23,706 research outputs found

    Workload dynamics on clusters and grids

    Get PDF

    Social security and the search behaviour of workers approaching retirement

    Get PDF
    This paper explores the links between unemployment, retirement and their associated public insurance programs. It is a contribution to a growing body of literature focused on a better understanding of the labor behavior of advanced—age workers, which has gained importance as the pension crisis looms. The analysis combines the development of a new theoretical model and a detailed exploration of the empirical regularities using the Spanish Muestra Continua de Vidas Laborales (MCVL) dataset. The model is a extension of the standard search model, designed to reproduce the non—stationary environment faced by workers approaching retirement and to explore the interaction of unemployment benefits and retirement pensions. Via calibrated simulations we show that the basic empirical reemployment and retirement patterns can be rationalized as the optimal responses to both the labor market conditions and the institutional incentives. Generous Unemployment Benefits (for durations of up to two years) together with very significant early retirement penalties, make optimal to stay unemployed without searching for large groups of unemployed workers. This moral hazard problem can he substantially alleviated through institutional reform. Setting the early retirement penalties according to the age when the individual withdraws from the labor force (rather than when he/she claims the pension for the first time) seems particularly beneficial. It increases the labor supply, reduces the financial cost for the social security system and generate enough extra resources to compensate for the welfare loss of those unemployed directly hit by the reform.Unemployment search, job benefit, retirement

    MorphoSys: efficient colocation of QoS-constrained workloads in the cloud

    Full text link
    In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for unencumbered use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models -- often used to characterize real-time workloads -- be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the infrastructure provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MORPHOSYS: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of arbitrary workloads in a dynamic setting. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. These results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MORPHOSYS.National Science Foundation (0720604, 0735974, 0820138, 0952145, 1012798

    Social Security and the search behaviour of workers approaching retirement

    Get PDF
    This paper explores the links between unemployment, retirement and their associated public insurance programs. It is a contribution to a growing body of literature focused on a better understanding of the labor behavior of advanced-age workers, which has gained importance as the pension crisis looms. It also contributes to the literature of optimal unemployment insurance by exploring the interaction of unemployment benefits and retirement pensions. The analysis combines the development of a new theoretical model and a detailed exploration of the empirical regularities using the Spanish Muestra Continua de Vidas Laborales (MCVL) dataset. The model is an extension of the standard search model, designed to reproduce the non-stationary environment faced by workers of advanced ages (in the age range 50/65). Via calibrated simulations we show that the basic empirical re-employment and retirement patterns can be considered as rational responses to both the labor market conditions and the institutional incentives. Generous Unemployment Benefits (for durations of up to two years) together with very significant early retirement penalties, make optimal to stay unemployed without searching for large groups of unemployed workers. This moral hazard problem can be substantially alleviated through institutional reform. We explore several potential reforms and find that changing the details of early retirement pensions seems more promising than changing the Unemployment Benefit system.Unemployment, Retirement, Search models

    Energy-aware coordination of machine scheduling and support device recharging in production systems

    Get PDF
    Electricity generation from renewable energy sources is crucial for achieving climate targets, including greenhouse gas neutrality. Germany has made significant progress in increasing renewable energy generation. However, feed-in management actions have led to losses of renewable electricity in the past years, primarily from wind energy. These actions aim to maintain grid stability but result in excess renewable energy that goes unused. The lost electricity could have powered a multitude of households and saved CO2 emissions. Moreover, feed-in management actions incurred compensation claims of around 807 million Euros in 2021. Wind-abundant regions like Schleswig-Holstein are particularly affected by these actions, resulting in substantial losses of renewable electricity production. Expanding the power grid infrastructure is a costly and time-consuming solution to avoid feed-in management actions. An alternative approach is to increase local electricity consumption during peak renewable generation periods, which can help balance electricity supply and demand and reduce feed-in management actions. The dissertation focuses on energy-aware manufacturing decision-making, exploring ways to counteract feed-in management actions by increasing local industrial consumption during renewable generation peaks. The research proposes to guide production management decisions, synchronizing a company's energy consumption profile with renewable energy availability for more environmentally friendly production and improved grid stability

