, many datasets 

have been introduced to enable researchers to compare different localisation 

techniques. Existing datasets, however, have failed to cover open areas such as parks 

in cases where GPS is still unavailable, and there is a lack of Wifi access points. Also, 

the existing datasets only focus on getting Wifi fingerprint collected and labelled by 

users. To the best of our knowledge, no dataset provides RSSs collected by Wireless 

Access Points (APs) for GPS denied open areas. We aim to scale our innovative 

wireless sensor node architecture across all rubbish bins in Bush Court of Murdoch 

University. This will allow us to offer two datasets publicly: 1) the Fingerprint dataset 

MurdochBushCourtLoC-FP (MBCLFP) in which four users generate accurate and 

consistently labelled Wifi fingerprints for all available Reference Points (RPs), 2) the 

APs dataset MurdochBushCourtLoC-AP (MBCLAP) that includes auto-generated 

records received from all users’ devices, including those who generated MBCLFP. 

3) Proposal of a real-time localisation approach using both MBCLFP and 

MBCLAP. MBCLFP is a labelled dataset but requires users to participate using a 

mobile application and stand at each RP to report RSS [26-31]. On the other hand, 

MBCLAP is quite large because it is an auto-generated dataset by APs for all users in 

Bush Court, i.e., it doesn’t require human intervention, but it is not labelled. We aim 

to provide a lightweight real-time accurate localisation approach that utilises the two 

datasets and a deep learning classifier. This approach includes: 1) developing a light-

weight algorithm to label the MBCLAP from MBCLFP for the four users’ 

smartphones, 2) homogeneity test for the two datasets, 3) data cleaning and feature 

engineering and 4) the four-layer deep learning classifier.  
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1.6 Thesis Organization   

The remainder of the thesis is organised as follows. 

Chapter 2 starts with existing techniques and methods for crowd measurements, and 

their limitations. We present in detail our innovative wireless sensor network designed 

for street furniture and how it allows street furniture to measure crowd density and 

environmental conditions. At the end of the chapter, experiments and results are 

discussed.  

Chapter 3 explains the process of generating the unique localisation datasets 

(MBCLFP and MBCLAP) for Bush Court of Murdoch University as an example of 

GPS denied open area. Then, the developed light-weight algorithm to label the 

MBCLAP from MBCLFP is explained. Finally, we present some facts, statistics and 

visualisations for both datasets including a homogeneity test using t-test.  

Chapter 4 proposes a localisation approach that converts MBCLAP from 

asynchronous format to synchronous. By converting MBCLAP to synchronous form, 

we are able to utilise the data received from APs to improve the localisation model 

accuracy. The chapter applies feature engineering and four-layer deep learning 

classifier for MBCLAP and MBCLFP. Finally, we demonstrate that by using this 

approach we achieve higher prediction accuracy with up to 19% improvement, 

compared with the case of using only MBCLFP. 

Chapter 5 provides the conclusions of our research work. We also outline areas for 

future work where it is possible to utilise our proposed wireless sensor network 

architecture to provide a real-time crowd measurement system including pedestrians’ 

flow. Moreover, we explain that based on crowd movements, it is possible to build a 

real-time context-aware recommendation system to provide pedestrians with targeted 

contents using digital signage. 

  



        11   

                                         

  

    

Chapter 2 Adaptive Low-Power Wireless Sensor 

Network Architecture for Smart Street Furniture-

based Crowd and Environmental Measurements 

2.1  Overview 

Street furniture such as bins, seats and bus shelters can become “smart” with the 

inclusion of wireless sensor nodes, which consist of environmental sensors, wireless 

modules, processors and microcontrollers. One of the most crucial challenges for smart 

street furniture is how to manage power consumption efficiently without affecting data 

freshness. In this work, we propose a novel WSN architecture for smart street furniture 

which has the following main features: 

• Two-way communication model.  

The WSN extends the one-way communication model, where wireless sensor nodes 

push the data to the server periodically, to a two-way communication model. Thus, the 

server manages, controls and synchronises all wireless sensor nodes. This includes the 

dynamic adaptation of the time interval for measurements for each wireless sensor 

node to balance between power consumption and data freshness. 

 

• Adaptive real-time low-power design for wireless sensor nodes.  

Generally, each wireless sensor node is designed to have two modes: (1) active mode 

where it communicates with the server frequently and (2) sleep mode to save battery 

power. Our approach reduces the power consumption in the active mode, by using a 

customised configuration for each wireless sensor node, for the frequency of sensing 

and communicating the data with the server. The server is responsible for this 
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customised configuration which is based on the context of each wireless sensor node’s 

operation characteristics (date/time, location, weather, session, event places, etc.)  

• Network and storage optimisation.  

Wireless sensor nodes do not send redundant environmental data and only send the 

updated data to achieve lower network traffic and less database storage. 

• Crowd level measurement. 

To the best of our knowledge, this is the first work in the relevant literature which 

extends the functionality of the wireless module to act not only as a station sending 

environmental data but also as a soft AP sensing MAC addresses and Wifi signal 

strengths from surrounding Wifi-enabled devices. Accordingly, the wireless sensor 

nodes are not only utilized to communicate data to and from the server, but also to 

measure levels of crowd density and flow in real-time. 

• Access the internet using any existing wireless network. 

Wireless sensor nodes do not require any special requirements to access the internet as 

they can use any existing wireless network with different security protocols including 

WPA2-Enterprise, which is available in large organizations and universities.  

• Secure and privacy-preserving. 

No personal information is gathered from devices (only the MAC address, similarly to 

what is done by any AP), and the proposed solution maintains privacy and security in 

different system tiers, following the Australian Privacy Principles [53] and the 

European Union General Data Protection Regulation [54]. 

We have conducted experiments on Bush Court of Murdoch University campus and 

our results show that our proposal improves lifetime of wireless sensor nodes up to 

293% compared to static architectures similar to the ones that have been proposed in 
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the literature. Moreover, network traffic is improved up to 38% without affecting data 

freshness. Finally, storage space for the database at the server is reduced up to 99%. 

2.2  Existing Work 

2.2.1 Three-tier Architecture of Internet of Things 

Generally, applications of smart cities are based on a three-tier architecture of IoT [10]. 

Figure 1 shows this architecture. The Data Generation tier contains wireless sensor 

nodes which consist of groups of embedded sensors that are connected wirelessly. 

These embedded sensors measure environmental conditions such as pollution level, 

temperature, etc. This data is sent to the second tier, Centralized Computing 

(Middleware). It is important to mention that the communication between wireless 

sensor nodes and Centralized Computing could be extended to be a two-way 

communication including feedback from the central processing location to control 

some sensors and actuators. Generally, wireless sensor nodes work on distributed 

and/or harsh environments on batteries. Accordingly, they have limited power, 

computational and network capabilities. According to recent work [3, 4, 7, 10, 32-34], 

the different devices that have been used for WSNs are summarized in Table 1. 

 

Figure 3: Three-tier architecture of IoT 
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Table 1: Different devices used for WSNs 

Device Name  Usage   

RFID reader (i.e., 

RC522) 

• Identifying the type of wastes which are tagged by RFID tags.  

• Identifying and tracking WSN nodes by labelling them with RFID 

tags.  

Actuator 
• Locking the WSN node. For example, locking the smart bin until it 

is emptied.  

GPS/ 

General 

Packet Radio Service 

(GPRS) module 

(i.e., SIM808) 

• Identifying the location information where the system becomes able 

to keep track of the current location of WSN nodes.  

• Communicating with the central computing service directly using 

Subscriber Identity Module (SIM).  

Microcontroller board 

(i.e., Arduino Uno R3) 

• Converting raw readings from different sensors to data packets.  

• As a bridge between sensors and the computing unit (i.e., 

RaspberryPi).  

• Sending  the  data  packets  to  the  wireless 

communication module.    

Sparkfun Air Quality 

Sensor (i.e., SEN- 

14193) 

Measurement of air quality including total volatile organic 

compounds, equivalent carbon dioxide, and metal oxide. 

Ultrasonic Sensor  

(HC-SR04)   
Measurement of the distance from the sensor to an object. For 

example, it is used to measure the garbage level in smart bins.   

Wireless 

communication module 

 

Creating wireless networks between WSN nodes and centralized 

computing  service.  Four  different modules have been used:    

• LoRaWaN supports low power, low data rate, and long-range 

wireless networks.   

• IEEE 802.15.4 wireless module (ZigBee) supports low power, low 

data rate, and short-range wireless networks.   

• IEEE 802.11 b/g/n wireless module (ESP8266) supports low 

power, high data rate, and short-range wireless networks.   

• WI-SUN supports low-power, low data rate, and long-range 

wireless networks. 

Single-board computer 

(i.e., RaspberryPi) 

• Processing  data  packets  (i.e.,  filtering  and aggregating 

data packets) which are sent by a microcontroller (i.e., Arduino Uni 

R3).   

• Sending the processed data to the wireless 

• communication module (i.e., LoRaWaN). 

