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Summary

The ever-growing adoption of smart mobile devices is a worldwide phenomenon that positions smart-

phones and tablets as primary devices for communication and Internet access. In addition to this, the

computing capabilities of such devices, often underutilized by their owners, are in continuous improve-

ment. Today, smart mobile devices have multi-core CPUs, several gigabytes of RAM, and ability to

communicate through several wireless networking technologies. These facts caught the attention of re-

searchers who have proposed to leverage smart mobile devices aggregated computing capabilities for

running resource intensive software. However, such idea is conditioned by key features, named sin-

gularities in the context of this thesis, that characterize resource provision with smart mobile devices.

These are the ability of devices to change location (user mobility), the shared or non-dedicated nature of

resources provided (lack of ownership) and the limited operation time given by the finite energy source

(exhaustible resources).

Existing proposals materializing this idea differ in the singularities combinations they target and the way

they address each singularity, which make them suitable for distinct goals and resource exploitation op-

portunities. The latter are represented by real life situations where resources provided by groups of smart

mobile devices can be exploited, which in turn are characterized by a social context and a networking

support used to link and coordinate devices. The behavior of people in a given social context configure

a special availability level of resources, while the underlying networking support imposes restrictions

on how information flows, computational tasks are distributed and results are collected. The latter con-

stitutes one fundamental difference of proposals mainly because each networking support –i.e., ad-hoc

and infrastructure based– has its own application scenarios. Aside from the singularities addressed and

the networking support utilized, the weakest point of most of the proposals is their practical applicabil-

ity. The performance achieved heavily relies on the accuracy with which task information, including

execution time and/or energy required for execution, is provided to feed the resource allocator.

The expanded usage of wireless communication infrastructure in public and private buildings, e.g., shop-

pings, work offices, university campuses and so on, constitutes a networking support that can be naturally

re-utilized for leveraging smart mobile devices computational capabilities. In this context, this thesis

proposal aims to contribute with an easy-to-implement scheduling approach for running CPU-bound

applications on a cluster of smart mobile devices. The approach is aware of the finite nature of smart

mobile devices energy, and it does not depend on tasks information to operate. By contrast, it allocates

iii
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computational resources to incoming tasks using a node ranking-based strategy. The ranking weights

nodes combining static and dynamic parameters, including benchmark results, battery level, number

of queued tasks, among others. This node ranking-based task assignment, or first allocation phase, is

complemented with a re-balancing phase using job stealing techniques. The second allocation phase

is an aid to the unbalanced load provoked as consequence of the non-dedicated nature of smart mobile

devices CPU usage, i.e., the effect of the owner interaction, tasks heterogeneity, and lack of up-to-date

and accurate information of remaining energy estimations. The evaluation of the scheduling approach

is through an in-vitro simulation. A novel simulator which exploits energy consumption profiles of real

smart mobile devices, as well as, fluctuating CPU usage built upon empirical models, derived from real

users interaction data, is another major contribution. Tests that validate the simulation tool are provided

and the approach is evaluated in scenarios varying the composition of nodes, tasks and nodes charac-

teristics including different tasks arrival rates, tasks requirements and different levels of nodes resource

utilization.
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Chapter 1
Introduction

1.1 Overview

Wireless communication is present in an ever increasing number of devices including sensors, wearable

computers, laptops, smart-phones and tablets. Moreover, the names that have been used to refer to such

devices depend on their characteristics. For instance, the term wireless device suggests not only devices

which use the air as data transferring medium, but also those that operate with batteries as main power

supply, i.e., without the need of being plugged to the electricity grid. Besides, it has been common to

call wireless devices as portable devices, because they are small enough to be carried or worn by people.

Indeed, when portable devices are intended to keep rendering service while moving, it is usual to call

them mobile devices. Moreover, when a mobile device is capable of sensing, visualizing and performing

complex computations, a frequent term used to refer to such a device is Smart Mobile Device (SMD).

Today’s SMDs are general purpose devices, equipped not only with several radios used to transfer data

through different communication protocols –e.g., Bluetooth, WiFi, different generation of cellular net-

works– but also with many sensors to monitor context-aware data. They also have several Gigabytes of

storage capacity and, last but not least, powerful computing resources supported by several Gigabytes of

RAM, powerful Graphics Processing Unit (GPU) and multi-core processors.