    DECENTRALIZED RESOURCE ORCHESTRATION FOR HETEROGENEOUS GRIDS

    Get PDF
    Modern desktop machines now use multi-core CPUs to enable improved performance. However, achieving high performance on multi-core machines without optimized software support is still difficult even in a single machine, because contention for shared resources can make it hard to exploit multiple computing resources efficiently. Moreover, more diverse and heterogeneous hardware platforms (e.g. general-purpose GPU and Cell processors) have emerged and begun to impact grid computing. Given that heterogeneity and diversity are now a major trend going forward, grid computing must support these environmental changes. In this dissertation, I design and evaluate a decentralized resource management scheme to exploit heterogeneous multiple computing resources effectively. I suggest resource management algorithms that can efficiently utilize a diverse computational environment, including multiple symmetric computing entities and heterogeneous multi-computing entities, and achieve good load-balancing and high total system throughput. Moreover, I propose expressive resource description techniques to accommodate more heterogeneous environments, allowing incoming jobs with complex requirements to be matched to available resources. First, I develop decentralized resource management frameworks and job scheduling schemes to exploit multi-core nodes in peer-to-peer grids. I present two new load-balancing schemes that explicitly account for resource sharing and contention across multiple cores within a single machine, and propose a simple performance prediction model that can represent a continuum of resource sharing among cores of a CPU. Second, I provide scalable resource discovery and load balancing techniques to accommodate nodes with many types of computing elements, such as multi-core CPUs and GPUs, in a peer-to-peer grid architecture. My scheme takes into account diverse aspects of heterogeneous nodes to maximize overall system throughput as well as minimize messaging costs without sacrificing the failure resilience provided by an underlying peer-to-peer overlay network. Finally, I propose an expressive resource discovery method to support multi-attribute, range-based job constraints. The common approach of using simple attribute indexes does not suffice, as range-based constraints may be satisfied by more than a single value. I design a compact ID-based representation for resource characteristics, and integrate this representation into the decentralized resource discovery framework. By extensive experimental results via simulation, I show that my schemes can match heterogeneous jobs to heterogeneous resources both effectively (good matches are found, load is balanced), and efficiently (the new functionality imposes little overhead)

    Look-ahead strategies for dynamic pickup and delivery problems

    Get PDF
    In this paper we consider a dynamic full truckload pickup and delivery problem with time-windows. Jobs arrive over time and are offered in a second-price auction. Individual vehicles bid on these jobs and maintain a schedule of the jobs they have won. We propose a pricing and scheduling strategy based on dynamic programming where not only the direct costs of a job insertion are taken into account, but also the impact on future opportunities. Simulation is used to evaluate the benefits of pricing opportunities compared to simple pricing strategies in various market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization, and delivery reliability

    MORPHOSYS: efficient colocation of QoS-constrained workloads in the cloud

    Full text link
    In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the IaaS provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MorphoSys: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of workloads. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. The results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MorphoSys.First author draf

    An energy-aware scheduling approach for resource-intensive jobs using smart mobile devices as resource providers

    Get PDF
    The ever-growing adoption of smart mobile devices is a worldwide phenomenon that positions smart-phones and tablets as primary devices for communication and Internet access. In addition to this, the computing capabilities of such devices, often underutilized by their owners, are in continuous improvement. Today, smart mobile devices have multi-core CPUs, several gigabytes of RAM, and ability to communicate through several wireless networking technologies. These facts caught the attention of researchers who have proposed to leverage smart mobile devices aggregated computing capabilities for running resource intensive software. However, such idea is conditioned by key features, named singularities in the context of this thesis, that characterize resource provision with smart mobile devices.These are the ability of devices to change location (user mobility), the shared or non-dedicated nature of resources provided (lack of ownership) and the limited operation time given by the finite energy source (exhaustible resources).Existing proposals materializing this idea differ in the singularities combinations they target and the way they address each singularity, which make them suitable for distinct goals and resource exploitation opportunities. The latter are represented by real life situations where resources provided by groups of smart mobile devices can be exploited, which in turn are characterized by a social context and a networking support used to link and coordinate devices. The behavior of people in a given social context configure a special availability level of resources, while the underlying networking support imposes restrictionson how information flows, computational tasks are distributed and results are collected. The latter constitutes one fundamental difference of proposals mainly because each networking support ?i.e., ad-hoc and infrastructure based? has its own application scenarios. Aside from the singularities addressed and the networking support utilized, the weakest point of most of the proposals is their practical applicability. The performance achieved heavily relies on the accuracy with which task information, including execution time and/or energy required for execution, is provided to feed the resource allocator.The expanded usage of wireless communication infrastructure in public and private buildings, e.g., shoppings, work offices, university campuses and so on, constitutes a networking support that can be naturally re-utilized for leveraging smart mobile devices computational capabilities. In this context, this thesisproposal aims to contribute with an easy-to-implement  scheduling approach for running CPU-bound applications on a cluster of smart mobile devices. The approach is aware of the finite nature of smart mobile devices energy, and it does not depend on tasks information to operate. By contrast, it allocatescomputational resources to incoming tasks using a node ranking-based strategy. The ranking weights nodes combining static and dynamic parameters, including benchmark results, battery level, number of queued tasks, among others. This node ranking-based task assignment, or first allocation phase, is complemented with a re-balancing phase using job stealing techniques. The second allocation phase is an aid to the unbalanced load provoked as consequence of the non-dedicated nature of smart mobile devices CPU usage, i.e., the effect of the owner interaction, tasks heterogeneity, and lack of up-to-dateand accurate information of remaining energy estimations. The evaluation of the scheduling approach is through an in-vitro simulation. A novel simulator which exploits energy consumption profiles of real smart mobile devices, as well as, fluctuating CPU usage built upon empirical models, derived from real users interaction data, is another major contribution. Tests that validate the simulation tool are provided and the approach is evaluated in scenarios varying the composition of nodes, tasks and nodes characteristics including different tasks arrival rates, tasks requirements and different levels of nodes resource utilization.Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentin
    • …
    corecore