 

2.2.2 Smart Environment 

A recent article [11] showed that waste is becoming a severe problem for 

Australia as recently the cost of waste management has increased by 400%-

500%. On the other hand, there is no optimization in the control of resources, 

e.g., static schedules for trucks to empty rubbish bins in different suburbs 

regardless of different areas, different filling behaviour, separate sessions. 
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Consequently, several works are focusing on providing solutions based on 

smart bins.  

The relevant research efforts have focused on providing an efficient 

architecture for the data collection tier. Authors in [8] have proposed an 

architecture for data collection which aims to reduce the power consumption 

at each smart bin because they run using batteries. For smart bins, it has been 

noticed that the power consumption for communications is much higher than 

the power consumption for computations [35]. The suggested architecture is 

based on using a ZigBee wireless module on each smart bin. The module 

consumes low power and covers short-range communications. Therefore, the 

smart bins are clustered, and each cluster communicates with the gateway 

using a mesh topology to ensure availability. Moreover, the authors have 

utilized a duty cycle method to reduce the power consumption of sensors by 

keeping sensors in sleep mode while they are idle. Although the architecture 

in [8] has an excellent contribution to the power consumption, it also suffers 

from significant weaknesses as follows:  

• The sensors measure the level of rubbish in a static time interval. The static period 

could be studied more deeply to adjust it dynamically, e.g., by taking into 

consideration different seasons and holidays.  

• Experiments have been performed based on the synthetic structure of bins, i.e., in 

actual suburbs with different barriers such as building, the architecture might not 

perform well. Using LoRaWaN, which provides low-power and long-range 

wireless connectivity, might reduce the complexity of mesh topologies and give a 

broader range for wireless connectivity.  

 

Kristanto et al. [6] proposed a dynamic polling algorithm for low power 

consumption. The proposed algorithm has two main phases. The first phase is 

the data collection where data is collected over time for a static time interval 
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and sent to the server. The second phase is the analysis where the server 

performs computations to find the highest probability for rubbish to reach a 

threshold level. The proposed algorithm is based on the assumption that bins 

are filled in a fixed time interval. The server adapts the time interval by 

sending the sleep time to smart bins. The proposed algorithm used in [6] has 

the following challenges:  

• It doesn’t specify the length of the first phase.  

• The experiments were limited to just one smart bin and for a period of five days in 

the same environmental conditions.  

• The solution is not scalable for different smart bins with different filling 

behaviour.  

• The suggested algorithm is based on the assumption that the rubbish level reaches 

a threshold in a fixed time interval. However, in public holidays certain areas like 

schools and universities become less crowded, hence this assumption is not always 

valid.  

 

2.2.3 Crowd Measurements 

Over the past few decades, measurement of crowd dynamics has gained much interest. 

The techniques and methods of measuring crowd dynamics are generally classified 

into two main categories as follows.  

1)  Simulations and Modelling Stream  

In this stream, many methods have been proposed to build complex simulations and 

models to measure crowd behaviour [14-17]. Many of these methods include multi-

models to simulate the crowd behaviour of a specific scenario such as pedestrians 

walking on zebra-crossing [36]. The proposed models,  however,  have  the 

 following  significant shortcomings [37]: 

• The simulations and models are based on limited data, conditions, and assumptions 

which leads to inaccurate results, especially in emergency cases.  

• It is impossible to build a model and/or a simulation that works for different crowd 

types and scenarios.  
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2) Crowd Behaviour Tracking Stream  

In this stream, several relevant works have been proposed based on different 

techniques. The works in  [19-21] introduced video surveillance solutions. These 

solutions have many processing layers including object classification, motion 

detection and motion analysis. Moreover, Neural Networks are employed for feature 

extraction and tracking [20]. Although many techniques and algorithms have been 

developed, current video surveillance-based solutions have the following 

shortcomings:  

• They require a significant amount of computational power, especially when  it 

comes to a high density of population [20, 38].  

• They are a non-scalable and expensive solution as setup cameras, high-speed 

internet connection, a massive amount of space to store data from different places, 

and powerful servers to process data cannot be applied in all areas inside a city 

[21, 36, 38-40].  

• They are based on limited data, conditions, and assumptions regarding the 

environment.  

 

Another crowd behaviour tracking technique is Wifi-based tracking, which has gained 

much interest due to the dense Wifi coverage [22, 24-26, 41-43]. Accordingly, Wifi-

based techniques are more scalable and lower cost. Wifi-enabled devices send probe 

requests to surrounding APs. Each probe request contains the signal strength and MAC 

address of the device. The signal strength is an excellent indicator for distance [24, 44]. 

In [10], the authors have proposed a Smart Urban Bus Navigation System (SUBVS) 

which provides crowd-aware route recommendation and predicts crowd levels on bus 

journeys. Consequently, the system suggests less crowded routes, and eventually 

people become encouraged to use public transportation. In the system, buses are 

equipped with Wifi APs to estimate the number of passengers within the bus. The 

crowd estimation is based on the fact that probe requests are sent periodically from 
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passengers’ Wifi-enabled devices. The server receives real-time occupancy data from 

buses and uses the data for providing enhanced recommendations for bus users, to help 

them avoid large crowds. However, the crowd measurement is only performed inside 

the bus, which means that although the bus may not be crowded, the road can be very 

busy which may delay the journey more than expected. Also, the system provides only 

non-personalised recommendations and it does not provide any user profiling and/or 

modelling for passengers’ behaviour. The proposed system could be extended to 

different means of transportation if street furniture is equipped with Wifi devices. For 

example, using spatial-temporal analysis for Wifi signals received from pedestrians’ 

devices by distributed smart bus shelters and bins could give a better understanding for 

crowd dynamics of passengers and hence better recommendations for passengers and 

councils.  

In [22], a sensing device (called SENSg) with environmental sensors and a Wifi 

module was designed. The devices were given to students to study their mobility 

patterns in large scale. These devices send probe requests every 13 seconds to the 

surrounding Wifi APs. Thanks to Wifi APs coverage, a commercial localization 

service called Skyhook [45] was used to analyse all received data. The work in [22] 

provides different data analyses including extracting staying points, identifying places 

of interest and trips, identifying students’ homes and schools and identifying 

transportation modes.  

The work in [22] has two significant challenges. The first is a scalability issue as it is 

impossible to provide everyone with a SENSg device due to the high costs and 

maintenance overheads. Moreover, the solution cannot be generalised in different 

cities where there is limited Wifi coverage. The second is a lack of real-time responses, 

as the proposed work does all these analyses offline after gathering all data from 

different APs. In addition, the device sends data every static period (13 sec) which may 

affect the freshness of the data.  

Additionally, to video surveillance and Wi-Fi based tracking, other works in the 

literature have proposed systems which measure crowd dynamics using RFID 
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technology, cellular service records and GPS [46-48]. The systems based on RFID are 

limited to structured crowd scenes. Those using cellular service records suffer from 

large spatial granularity which leads to inaccurate localisation [22]. Moreover, the 

GPS-based systems are not able to measure crowd dynamics in hyperlocal locations, 

such as inside buildings, parks or within a small area [49]. 

2.3  Our Proposed System Architecture 

2.3.1 Overall System Architecture 

In our approach, we take into consideration both the feasibility and the cost of 

the proposed solution. Unlike existing solutions (presented in the previous 

section), our proposal does not require any special hardware or protocols. 

Figure 4 provides the overall system architecture to achieve an adaptive real-

time WSN for both environmental and crowd measurements as follows:  

1) Wireless sensor nodes are built in street furniture assets such as bins, seats 

and bus shelters.  

2) Each wireless sensor node senses probe requests from surrounding Wifi-

enabled devices and environmental conditions including temperature, 

humidity, garbage level (the terms “garbage” and “rubbish” are being used 

interchangeably in this thesis), air quality, etc.  

3) The designed wireless sensor nodes access the internet through any 

existing wireless network infrastructure.  

4) Each wireless sensor node directly communicates with the server, unlike 

other solutions that depend on complex topologies such as mesh topology. 

These solutions require high cost of setup and maintenance. The direct 

communication reduces communication overhead and provides better control 

for wireless sensor nodes.  

5) The server sends each wireless sensor node a specific configuration to use. 

The configuration includes the frequency of sensing data and period of 
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sensing, sleep time, etc. The configuration depends on the context of 

operation of each wireless sensor node (date/time, areas, events, etc.).  

6) Wireless sensor nodes send periodically environmental data and probe 

requests as raw data to the server.  

7) The server stores this data in the database for further processing.  

8) Many real-time and offline applications, including real-time crowd 

measurements, can be implemented using the stored data.   

 

 

Figure 4: Overall system architecture 

 

Figure 5 presents the two-way communication model between the server and the 

wireless sensor node. Using interactive communication, we can achieve network and 

power efficiency. The idea behind the proposed communication model is that each 

wireless sensor node gets a specific configuration from the server based on its context 

of operation such as events, places, data and time. In certain situations, the server 

responds with two parameters, Freq (1/f) and Period (p), measured in seconds-1 and 

seconds, respectively (Active scenario, Figure 5(a)). Consequently, the wireless sensor 
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node every f seconds sends raw data to the server for a period of p sec (Sending raw 

data scenario, Figure 15(c)).  