SMDs capabilities and their role within the IT world have evolved over the years. From the mid 90s to the

early 2000s, SMD-like devices, such as Personal Digital Assistant (PDA)s, have eased the way people

access information Imielinski and Badrinath (1994); Banavar et al. (2000) and computing services Yi and

Livny (1999); González-Castaño et al. (2003). A high adoption of such devices with access to resource

rich infrastructures from anywhere, at anytime, is a phenomenon envisioned by Mark Weiser with the

name of Ubiquitous Computing Weiser (1993), later renamed as Pervasive Computing Satyanarayanan

(2001).

Nowadays, SMDs are best represented by smartphones and tablets, which are globally adopted and used

as primary devices for multiple purposes, not only for providing their owner a way of communicating

and accessing the Internet, but also for performing geo-localized navigation, shopping, entertainment,

1



2 CHAPTER 1. INTRODUCTION

and the list continues. However, an SMD owner is not the only who benefits from the capabilities of

such devices. With the explosion of applications in the field of smart cities, e-government and health--

care monitoring that exploit data provided by crowds of SMDs, an entire population can actually be

benefited. Examples of services offered through these platforms are monitoring noise levels and online

traffic information. The high popularity, low cost, and potential applications of today’s SMDs contribute

in that the pervasive computing phenomenon is not longer a vision but a reality.

1.2 Motivation

With the evolution of the semiconductor industry, SMDs started being equipped with faster and more

computing resources, higher resolution screens and more data storage capacity. Every new SMDs gen-

eration surpasses the previous one, or even previous generations of fixed computers, in respect to the

type of applications they are able to execute and the amount of data they are able to store and visualize.

This fact modified the role of SMDs in the IT world, because they evolved from simple terminals to get

access to the Web to small-computers with capabilities to execute resource intensive applications, e.g.,

face recognition, augmented reality applications Takacs et al. (2011).

Despite SMDs are powerful enough to execute such applications, a new issue entered the scene: the

limited energy of SMDs that prevents applications from terminating successfully, or executing with the

user desired Quality of Service (QoS) as consequence of the Operating System (OS) energy saving

policies that degrade the system performance. To some extent, this issue is attributed to the development

of batteries, which did not follow the growing pace of SMDs capabilities.

To allow resource-intensive applications execute in an SMD, even with resources powered by exhaustible

energy sources -battery-, active research lines promote the delegation of power-hungry applications code

to external fixed servers with “infinite” resources. When servers are located in a remote Cloud, the

execution model is known as Mobile Cloud Computing (MCC) Abolfazli et al. (2014); Fernando et al.

(2013), and the technique used to delegate code is commonly referred as cyber foraging or computation

offloading Yousafzai et al. (2016); Rego et al. (2016); Sharifi et al. (2012). Among the MCC challenges

in the client side, i.e., from SMDs perspective, it is the study of appropriate algorithms for partitioning

applications Liu et al. (2015) to identify off-loadable code whose execution can be performed outside the

SMD. Other challenges are providing decision making criteria, operating inside an SMD, to trade-off

between energy saved and QoS achieved during the execution of partially-offloaded application code. In

few words, the efforts of the aforementioned research lines are oriented to mitigate resource exhaustion

and/or computing performance issues of an SMD while executing complex applications. Then, cyber

foraging and computational offloading complement SMD execution capabilities with resources from

powerful servers, i.e., SMDs are identified with the role of resource consumers.

Instead of empowering individual SMDs computing capabilities with resources from powerful infrastruc-

tures, i.e., considering them as resource consumers only, alternative research lines, with which this thesis

is aligned to, advocate to consider groups of SMDs as computing resource providers. I will use the latter

three terms to refer to exploitation of CPU cycles. The potential aggregate computing resources of SMDs
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is non-negligible given the high adoption of such devices around the globe and the individual hardware

performance -frequently underused by the owner-. Moreover, SMDs are equipped with processors that

comparatively consume less energy than those of fixed computers Ba et al. (2013). All these facts mean

that the development of techniques for scavenging resources in such devices would contribute not only

to increase the available computing power but to reduce the emissions of Carbon Dioxide (CO2).