 

 

Figure 5: Communication model (a) Active scenario; (b) Sleep scenario; (c) Sending 

raw data scenario 

It is important to mention that the f and p values vary from area to 

area based on the situation. For example, in a school area between 8 

am and 10 am, f could be a small number because this place is very 

active at this time. When no events are expected to take place, there 

is no need to activate the wireless sensor nodes. Accordingly, the 

server responds with the Sleep parameter s, also measured in seconds 

(Sleep scenario, Figure 5(b)), through which it instructs the wireless 

sensor node to go into in sleep mode for s seconds to save power. An 

example of this scenario is a University area at night, where there 

may be no need to keep the nodes active. Finally, for security 
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reasons, each request from a wireless sensor node is associated with 

authentication details. Hence, there is no overhead on the server to 

maintain a separate session for each wireless sensor node.  

2.3.2 Design of Hardware and Software of Wireless Sensor Nodes at each Node 

As the wireless sensor node gathers not only environmental conditions, but 

also identifies pedestrians using Wifi probe requests sent from their Wifi-

enabled devices, we depend on two main components: 1) Arduino Uno R3 

which is the most used and documented board of the whole Arduino family 

[50]. There are many sensors which are compatible with Arduino. Table 2 

summarizes relevant sensors that can be connected to Arduino, and 2) ESP-13 

Wifi shield which is a famous version of ESP8266 family. It enables Arduino 

to access the internet, and it can act as a soft AP or web server [51].  

Table 2: A set of relevant sensors that can be connected to Arduino 

Sensor Usage 

Sound Sensor Module detect loudness of the sound 

Infrared Emission Sensor Module detect near-infrared light 

Temperature Sensor (LM35 Sensor) detect temperature 

Vibration Switch Module allows detection of shock and vibration 

Photoresistor/Light sensor/Photosensitive 

resistance element sensor) 

set to detect light intensity 

Flame Sensor set to detect the density of flame 

UV Sensor set to detect UV 

Temperature sensor module set to detect the temperature. 

Temperature and humidity sensor module  set to detect the temperature and humidity 

Air Quality Sensor set to detect air quality including total volatile organic 

compounds, equivalent carbon dioxide, and metal oxide 

Ultrasonic Sensor set to detect the distance 

Motion Detector set to detect the motions 
 

Figure 6 presents the flowchart for the operation of the Wifi module and 

Figure 7 the flowchart for efficient communication between ESP-13 and 

Arduino Uno R3, and between ESP-13 and the server. These flowcharts are 

applicable for any Wifi module and any microcontroller. In Figure 6, ESP-13 

https://tkkrlab.nl/wiki/Arduino_KY-015_Temperature_and_humidity_sensor_module
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module requests the configuration from the server which is mainly one of two 

configurations as follows: 1) sleep for s seconds (accordingly, the module 

goes to deep sleep mode which is the most power efficient option as it stops 

everything except Real Time Clock [52]), 2) sense every f sec for a period of 

p sec. In this case and to achieve power, storage, and network efficiency, the 

module communicates with the server only if within every f sec there are one 

or more sensed probe requests and/or environmental conditions updates. For 

example, if the difference between current waste level and last sent waste 

level for a bin to the server is less than or equal to a threshold, then there is no 

need to resend the data to the server and consume more storage at the server 

database.  

The ESP-13 module can work as a soft AP to sniff probe requests 

using an interrupt which can be seen at the right of Figure 6. It also 

acts as a station accessing any existing wireless networks with 

different security protocols including WPA2 and WPA2-Enterprise. 

Moreover, the ESP-13 module can communicate with Arduino Uno 

R3 using serial communication in which ESP-13 interrupts Arduino 

Uno R3 requesting updated environmental data.   

Arduino Uno R3 (Figure 7 flowchart) does not sense any data until 

getting interrupted by ESP-13. Consequently, it gets new readings 

from different sensors and it only communicates with ESP-13 the 

updated data. The right part of Figure 7 shows the ESP-13 interrupt 

which makes Arduino Uno R3 sense environmental conditions.  
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Figure 6: Flowchart for ESP-13 Wifi module 

 

  

Figure 7: Flowchart for Arduino Uno R3 
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At the server side, there are two main Application Programming Interfaces (APIs). The 

first one is get_necessary_action which provides the required configuration as 

discussed in the previous subsection. It is worth mentioning that in long periods 

expected to be idle (e.g., summer holidays at schools/universities) the server will ask 

wireless sensor nodes to sleep for a predefined maximum period t hour instead of 

sleeping for the whole period. This choice is made to avoid cases where special events 

may be organised during that period.   

The second API is called store_raw_data to store raw data to the database. It is worth 

mentioning that the server is fully responsible for scheduling tasks for different 

wireless sensor nodes because it holds all information about different circumstances 

including rush hours, holidays, working dates/hours, future events, residential zones, 

industrial zones, etc.  

2.3.3 Data Security and Privacy-Preserving Aspects  

Even though Wifi probe requests can provide excellent special and temporal data, until 

now there is no solution for measuring dynamic crowds in real-time due to issues 

associated not only with infrastructure, design and power, but also privacy-preserving, 

ethical and data security issues as follows. 

1) Privacy-Preserving and Ethical Issues   

 

MAC addresses and RSS sent from Wifi-enabled devices are used to identify people’s 

locations, which raises privacy and human ethical concerns. Accordingly, to apply any 

RSS-based solution, it is required to follow these guidelines:   

• the Australian Privacy Principles [53].    

• the EU General Data Protection Regulation [54].   

• Avoid publishing any part of the data.   

• Provide awareness for people about the solution including how data are 

gathered and processed.   
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• Put clear static signs describing the solution around sensor nodes and 

periodically checking that they are in place.   

 

2) Security Challenges   

 

Generally, WSNs face security issues at different levels:   

 

1) Securing Physical Sensor Nodes   

 

It is one of the most challenging tasks because if someone captures a sensor node, the 

possibility emerges to reverse engineer the software and receive sensitive information 

from it including the encryption algorithms used [55]. Therefore, it is important to 

avoid this scenario. If it happens, it is crucial to minimise the risk of getting 

confidential information by reducing key-sharing between neighbouring nodes and 

efficiently structure the topology [56].   

 

2) Routing and Network Security   

 

It is important to limit the role of intermediate sensor nodes so that they cannot 

remove or add sensor nodes [56]. Besides, a secure routing protocol guarantees the 

integrity, authenticity, and availability of data. Insecure wireless communication can 

give adversaries the ability to manipulate the traffic from and to the server. A secure 

solution can identify manipulated data and report the issue for further investigation 

[57]. 

 

3) Intrusion Detection   

 

Intrusion detection is important to analyse data within a server or a network. It 

identifies any security breaches, which include both types of attacks: 1) attacks from 

outside the system, and 2) attacks within the system. Moreover, intrusion detection 

includes the ability to recognize patterns of attacks and tracking of user policy 

violations.   

 

Our solution is: 
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1) Privacy-preserving and ethical  

The solution assures privacy by applying the following actions:    

• At sensor node level: Only a minimal set of data is gathered (RSS and MAC 

address). MAC addresses are encrypted using md5, a one-way encryption 

algorithm, at sensor nodes’ level. Accordingly, encrypted MAC addresses are 

sent through the network securely.   

• At network level: Hypertext transfer protocol secure (HTTPS) protocol is used 

for communication between sensor nodes and the server to allow secured data 

transfer, and Eduroam is used to assure secure and scalable transfer of data 

from/to the server.   

• At application and server level: No personal information is gathered that 

might help to identify people and MAC addresses are stored anonymously.    

• Avoiding publishing for any part of the raw data.   

 

According to the actions taken, our solution covered the Australian Privacy Principles 

[53] and the European Union General Data Protection Regulation [54]. Furthermore, 

we considered human ethics issues even before starting the project by getting Human 

Ethics approval from Murdoch University, which included the following actions. We 

believe that the following actions are required from any entity that wants to implement 

the proposed solution including councils, governments, stadiums, etc:   

• Before starting the project:   

 

Announce to all potential participants about the project through different media. In 

our case, participants are University students and staff and we used the website and 

admin email of the University to announce the relevant information about the 

project. For a system like ours to be applied widely, by local councils or central 

governments, a public communications campaign would be needed, which would 
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enable the public to understand and hopefully accept the trade-offs between limited 

loss of privacy and larger safety/better quality of life.   

• At/After starting the project:  

 

Add static signage on the smart street furniture (in our case, five bins) which 

contain information about the project. Figure 8 shows a bin with signage.   

   

 

Figure 8: A bin with signage 

 

The email, announcement, and signage contain the following information:   

• Project title.   

• Project purpose.   

• Project summary.   

• Sensor node components.   

• Images show what the sensor nodes look like.   

• How students/staff can avoid participating in the project. We provide them 

with two options: 1) disable Wifi of their devices within the area of sensor 

nodes or 2) submit their MAC address to the contact person to disable 

tracking their devices.    
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• Contact Person and Phone.   

• Duration of the project. 