The computing potential of groups of SMDs has been and is currently being considered by multiple

research communities which have been involved in the development of high computing power infras-

tructures and paradigms, namely Grid Computing Rodriguez et al. (2011); Furthmüller and Waldhorst

(2010), High Performance Computing (HPC) and cluster computing Rajovic et al. (2013); Büsching

et al. (2012), and volunteer computing Black and Edgar (2009). To cite a concrete example, Berkeley

Open Infrastructure for Network Computing (BOINC)1, a volunteer computing platform that exploits the

computing cycles donated by millions of desktop computer users for performing scientific jobs calcula-

tion, released in June 2013 the BOINC for Android application2. The application allows volunteers to

contribute with computing cycles of their smartphones and tablets while these are charging. The com-

munity that maintains the platform has also initiated the development of an iOS client version for the

same purpose.

The inclusion of SMDs as providers of computing capability reaches sub-areas of MCC. The virtual

Cloud provider Huerta-Canepa and Lee (2010), mCloud Miluzzo et al. (2012) or Hybrid Local Mobile

Cloud Wei et al. (2013) are examples of such inclusion where computing resources of a group of nearby

SMDs are offered as a Cloud-like execution service. Solutions like these have been proposed as an

alternative for augmenting computing capabilities of an SMD without relying on private Cloud services

and for comparatively reducing communication latency of tasks offloaded to remote servers.

1.3 Problem statement

As a group of SMDs essentially represents a loosely coupled distributed computing system, one concern

for scavenging the aggregated computing resources relates to how SMDs are arranged, i.e., the network-

ing support under which nodes exchange tasks and information. SMDs can be arranged via an ad-hoc

network Castro et al. (2010) or, the one assumed in this thesis, an infrastructure-based network Lee et al.

(2013). The network type imposes restrictions on how data flows and in turn influence resource discovery

and tasks allocation.

To allocate tasks into SMDs, an energy-aware Resource Allocation (RA) or scheduling criteria is needed,

which needs to be re-designed w.r.t. RA for distributed computing systems with fixed computers Zhang

et al. (2016); Hussain et al. (2013); Krauter et al. (2002) to contemplate special properties of SMD. In this

thesis, these properties are named SMD singularities or simply singularities. The term is used to refer to

three unique properties of nodes that are representative of a set of issues that motivate the research in the

area. The three singularities are:

1https://boinc.berkeley.edu/
2https://play.google.com/store/apps/details?id=edu.berkeley.boinc&hl=en
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• User mobility, seen as the possibility of an SMD to change its location.

• Lack of ownership, seen as the non-dedicated nature of computing resources provided,

• Exhaustible resources, seen as the the limited operation time imposed by the finite energy supplied

by batteries.

These singularities, coupled to the heterogeneous hardware capabilities of SMDs, introduce rather com-

plex and dynamic resource availability conditions, and therefore efforts in the area proposing RA criteria

can be analyzed from the perspective of the singularities they address.

In this sense, RA proposed in the literature addressing mobility in ad-hoc networks and infrastructure-

networks differ in how each singularity affects resources availability. In the former, SMDs movements

causing intermittent connections are treated as the normal operation scenario under which RA should be

performed. Indeed in the latter case, SMDs intermittent connection is treated as a faulty situation, and

nodes with low rate of connection tend to be discarded as candidates for executing tasks.

With regard to the exhaustible resources singularity, RA mechanisms targeting ad-hoc networks pro-

pose criteria focused on preserving network reachability. Indeed, this objective does not characterize

RA mechanisms targeting infrastructure-based networks because the network reachability is stable and

defined by the coverage range of a fixed node, which operates with energy from the electricity grid and

has direct communication with all SMDs offering computing resources. The focus here, indeed, is on

greedily exploiting the computing capability of SMDs.

In respect to RA addressing lack of ownership issues, as I will point out in Chapter 2 in more detail,

scarce attention has been paid by the community to a topic that naturally interfere with the exploitation

of computing resources. The works proposing some advance in this line model user interaction with

operating and interaction data not derived from real SMDs and do not relate the effect of such interaction

with the consumed energy.