 
 

2) secure 

To achieve physical sensor node security, we attached the sensor 

nodes firmly on the ceiling of the bin so that it is very hard to remove 

them. To ensure routing and network security, we avoided using 

intermediate sensor nodes and/or complex topology. Moreover, 

HTTPS protocol is used for the data encryption through the network, 

and Eduroam is used to assure secure and scalable transfer of data 

from/to the server. To avoid any outside intrusion, we configured 

each sensor node to send credentials (id and password) at each time it 

communicates with the server. Accordingly, the server authenticates 

the sensor node. In the case of failed authentication, all details are 

recorded for further investigation.     

2.4   Experiments and Results 

We have deployed the system at Bush Court of Murdoch University 

because it is considered as a hub for staff and students due to the 

many facilities surrounding it, including the main library, restaurants 

and student centre. The deployment includes five bins distributed 

across Bush Court.  Figure 9 shows the hardware components used in 

this design: (a) Arduino Uno R3, (b) ESP-13 Wifi shield, (c) 

Temperature sensor to provide environment temperature, and (d) 

Ultrasonic sensor to calculate the garbage level. We implemented the 

two flowcharts in Figure 6 and Figure 7 using Arduino IDE [58]. 

Figure 10 shows one of the bins after adding the hardware prototype.  
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Figure 9: (a) Arduino Uno R3;(b) ESP-13 WiFi shield; (c)Temperature sensor; (d) 

Ultrasonic sensor 

 

 
Figure 10: A bin after adding the hardware 

On the server side, we developed the two APIs using PHP programming language, and 

MySQL is used as a relational database management system. We created three tables 

in MySQL to store three different data types. Figure 11 shows the sample data from 

three tables. The first table (RSS) stores encrypted MAC addresses and signal 

strengths received from different bins. The second table (GRB) stores the garbage 

level collected from different bins. Finally, the third table (TEMP) stores the sensed 

temperature from different bins.   
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Figure 11: Sample data from different tables 

To allow wireless sensor nodes to access the server, an Apache Hypertext Transfer 

Protocol (HTTP) web server is installed on the server. Also, each wireless sensor node 

is configured to access the internet using Eduroam which is covering the research and 

education sector in Australia [59] and in several other countries. Eduroam is a secure 

and scalable roaming wireless network which uses WPA2 Enterprise for secure, 

reliable and fast internet access.  

To compare different WSNs including our proposal, we prepared the following three 

different setups:  

• Static_20s: In this setup, wireless sensor nodes send data every 20 sec.  

• Static_10s: In this setup, wireless sensor nodes send data every 10 sec.  

The intervals of 10 and 20 seconds, respectively, were chosen because they are close 

to the static 13 seconds intervals used in [22].  

• Dynamic_20s_10s: In this setup, which is our proposed approach, the server 

controls wireless sensor nodes to operate only between 10 am and 4 pm in 

weekdays but in different frequencies. First, the server instructs wireless sensor 

nodes to sense (and send) data every 20 sec for three consecutive hours from 10 am 

to 1 pm. Then, it instructs them to sense data every 10 sec from 1 pm to 4 pm. The 
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different frequencies are related to the fact that Bush Court is significantly more 

populated from 1pm to 4pm. Finally, the server requests wireless sensor nodes to 

enter sleep mode until 10 am the next day. The t parameter is selected to be equal 

to one hour which means that wireless sensor nodes go to sleep for an hour before 

they communicate again with the server to get a new configuration if needed (e.g., 

in the case of a special event in the area). This process is repeated until 10 am the 

next day. Please note that the only reason for using intervals of 20 and 10 seconds 

in our experiments is to have the same intervals as the static setups, and hence to 

make the comparison “fairer” to the static setups. In our proposed approach, the 

server can change the intervals either based on the information it is receiving from 

the nodes (e.g., the intervals could change when very high or low temperatures are 

reached, when the waste level is considered to be excessive or more generally 

when there are reasons for concern in the system recognized through the violation 

of certain thresholds in the measurements) or, as mentioned above, in the case of 

special events in an area. The dynamic nature of this setup makes it excel 

conceptually in comparison with the static ones and as it will be shown in the 

following results, it also clearly excels in all of the metrics we used to evaluate 

them.   

It is worth to mention that we used in these experiments 5V rechargeable battery with 

10,000mAh capacity[60]. 

 

2.4.1 Network Performance  

We used the number of generated requests from wireless sensor nodes to the server as 

an indicator for network traffic. To ensure fairness in the comparison, we performed 

our computations within the working hours from 10am until 4pm for all setups. In 

Static_20s and Static_10, all bins communicate every 20 and 10 seconds, respectively. 

Accordingly, the number of requests per hour is the same across different bins (180 

and 360 request/hour respectively). The situation is different for Dynamic_20s_10s, 

where each bin communicates only when there are: 1) new probe requests showing the 
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existence of new devices (MAC addresses and signal strengths), and/or 2) changes in 

temperature and rubbish levels (the chosen  

threshold in our experiments was 10 cm for waste level and degree difference in 

temperature; other values can be chosen with no qualitative difference in the results). 

Accordingly, we computed the average number of requests per hour sent by each bin 

for five consecutive working days. Figure 12 shows the average number of requests 

sent per hour by each bin in Dynamic_20s_10s. As shown in the figure, the first three 

hours have roughly half of the requests of the last three hours due to the different 

frequencies of sensing data in this setup.  

 

 

 
Figure 12: Average number of requests sent by each bin for Dynamic_20s_10s 

 

Table 3 provides a comparison between Static_20s, Static_10s and Dynamic_20s_10s 

in terms of the number of requests across different hours. We computed the average 

across all bins in each hour for Dynamic_20s_10s. As shown in the table, 

Dynamic_20s_10s is able to decrease the network traffic up to 38%.   
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Table 3: Number of requests per hour by different setups and Dynamic_20s_10s 

network traffic improvement 

 [10, 11] [11, 12] [12,13] 

Dynamic_20s_10s 115 120 111 

Static_20s 180 180 180 

Network Traffic 

Improvement (%) 
36 33 38 

(a)  

 

 [13, 14] [14, 15] [15,16] 

Dynamic_20s_10s 298 308 315 

Static_10s 360 360 360 

Network Traffic 

Improvement (%) 
17 14 13 

(b)  

2.4.2 Database Storage 

In the same environment, the RSS table is the same for all three 

setups because wireless sensor nodes are going to report the same 

signal strength and MAC addresses. On the other hand, for TEMP 

and GRP tables, each setup has its own behaviour. In Static_20s and 

Static 10s, all bins communicate regularly every 20 and 10 seconds 

respectively. Accordingly, the number of generated records per hour 

per each across different bins is the same in each table (180 and 360 

records per hour respectively). The situation is different for 

Dynamic_20s_10s, where each bin communicates only when there 

are changes in temperature and/or garbage levels.  

 

Table 4 and Table 5 show the number of records stored in GRB and 

TEMP tables per hour in each setup respectively. In 

Dynamic_20s_10s setup, we computed the average of all records 

stored by all bins per hour. For the GRB table, our proposed 

architecture saved space up to 93% and 96% compared with the 

Static_20s and Static_10s, respectively. For the TEMP table, our 
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proposed architecture saved space up to 97% and 99% compared 

with the Static_20s and Static_10s, respectively. Our proposal excels 

because it does not depend on the frequency of sensing data, but 

rather communicates the data only when there is something new to 

report.  

Table 4: Number of records stored in GRB table by different setups and 

Dynamic_20s_10s storage utilisation 

 

   [10, 11] [11, 12] [12,13] [13,14] [14,15] [15,16]  

Dynamic_20s_10s 19 20 13 26 28 28 

Static_20s   180 180 180 180 180 180 

Storage Utilisation 

Improvement (%) 
89 89 93 85 85 85 

Static_10s   360 360 360 360 360 360 

Storage Utilisation 

Improvement (%) 
95 95 96 93 92 92 

  

 Table 5: Number of records stored in TEMP table by different setups and 

Dynamic_20s_10s storage utilisation 

 

2.4.3 Power Consumption 

To measure power consumption for Dynamic_20s_10s, we charged the 

batteries of the five bins and computed the total number of hours until 

batteries were fully discharged. Table 6 shows the lifetime in hours for each 

bin. There is no significant difference in lifetime between different bins 

   [10, 11] [11, 12] [12,13] [13,14] [14,15] [15,16] 

Dynamic_20s_10s 6 4 5 6 5 6 

Static_20s   180 180 180 180 180 180 

Storage Utilisation 

Improvement (%) 
97 98 97 97 97 97 

Static_10s   360 360 360 360 360 360 

Storage Utilisation 

Improvement (%) 
98 99 99 98 99 98 
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because they send relatively the same number of requests to the server (as 

shown in Figure 12).  

Table 6: Lifetime in hours for different bins 

Bin #  Lifetime in Hours  

bin1 147 

bin2 149.5 

bin3 149 

bin4 151 

bin5 150.5 

Mean  149.4  

Standard Deviation 1.6 

  

Static_20s and Static_10s were also applied on the system in order to 

compare the power consumption of all three setups. Table 7 presents this 

comparison in terms of lifetime in hours.  

Dynamic_20s_10s shows 158% and 293% improvement over Dynamic_20s 

and Dynamic_10s, respectively. Dynamic_20s_10s uses adaptive behaviour 

based on the circumstances in different areas. Accordingly, it improves the 

power consumption without affecting data freshness.  

Table 7: Lifetime for different setups 

 Dynamic_20s_10s Static_20s Static_10s 

Dynamic_20s_10s  

 Improvement (%) 

Static_20s Static_10s 

Lifetime 

in hours 
149.4 58 38 158 293 

 

2.4.4 Real-time Environmental Condition and Dynamic Crowd Measurements 

We developed two screens using Google Data Studio [61]. First, we 

connected it with the MySQL database engine to access the data received 

from sensor nodes. We gave these identifications: 12, 13, 17, 18 and 19 to the 

five bins. We activated the sensor nodes only from 10am until 4pm. General 

Statistics screen (Figure 13) shows the number of records that were reported 

from each bin for temperature, garbage level, and RSS within a selected 
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period. The position and identification of each bin are shown on the map at 

the top of the screen. As we can see, bin #12 captured the largest amount of 

RSS and the largest amount of changes in garbage levels because this bin is in 

front of the main library entrance which experiences huge traffic and contains 

a coffee shop.    

 

Figure 13: General statistic screen 

 

The General Trend screen (Figure 13) is the second screen which provides the 

behaviour of RSS, garbage level and temperature over time for different bins. 

It is important to mention that we converted garbage level to percentage scale 

from 0 to 100.  The screen provides filters which enable the user to compare 

all bins or focus on a specific bin. They enable the user also to filter certain 

data/hour.  Bin #12 encounters the highest no. of RSS which indicates the 

highest crowd in this area at the specified date/time. Bin #13 encountered the 

lowest no. of RSS which indicates the lowest crowd at this area at the specific 

date/time. There was a continuous increase in the number of RSS which 
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indicates a continuous increase in the crowd at the area of bin #17 over time. 

Regarding garbage level, Bin #12 was almost full over the measurement 

period. However, the levels of Bin #17 and Bin #13 showed fluctuations over 

time.   

 

Figure 14: General trend screen 

 

2.5  Summary 

In this chapter, we gave an overview of the IoT architecture and relevant existing work 

including current challenges. We proposed an efficient WSN architecture for smart 

street furniture which utilises power consumption, storage, and network performance 

without affecting data freshness. Our architecture is not only used for the measurement 

of environmental conditions but also for sensing wireless devices which can be utilised 

for real-time crowd measurements. 

We conducted experiments at the Murdoch University campus after getting human 

ethics approval, and we developed a dashboard using Google Data Studio to provide 

real-time dynamic crowd and environmental measurements. In the next chapter, we 

show how we generated unique localisation datasets after scaling our system to cover 

all bins in the Bush Court of Murdoch University.   
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Chapter 3 Wifi-based Localisation Datasets for 

GPS denied Open Areas Using Smart Bins 

3.1  Overview 

In this chapter, the process of generating the unique localisation datasets 

(MBCLFP and MBCLAP) for the Bush Court of Murdoch University after 

deploying our sensor nodes across all existing bins is explained. MBCLFP is a 

labelled dataset generated using four users’ smartphones and MBCLAP is an 

unlabelled dataset autogenerated by our deployed sensor nodes. Moreover, we 

provide detailed specifications of the datasets. Finally, we present some 

statistics and visualisations for both datasets including homogeneity test using 

t-test.  

The value of the datasets can be summarised as follows: 

• All existing datasets are generated using users’ smartphones only [26, 27, 

29, 31, 62]. The process of generating them requires users to participate 

using smartphones which make them limited in terms of size and 

scalability. Our proposed datasets are the first datasets produced using two 

different Wifi sources for the same RPs for an open area. The first source 

is the four users’ smartphones which is limited compared with the second 

source. The second source is APs which generated a huge amount of data 

for all users in the Bush Court including the four users. 

• These datasets allow networking/communications researchers to study the 

signal variation between devices’ fingerprints and AP RSSs for the same 

devices. 

• These datasets allow data scientists to provide different visualisations and 

analyses to test homogeneity between the two datasets.  
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• Using the two datasets, more efficient models can possibly be developed 

[29]. 

• The datasets open the door for providing new techniques to label the huge 

amount of auto-generated data received from APs using the limited 

amount of labelled data.   

3.2  Process of Generating the Datasets 

We nominated Bush Court of Murdoch University to be the area of study 

because it 1) is central to the campus, and 2) is considered as a hub for staff 

and students given that it is surrounded by many facilities including the main 

library and restaurants. We tackled the problem of APs coverage in Bush 

Court by scaling our previously designed sensor node across all existing 

garbage bins. Figure 15 shows the distribution of garbage bins and their IDs in 

which 20 bins provide excellent coverage for Bush Court. ArcGIS is used to 

visualise bins locations [63].  

 

Figure 15: Distribution of rubbish bins across the Bush Court of Murdoch University 

 

Before starting to deploy our sensor nodes across the smart bins, we simulated 

the coverage of the Wifi signal. Wifi can cover more than 100m distance, 

however, we limited the Wifi coverage of each bin to be only 30m to avoid 

excessive signal decay due to blocking or noise problems. Figure 16 shows a 
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heatmap that represent the number of bins that covers any location within the 

Bush Court. Accordingly, we are sure that smart bins provide excellent 

coverage for the Bush Court. We deployed 20 sensor nodes inside the 

available smart bins.  

 

 

Figure 16: Number of bins that covers any location within the Bush Court 

 

We gridded the area into 31 rows and 33 columns, resulting in 1023 RPs with 

each RP occupying 3x3 m2. Each user installed the Wifi Analyzer application 

[64] with the settings set at the shortest scan interval. Table 8 lists the users’ 

smartphones details. This application enables users to get fingerprints with 

timestamp at each RP in CSV format. Users scanned RPs row by row during 

one-month period. Each user started at the middle of a RP and record four 

fingerprints for four direction (North, East, South, West). Figure 17 illustrate 

the process of scanning. Among 1023 RPs, 21 RPs cannot be visited because 

they have huge trees. These indices of RPs are (7,21), (8,31), (12,28), (14,19), 

(15,22), (16, 17), (16,18), (17,17), (17,18), (18,17), (23, 11), (21, 21), (21, 

22), (22, 21),(22,22), (23,21), (23,22), (23,23), (24,21), (24, 22) and (22,23).  
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Table 8: Users’ smartphones details 

User id Smartphone 

Type 

Operating System 

1 PRIMO GH7I Android 8.1  

2 LG G6 Android 7.0  

3 Samsung S8 Android 7.0  

4 Oppo F1 Plus Android 6.0 

  

 

Figure 17: Process of scanning reference points 

 

3.3  Datasets Specifications 

The MBCLFP dataset contains 16032 rows (2 MB) where each user generates 4008 

fingerprints in form of CSV files. We developed a python script to consolidate all 

these files into one single CSV file. Figure 18 shows some records from the dataset. 

Each record shows 20 APs RSSs at (x,y) RP in a given timestamp for a user. RSS 

values are from -31 to -100 where the bigger value indicate closer proximity to a given 

AP and -100 indicate out-of-range RSS.  

 

 

Figure 18: A sample from MBCLFP dataset   
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For MBCLAP, we configured sensor nodes to communicate probe 

requests associated with RSSs with a server entry recorded every 1 

second. We recorded 2450865 rows (72 MB) during the same period 

of collecting MBCLFP. Figure 19 shows a sample from the 

MBCLAP dataset. Each record shows RSS from a user recorded by a 

bin in a given timestamp.  

 

Figure 19: A sample from MBCLAP dataset. The data is part of the data recorded for 

User 1, and the RSS signals are shown for the access points in bins 13,11,22 etc. 

 

3.4  Data Analysis and Visualisation 

We visualise the number of rows for each RP (Figure 20). The figure 

shows consistency in the number of fingerprints provided by four 

users in which exactly 16 fingerprints for each RP except for the 

aforementioned 21 unavailable RPs (grey area).  Figure 21 is another 

way to show the consistent number of fingerprints provided by users 

across different dates. 
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Figure 20: No. of fingerprints per reference point 

Figure 21: No. of fingerprints per users across different dates 

 

Correlation is an excellent metric to show how two variables are associated 

[65-68]. Pearson correlation coefficient is computed using the following 

equation: 

𝑟 =
N ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑦)

√[∑ 𝑥2 − (∑ 𝑥)
2

][∑ 𝑦2 − (∑ 𝑦)
2

]

 

where N = number of pairs of values 

∑ 𝑥𝑦 = sum of the products of paired values 

∑ 𝑥  = sum of x values 

∑ 𝑦  = sum of y values 
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∑ 𝑥2= sum of squared x values 

∑ 𝑥𝑦2= sum of squared y values 

 

Table 9 shows the Pearson correlation between each AP RSSs and RPs 

locations (rows and columns).  Most of AP RSSs are either positively or 

negatively correlated with RPs locations. The lowest contribution comes from 

AP 15 since it is outside the area of Bush Court (see earlier Figure 15). For 

improved understanding regarding coverage, we generated heatmaps for a 

sample of APs RSSs including AP 15 across the area (Figure 22). It is obvious 

that the closer we are to the AP location, the stronger signal strength we 

receive from it. Moreover, no RSS is received for unavailable RPs. One more 

observation is that AP 15 shows a different behaviour with respect to others 

because it is not in the Bush Court area but rather located between two 

buildings (please refer to Figure 15). 