Irrespective of the combination of singularities addressed by a particular RA mechanism, there are other

relevant aspects to judge any solution proposed. One concerns applicability, i.e., practical implementa-

tion of the scheduling algorithm and methodology employed for evaluating it. With regard to the first,

it is observed that, to operate, many state-of-the-art RA mechanisms heavily depend on accurate input

task information which is very hard to obtain and generalize. To be more specific, the energy consumed

by a CPU-intensive task is hard to be generalized because, not only SMDs battery depletion is not lin-

ear, but also different SMD hardware utilize the energy in a more or less efficiently manner. Many of

state-of-the-art RA mechanisms require that information of energy spent by a task be available for every

candidate SMD. In turn, to know the energy spent by a task, it is first necessary to know the time that

the task requires on an specific SMD to execute. Knowing such time for the general case requires to first

respond the question if the task execution actually terminates, which means solving the halting problem.

Many state-of-the-art RA mechanisms are hard applicable because they depend on knowing the time and

energy spent by tasks to operate.

As said, the other concern relates to the evaluation methodology. Given the complexity of configuring

and reproducing experimental scenarios in the area, simulation is an accepted practice for evaluating RA
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mechanism Hirsch et al. (2016). However, a recurrent practice when simulating SMDs clusters is to use

synthetic models to represent SMDs energy depletion. These models assume that the battery depletion

rate can be represented by a single linear function, which is likely to introduce serious estimation errors

that compromise the accuracy of simulation results. Such models do not reflect the real SMDs energy

consumption, mostly because CPU usage is never constant. This is caused by the fluctuating CPU usage

caused by the owner interaction, and when it is not present, by the intervention of SMDs operating sys-

tem. Other works Viswanathan et al. (2015); Mtibaa et al. (2013); Shi et al. (2012); Comito et al. (2011)

which do not model energy consumption through synthetic models, utilize information profiled from the

execution of real applications on real SMDs. Despite this method overcomes the aforementioned draw-

backs of synthetic models, it lacks generality, i.e., simulations are valid only for a specific combination

of tasks coded in one language and executed in an specific SMD.

The need of a pragmatic RA mechanism for allocating CPU-bound tasks among SMDs, that considers

the resource exhaustion and lack of ownership singularities is the main motivation of this thesis. The

approach combines a faithful representation of SMDs energy consumption, that includes modeling user

interaction effects on tasks execution and available energy, with the easy-to-reproduce advantages of

simulation.

1.4 Thesis overview and organization of the document

I propose a two-phase energy-aware scheduling approach that assigns CPU-bound tasks in a group of

SMDs utilizing practical battery-aware criteria for targeting more completed tasks per energy unit than

traditional (i.e., energy-unaware) heuristics. The approach is evaluated using a dual in-vitro scheme that

uses energy consumption traces of real SMDs and empirical information of owner interaction load. The

approach operates assuming an infrastructure-based networking support. With regard to the addressed

singularities combination with which efforts are usually identified in the area, the proposal falls into

the set of works classified as aware of exhaustible resources and in the set of works addressing lack of

ownership from an evaluation perspective, according to the taxonomy presented in Chapter 2. The first

is because for estimating the computing capabilities of an SMD, it is employed novel criteria built upon

information of battery level updates reported by devices and battery capacity information provided by

device manufacturer. The second is attributed to the fact that the approach evaluation includes scenar-

ios which simulate owner interaction effects using an empirical model derived from real mobile user

interactions Falaki et al. (2010). Overall, the strengths of the approach are not only the singularities

combination it addresses and the in-vitro evaluation methodology employed, but also in the ease with

which it can be implemented since it does not depend on hard-to-obtain information of tasks to operate,

but on easy-to-obtain SMDs information.

The criteria used in the two–phase scheduling approach does not utilize tasks information to operate

other than the number of queued tasks on each SMD. Tasks of varying sizes are assigned to SMDs

during a first phase as they arrive to a centralized scheduler and the goal is to utilize the available energy

efficiently so as to increase the amount of completed tasks per energy unit. During the first phase,

tasks are assigned using novel energy aware criteria. As the execution of the assigned tasks to an SMD
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progresses, unbalanced load is expected to emerge as consequence of heterogeneous tasks sizes –which

are unknown to the scheduler– energy estimation errors and owner interaction. The unbalanced load is

mitigated with a second allocation phase or re-balancing phase. In this way, the two-phase approach

builds upon the hypothesis stated below:

• Hypothesis 1: Task scheduling criteria that estimate future SMDs potential computing capabilities

using energy-related factors achieve better throughput than criteria that do not use it.