Table 9: Pearson correlation between APs RSSs and RPs locations 

AP x y 

3 -0.71 0.18 

4 -0.68 -0.49 

6 -0.60 0.63 

7 -0.70 0.02 

8 -0.61 -0.48 

9 -0.49 0.73 

10 0.10 -0.57 

11 0.23 0.51 

12 -0.74 0.25 

13 0.41 -0.70 

15 0.16 -0.21 

17 -0.64 -0.56 

18 -0.56 0.67 

19 0.09 0.78 

21 0.78 0.39 

22 0.61 -0.44 

33 0.17 -0.35 

37 0.72 0.11 

38 0.59 0.55 

39 0.66 -0.43 
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Figure 22: Heatmaps for APs 11, 12, 13, 15 showing respective coverage 

 

3.4.1 Algorithm of Generating Labelled MBCLAP 

APs send encrypted MAC addresses associated with RSSs gathered from 

existing devices to the server (including the four users’ smartphones). The 

collected dataset from APs has 2450865 rows from 1167 unique devices. It is 

worth mentioning that we replaced encrypted MAC addresses with sequence 

ID. We reserved IDs 1, 2, 3 and 4 for the four users’ smartphones. Table 10 

shows the proposed algorithm for labelling MBCLAP dataset from MBCLFP 

dataset. First, MBCLAP-Labelled is defined as an empty dataset (line 1). For 

each user, iterations over RPs one by one is performed (lines 2, 3 and 4). 

Then, getting minimum and maximum timestamps per RP per user from 

MBCLFP dataset is performed (lines 5, 6). After that, filtering MBCLAP 

dataset by user and minimum and maximum timestamps and appending the 

filtered records to MBCLAP-Labelled (lines 7, 8). Finally, MBCLAP-

Labelled is returned (line 12).  
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Table 10: The proposed algorithm for generating four users MBCLAP-Labelled  

 

3.4.2 Homogeneity Test between MBCLFP and MBCLAP 

Before studying the homogeneity of the MBCLAP-Labelled and 

MBCLFP datasets, we performed two steps: First, we filtered the 

APs RSSs to remove all values with -100 because we added them to 

indicate out-of-range and they were not recorded by users (applied 

for MBCLFP only). Secondly, we used Z-score normalisation [69] to 

normalise the users’ data per AP for both datasets.   

 

Table 11 shows the t-test results with 95% confidence between both 

datasets for the users across different APs. The last row of the table 

shows the t-test after merging all APs data for different users. Given 

that all p-values were larger than 0.05, we accepted the null 

hypothesis that both datasets are from the same population and 

homogenous. 

Generate_Four_Users_Aps_Dataset (MBCLFP, MBCLAP) 

1.  Initialise dataset MBCLAP-Labelled =[]  

2.  Start loop over four users  u ∈[1,2,3,4]  

3.     Start loop over rows   x ∈ [0...32] 

4.         Start loop over columns  y ∈ [0…30] 

5.            Set from_time_stamp = minimum timestamp from MBCLFP for a user u and a RP (x, y) 

6.            Set to_time_stamp = maximum of timestamp from for a given user u and a RP (x, y) 

7.            Set filtered_data = get all records from MBCLAP for a given user u and timestamp between 

from_time_stamp and to_time_stamp 

8.           Add filtered_data to MBCLAP-Labelled  

9.         End columns loop 

10.   End rows loop  

11. End users loop 

12. return  MBCLAP-Labelled 
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Table 11: p-values from the t-test between MBCLAP-Labelled and MBCLFP datasets 

where columns are users and rows are Access Points 

         User 

AP 
1 2 3 4 

11 0.9631 (Accept) 0.8138 (Accept) 0.8274 (Accept) 0.7863 (Accept) 

12 0.4344 (Accept) 0.2741 (Accept) 0.9202 (Accept) 0.1880 (Accept) 

13 0.8508 (Accept) 0.8276 (Accept) 0.9732 (Accept) 0.7292 (Accept) 

15 0.8624 (Accept) 0.8417 (Accept) 0.8943 (Accept) 0.8408 (Accept) 

17 0.923 (Accept) 0.5321 (Accept) 0.4236 (Accept) 0.2791 (Accept) 

18 0.7699 (Accept) 0.9195 (Accept) 0.6728 (Accept) 0.9325 (Accept) 

19 0.5677 (Accept) 0.9139 (Accept) 0.8986 (Accept) 0.3545 (Accept) 

10 0.2247 (Accept) 0.3435 (Accept) 0.6859 (Accept) 0.9112 (Accept) 

21 0.8602 (Accept) 0.8699 (Accept) 0.4699 (Accept) 0.8549 (Accept) 

22 0.7437 (Accept) 0.7089 (Accept) 0.6853 (Accept) 0.8799 (Accept) 

3 0.8399 (Accept) 0.8674 (Accept) 0.5309 (Accept) 0.9083 (Accept) 

33 0.7886 (Accept) 0.7102 (Accept) 0.7864 (Accept) 0.8889 (Accept) 

37 0.8484 (Accept) 0.7444 (Accept) 0.661 (Accept) 0.6908 (Accept) 

38 0.6046 (Accept) 0.926 (Accept) 0.4888 (Accept) 0.4663 (Accept) 

39 0.7651 (Accept) 0.8239 (Accept) 0.999 (Accept) 0.8577 (Accept) 

4 0.4791 (Accept) 0.266 (Accept) 0.5585 (Accept) 0.6688 (Accept) 

6 0.5324 (Accept) 0.9322 (Accept) 0.663 (Accept) 0.3761 (Accept) 

7 0.93 (Accept) 0.9662 (Accept) 0.9388 (Accept) 0.5621 (Accept) 

8 0.7899 (Accept) 0.6455 (Accept) 0.8245 (Accept) 0.7133 (Accept) 

9 0.6862 (Accept) 0.6252 (Accept) 0.7698 (Accept) 0.9265 (Accept) 

All APs 0.3776 (Accept) 0.1969 (Accept) 0.3975 (Accept) 0.8714 (Accept) 

 

 

3.5  Summary 

In this chapter, we introduced the first Wifi-based localisation datasets for a GPS 

denied open area. We selected a central and busy open area at Murdoch University 
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(Western Australia), known as Bush Court, to generate the datasets using so-called 

“smart bins”. We enabled the rubbish bins to work as access points by attaching our 

previously designed sensor nodes. The data gathered, referred to as 

MurdochBushCourtLoC, consists of two different datasets: Firstly, the 

MurdochBushCourtLoC-FP (MBCLFP) dataset in which four users generated labelled 

Wifi fingerprints for all available Reference Points (RPs) using four different 

smartphones. Secondly, the MurdochBushCourtLoC-AP (MBCLAP) dataset that 

includes 2450865 auto-generated rows received from more than 1000 devices.  

In addition, we performed visualisations, statistics and analyses which can be 

generalised for any fingerprint dataset. Then we developed a light-weight 

algorithm to label the MBCLAP from MBCLFP for the four users’ 

smartphones. Finally, we showed that the two datasets are homogeneous using 

a t-test. In the next chapter, we propose a localisation approach that converts 

MBCLAP from asynchronous format to synchronous. The conversion process 

enables us to utilise the AP dataset to provide more accurate model. i.e.  it 

enables us to compare the accuracy of the same machine learning model using 

two different datasets (MBCLAP and MBCLFP). In addition, the chapter 

applies feature engineering and a four-layer deep learning classifier for 

MBCLAP and MBCLFP. Finally, we demonstrate that by using this approach 

we achieve higher prediction accuracy, up to 19% improvement, compared 

with MBCLFP only.  
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Chapter 4 Real-time Localisation Approach using 

Data from Wifi Fingerprints and Access Points 

4.1  Overview  

There are many methods to estimate a users’ location based on RSS. These 

methods are generally classified as attenuation-based methods [70-72] and 

fingerprint-based methods [26, 41, 43, 72-74]. Attenuation-based methods 

estimate a user’s location based on 1) RSSs received by APs, and 2) signal 

degradation due to obstacles in environment such as walls. Fingerprint-based 

methods estimate location of users based on 1) RSSs from their smartphones, 

and 2) historical RSSs collected for different RPs by different users. The 

attenuation-based methods are difficult to work in complex environments 

which have many obstacles, walls and users [27]. On the other hand, 

fingerprint-based methods show higher accuracy, robustness and scalability. 

Many datasets are publicly available as a benchmark to compare different 

methods [25, 28, 29, 41, 75]. Moreover, several researchers have proposed 

machine learning models which eliminate the noise associated with RSS to 

improve localisation accuracy,  [25, 74, 75].   

In summary, Fingerprint methods suffer from the following limitations: 

Generation of fingerprint datasets is a complex and error-prone process.  To create a 

fingerprint dataset, users are required to participate using smartphones. Users are 

required to download an application and stand at each RP to report RSS [26-31]. It is a 

complex process and depends on human intervention which can lead to errors. For 

example, a user must be standing at the exact RP that he/she is reporting.  

Smartphones’ RSSs are cached, which affects the currency of RSS readings. Wifi 

fingerprint datasets depend on Android devices [26, 28, 31, 62] due to the rich and 

well-documented Software Development Kit (SDK) [76] and the availability of ready-
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made software [64].  According to [77], the resulting data from a Wifi scan might not 

contain current values which will in turn affect the accuracy of any prediction method. 

Fingerprint methods are not scalable/flexible. Wifi fingerprint datasets/methods use 

only Android devices [26, 28, 31, 62, 72] and require users to have the relevant 

applications on their smartphones. Accordingly, they target a small percentage of 

users. Moreover, all fingerprint datasets mainly target indoor areas. There are open 

areas that are not covered by GPS and require study. 

The above-mentioned limitations lead us to study the data collected by APs. The 

advantages of utilising AP data include: 

More scalability and flexibility. It is not required to have applications installed on 

users’ smartphones. APs sniff any RSSs from any surrounding device so data 

collection is automated, no human intervention is required.  

Higher accuracy. IoT APs come with basic firmware and SDK that enables 

developers to control the hardware unlike smartphones [51]. 

The core challenges which limit AP data from being utilised for location estimates 

include the following:  

Collected data are asynchronous. In fingerprint data, all available RSSs from APs 

are captured at a given timestamp (synchronous behaviour). On the other hand, in AP 

data, each AP records RSSs without coordination with other APs (asynchronous 

behaviour) and different APs may encounter a delay in reporting RSSs which makes it 

difficult to have synchronous data.  

Lack of publicly available datasets. All publicly available datasets are fingerprint 

datasets, which makes it hard for researchers to build new methods based on AP data. 

Additionally, AP data is not labelled. 
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To enable new research and development of more scalable and accurate localisation 

methods, we developed MurdochBushCourtLoC, the first Wifi dataset that contains 

both fingerprint and AP datasets for a GPS denied open area based on Wifi (the Bush 

Court of Murdoch University) [28]. MurdochBushCourtLoC consists of two datasets: 

First, MurdochBushCourtLoC-FP (MBCLFP) dataset in which four users generated 

labelled Wifi fingerprints for all available RPs using four different smartphones. 

Secondly, MurdochBushCourtLoC-AP (MBCLAP) dataset that includes 2450865 

auto-generated rows received from more than 1000 devices. There are semi-supervised 

deep reinforcement learning methods that can be applied to utilise the relatively 

massive dataset (MBCLAP) by labelling it using MBCLFP [30].  

In this chapter, we propose a localisation approach that converts 

MBCLAP from asynchronous format to synchronous, applies feature 

engineering and a deep learning classifier for MBCLAP and 

MBCLFP. Finally, we demonstrate that by using this approach we 

achieve higher prediction accuracy, with up to 19% average 

improvement, compared with using only MBCLFP. 

4.2  Converting the Asynchronous MBCLAP-Labelled dataset to 

Synchronous  

It is important to have a general method that can work not only with our 

dataset but with any other dataset. The method also must tackle the following 

challenges: 

• Some APs cannot report RSSs due to either a connectivity issue or because 

they did not receive any RSSs from smartphones. For example, there can 

be a gap between two strong RSSs value. 

• There is a delay in reporting the RSSs from some APs due to connectivity 

delay or server-side bottleneck.  

 

Table 12 shows the steps performed to convert the dataset from 

asynchronous format to synchronous. For each RP per user, all 
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records are sorted in ascending order (step 1). Then, the records are 

divided into a number of partitions, each partition of Partition_Size 

(steps 2 and 3). Step 4 is used to merge each partition into a single 

row with all APs. If more than one RSS are recorded by the same AP 

per partition, we simply compute the average.  

It is worth mentioning that Partition_Size should be carefully selected 

based on parameters such as people’s activities in the area and AP 

settings. For example, if people are using the area for crossing only, 

then for a given time window, a small number of RSSs are expected. 

Accordingly, the Partition_Size is expected to be relatively small. On 

the other hand, if APs are set to communicate RSSs every short 

period and people stay in the area for long time, then a massive 

number of RSSs is expected to be received. Accordingly, the 

Partition_Size is expected to be relatively large.  

Figure 23 shows an example of partition merging. In partition three, 

two records are received from bin 2 and accordingly, the average is 

calculated. In the last step (Step 5), for a missed RSS between two 

RSSs, the average is calculated. In Figure 23, the missed RSS for bin 

2 in Synchronous MBCLAP-Labelled will be replaced with the 

average of the previous RSS and the next RSS. In the example, it will 

be -70. The aforementioned steps can be implemented online, they do 

not require offline processing. In step 3, no_records and 

no_of_partitions can be calculated once a new record arrives in the 

system. Steps 4 and 5 can be performed incrementally. 
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Table 12: Method of converting MBCLAP-Labelled to be synchronous 

For each user: 

           For each RP 

1- sort records by timestamp in ascending order 

2- no_of_partitions = no_records/Partition_Size     

3- divide records into no_of_partitions 

4- merge each partition to a single row. If more than 1 RSSs are received 

from the same AP per partition, compute the average 

5- if RSS is missed between two known RSSs, average is calculated, 

otherwise, replace it with (-100) 

            End RP loop 

End user loop 
 

 

 

Figure 23: Example of partition merging 

 

4.3  Cleaning data, Feature Engineering and Prediction Model  

We applied the following rules to clean the data. 

1- Under certain circumstances (e.g., limited/no Internet connection), APs could not 

send data, which affects the quality of the prediction model accuracy. Therefore, 

the records not containing MIN_NO_RSSs greater than -100 will be excluded.  

2- We did not use the actual RSSs values, but instead normalised the values using Z-

score and removing any outliers.   

For feature engineering, our aim was to remove any AP that does not add any value to 

the location (x and y) to gain higher accuracy and reduce the complexity of the 

prediction model. Based on the Pearson correlation values in Table 9, we excluded AP 

15.  
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Many neural network techniques have been proposed [25, 26, 30, 74, 75, 78] for 

location prediction. These techniques show higher accuracy compared to classic 

machine learning techniques [79].  Our problem is a classification problem as we need 

to predict x and y of a RP given a fingerprint and x and y are integer values between 

[1, 33] and [1, 31] respectively.  

We developed a four-layer deep neural network classifier. The classifier is used twice 

in parallel to predict x and y. Figure 24 shows the general architecture of the classifier. 

The input layer has the no_AP nodes, which is the number of APs that contribute in 

fingerprint records. Then, three hidden layers with a power of 2 number of nodes. 

Finally, the output layer has only one node. To improve model generalisation and 

reduce overfitting, we used dropout regularisation method [80] in which during 

training, in each layer, a random number of outputs are dropped out. More details on 

our experiments can be found in Section 4.4.  

 

Figure 24: Four-layer deep neural network classifier 
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4.4   Experiments and Results 

For generating the synchronous MBCLAP-Labelled dataset, we tried different values 

for Partition_Size and MIN_NO_RSSs. Among different values, 10 and 8 show the 

best accuracy respectively. Table 13 Table shows the training accuracy for x location 

accross different Partition_Size and MIN_NO_RSSs values after 10 iterations. 

Table 13: Training Accuracy for x location across different Partition_Size and 

MIN_NO_RSSs values 

                       Min_NO_RSS 
 
Partition_Size 

4 6 8 10 

5 36.7% 37.0% 36.8% 36.9% 

10 38.0% 97.2% 97.4% 37.9% 

15 37.8% 38.0% 38.0% 38.0% 

20 38.0% 38.2% 38.0% 38.1% 

 

 Accordingly, every 20 records are merged to generate one synchronised record per 

user per RP. In addition, we removed records that do not have at least 8 RSSs greater 

than (-100). After cleaning the data, the total number of records for the MBCLAP-

Labelled and MBCLFB datasets are 5222 and 13952 respectively. We used 90% for 

training and 10% for testing the models to avoid overfitting and poor performance (the 

80%-20% split provided clearly inferior results). To best represent the entire 

population in model training and testing, we used stratified random split to generate 

the training and testing datasets. We ran the experiments ten times and computed the 

average for the results. For the four-layer neural network model, we selected the 

following parameters: 

1- Input layer contains 19 nodes that represent the 19 APs (i.e., excluding bin 15). 

2- For the hidden layers, rectified linear (RELU)[81] as the activation function for 

hidden units. We tried different sizes for hidden layers, and we found that 256, 

512, and 256 for the first, second and third hidden layers respectively show higher 

prediction accuracy. 
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3- For the output layer, softmax [81] as the activation function and sparse categorical 

cross entropy as the loss function. 

4- We used ADAM optimizer[82] and dropout regularization with 0.20 rate. 

 

We used Tensorflow for our experiments [36] because it provides a collection of 

workflows to develop and train model using Python. For reproducing the results, we 

provided the source code and datasets in the datasets repository[28]. The users scanned 

Bush Court row by row. For example, for a given row x, users scanned y from 0 to 33 

sequentially. This means that all columns are covered within a short period and due to 

the caching behaviour smartphones mentioned in the introduction [26, 28, 31, 62], the 

accuracy of y prediction is relatively poor compared with the x prediction. On the 

other hand, the rows are scanned for a relatively long period. Accordingly, we reduced 

the y granularity to reduce the confusion in the prediction of the y location. This can be 

achieved by performing integer division of the y label by an integer number greater 

than one. It is worth to mention that the greater the integer number, the accuracy of the 

model will be higher, and the precision of the localisation prediction will be lower. For 

example, if we have an area of 10*10 meters, and we grid the area with blocks 

1m*1m, the x/y classes will be 10. If we decide to make each block 2m*2m, the x/y 

classes will be 5. Accordingly, it becomes easier for the model to predict x/y (5 classes 

instead of 10) which leads to higher accuracy, but the model is only able to localise a 

user within 2m*2m instead of 1m*1m, which leads to lower precision of the 

localisation prediction. 

For our experiments, we chose the integer number to be three to achieve higher 

accuracy without significantly affecting the precision of localisation. Accordingly, the 

area became a 31 x 11 block.  

Figure 25 and Figure 26 show the convergence speed for the MBCLAP-Labelled and 

MBCLFP datasets for the x location prediction. Figure 27 and Figure 28 show the 

convergence speed for the MBCLAP-Labelled and MBCLFP datasets for the y 
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location prediction. Generally, the accuracy of the prediction of the x location is better 

than the accuracy of the prediction of the y location because of the caching behaviour 

of smartphones, and the aforementioned way of scanning RPs.  

The MBCLAP-Labelled dataset shows better performance in accuracy and speed of 

convergence compared with the MBCLFP dataset for both x and y location prediction. 

For the x location after 26 iterations, the MBCLAP-Labelled dataset achieves 99.2% 

and 95.1% for training and testing respectively, compared with 96.4% and 80.1% for 

MBCLFP. Due to our proposed method for converting the MBCLAP- Labelled dataset 

to be synchronous, we achieved a 19% average improvement in accuracy for the 

testing dataset compared with the MBCLFP dataset for x location prediction.  

Another problem with the MBCLFP dataset that does not exist in the MBCLAP-

Labelled dataset is that of overfitting. For the y location after 34 iterations, the 

MBCLAP-Labelled dataset achieves 95.5% and 81.8% accuracy for training and 

testing respectively compared with 90.7% and 77.6% for the MBCLFP. The 

MBCLAP- Labelled dataset shows, overall, a 6% improvement in accuracy for the 

testing dataset compared with the MBCLFP dataset for the y location prediction. Even 

though the MBCLFP dataset contains an almost tripe number of records than the 

MBCLAP-labelled dataset, the MBCLAP-labelled dataset shows better performance, 

which renders APs is better than smartphones as a source of RSSs. 

 

 
Figure 25: Training convergence speed for the datasets for the x location prediction 
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Figure 26: Testing convergence speed for the datasets for the x location prediction 

 

Figure 27: Training convergence speed for the datasets for the y location prediction 

 

Figure 28: Testing convergence speed for the datasets for the y location prediction 
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4.5  Summary 

In this chapter, we have summarised the advantages and 

disadvantages of APs and smartphones as a source of RSSs. We 

showed that APs are more accurate in reporting RSSs as it doesn’t 

engage any human intervention and/or caching behaviour, however, 

APs data are not synchronised. Accordingly, we proposed a simple 

method for converting Asynchronous MBCLAP-Labelled dataset to 

Synchronous.  

We provided a new localisation approach that engages data cleaning, 

feature engineering and a four-layer deep neural network classifier. 

The MBCLAP-Labelled dataset shows better performance in 

accuracy and speed of convergence compared with the MBCLFP 

dataset for location prediction. The MBCLAP-Labelled dataset 

shows 19% and 6% average improvement in the classification 

accuracy compared with the MBCLFP dataset for x and y location 

prediction, respectively. In the next chapter, we conclude this work 

and provide recommendations for future work. 
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Chapter 5 Conclusion and Future work 

5.1  Conclusion 

This thesis explained the importance of real-time crowd 

measurement, which has many applications including real-time 

monitoring of potential risks and emergency situations. RSS-based 

methods outperform other methods when it comes to the scalability, 

cost, availability and precision of data. It explained how smart cities 

can utilize existing street furniture to provide better understanding of 

pedestrians’ movements and flow in real-time using RSS. The major 

challenges which prevent real-time dynamic crowd measurement 

solutions from being applied was listed in detail.      

An overview of the IoT architecture and relevant existing work 

including current challenges relevant to power consumption, 

scalability and data security and privacy was presented. The thesis 

proposed an efficient WSN architecture for smart street furniture 

which utilises power consumption, storage, and network traffic 

without affecting data freshness. The architecture is not only used for 

the measurement of environmental conditions but also for sensing 

wireless devices which can be utilised for real-time crowd 

measurements. Experiments have been conducted on the Murdoch 

University campus with results showing that our/the proposal 

improves the lifetime of wireless sensor nodes by up to 412% 

compared to existing architectures. Moreover, network traffic is 

improved by up to 38% without affecting data freshness. Finally, 

storage space for the database at the server is reduced by up to 99%.  
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It was shown that WSN architecture maintains data security and 

privacy across different levels including sensor, network and server 

levels. The project received human ethics approval from Murdoch 

University. A dashboard using Google Data Studio to provide real-

time dynamic crowd and environmental measurements was 

developed. 

Two Wifi-based datasets were introduced, the first Wifi localisation 

datasets generated from two different sources to study localisation 

and mobility in GPS denied open areas.  The first dataset, MBCLFP, 

has Wifi fingerprints collected for available RPs from four different 

users’ smartphones. The second dataset, MBCLAP, contains auto-

generated data from 20 different APs. It contains 2450865 records 

received from more than 1000 devices. We proposed an algorithm for 

generating a labelled dataset for the four users (MBCLAP-Labelled 

dataset). The algorithm uses the MBCLFP dataset which is labelled 

for generation process. We showed that the two datasets are 

homogeneous using t-test.  

A summary about the advantages and disadvantages of APs and 

smartphones as a source of RSSs was provided. APs are more 

accurate in reporting RSSs; however, the APs data are not 

synchronised. Accordingly, a simple method for converting 

Asynchronous MBCLAP-Labelled dataset to Synchronous was 

proposed. A localisation approach that uses data cleaning, feature 

engineering and four-layer deep neural network classifier was 

provided. MBCLAP-Labelled dataset shows better performance in 

accuracy and speed of convergence compared with the MBCLFP 

dataset for location prediction. MBCLAP-Labelled dataset shows 

19% and 6% improvement in the classification accuracy compared 

with MBCLFP dataset for x and y location prediction, respectively. 
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5.2  Future Work 

This thesis proposed a new localisation approach based the adaptive real-time low-

power wireless sensor network. The proposed solution maintains data privacy and 

security in different system tiers. We recommend extending the experimental studies 

to cover more complex environments that could introduce new challenges. For 

example, city centres are full of buildings and mobile objects that can introduce noises. 

Based on that, we recommend proposing a more generalised system that can adapt to 

different environments. 

Real-time group-based recommendations can be achieved based on measuring crowd 

flow. It can be achieved by changing the contents displayed on digital signages in real-

time. The real-time recommendations can include targeted advertising, events, 

announcements, evacuation procedures and context-aware information.  

Figure 29 shows the envisioned overall system’s components. The following list shows 

the expected basic functionalities of the system:  

• Wi-Fi-equipped smart bins will continuously monitor wireless signals from 

pedestrians’ mobile devices surrounding them. It is important to mention that no 

additional overhead on pedestrians’ devices will be required as wireless modules in 

mobile devices periodically send probe requests to surrounding access points. Also, 

they will continuously sense environmental conditions such as the garbage level.  

 
 

Figure 29: Overall system components 
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• Smart bins will periodically send all raw data to the server. More precisely, smart 

bins will not waste time in processing the data received from sensors or network 

module, but instead will send the data in a periodical manner to avoid any delay 

and improve overall system performance.  

• The server will collect real-time geotagging data from social media and process 

them. The process of collecting geotagging data from social media will be 

performed using social media APIs.  

• The server will process real-time data from different sources (sensors, social media 

and wireless signals from mobile devices) to measure crowd dynamics.  

• Pedestrians will get real-time context-aware recommendation using location-

enabled devices where the exact location of the user will be determined with high 

accuracy.  

• The system will profile pedestrians based on their activities and display relevant 

content on digital signage in real-time. For example, if it recognises that some 

pedestrians always enter a school zone early morning and leave it afternoon, then it 

will surmise that they most likely are parents together with their children. 

Accordingly, the digital signage will display a targeted content in real-time. In 

addition to that, The system should consider data protection and ethics. 
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