• Hypothesis 2: The system dynamics, inaccurate estimations of SMD computing potential and un-

known tasks requirement partially break previous energy-aware task scheduling decisions creating

sub-exploited slots of computing cycles that can be exploited through a dynamic task re-balancing

mechanism.

– Hypothesis 2.1: The improvement achieved by such re-balancing mechanism is conditioned

by the energy-aware scheduling decisions made in the past, namely the first scheduling phase.

The content of this thesis is structured as follows. Chapter 2 presents concepts related to common

networking supports adopted by the state-of-the-art RA mechanisms and deeps into the reasons behind

why SMDs singularities motivate the investigation on new RA mechanisms. In line with this, the chapter

also includes a section where existing RA mechanisms are classified and described according to the

resource exploitation opportunity each one best fits. A resource exploitation opportunity is a concept

introduced in this thesis that relates the dynamics of a context where SMDs computing capabilities aim

to be exploited, with issues posed by the SMDs singularities themselves. Different resource exploitation

opportunities are identified by a unique combination of singularities, and these help to coarsely identify

the appropriateness of an RA mechanism for tackling issues that characterize a resource exploitation

scenario.

The singularities that motivate the research in the area, and an analysis of how RA mechanisms have

addressed each of them is also included in a dedicated section of Chapter 2. Such analysis includes a

differentiation of the type of problems each singularity poses to resource exploitation and the method-

ological schemes employed in the literature for validating the existing proposals. The chapter concludes

with a section that discusses the main approaches that guide existing RA solutions to address differ-

ent singularities, and the practical applicability limitations and evaluation methodologies adopted by the

analyzed works.

Chapter 3 describes the motivation of my proposal, delineates the problem definition and presents the

hypothesis of the problem. The chapter concludes with a detailed explanation of the proposed RA ap-

proach.

Chapter 4 deeps into details of the methodology employed for evaluating the approach. The chapter

describes the fundamentals of a simulation tool proposed in this thesis based on Discrete Event-based

Simulation (DES) principles for Android-based mobile devices, whose implementation is open source

and based on Java. The tool uses an in-vitro scheme for simulating SMDs energy depletion. It means

that battery decay rate is not represented by a single linear function as other works do Singh and Raza
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(2017); Vaithiya and Bhanu (2012); Ilavarasan and Manoharan (2010). Assuming this for the whole

battery depletion process of an SMD is likely to introduce serious estimation errors that compromise

the accuracy of the simulation process. By contrast, the proposed simulation represents battery decay

rate through the composition of multiple functions that were derived through the profiling of real SMDs

at discrete CPU usages. The lack of ownership singularity of SMDs, i.e., the CPU shared with owner

processes and applications is supported by re-utilizing and interleaving discrete CPU usage profiles. The

interleaving is performed with information derived from the study of real user interactions. Dedicated

sections contained in Chapter 4 describe the algorithms and supporting applications involved in the pro-

filing and interleaving procedures. The chapter concludes with a section that presents tests to assess the

validity of the proposed simulator.

Chapter 5 delineates the experimental scenarios designed to evaluate the two-phase scheduling approach,

presents the tests results and implications. Lastly, Chapter 6 delineates the final conclusions, limitations

and future works.
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Chapter 2
Background and related works

2.1 Preliminary concepts

Resource allocation is a central theme in distributed computing environments since it determines the

effectiveness with which resources are utilized for accomplishing computational tasks (from now on

simply “tasks”). Broadly, resource allocation is described as a decision-making process that allocates

resources to tasks. In the literature, this general process have been referred in multiple ways, including

“task mapping”, “matchmaking”, “task distribution”, “task scheduling”, “resource selection”, “resource

provision”, among others. In this thesis, ”resource allocation” or “task scheduling” will be used inter-

changeably. Moreover, a task will be used to refer to an atomic computation whose execution starts and

finishes on the same node. Besides, the terms “node” and “SMD” will be used interchangeably to refer

to a mobile device resource provider.

In distributed computing environments like clusters, Grids or Clouds, resource allocation is performed

over infrastructures exploiting wired links, because resources are provided by fixed machines connected

through wired interfaces. However, when considering arrangements of SMDs resource allocation occurs

over wireless links. Section 2.1.1 provides details of the typical forms of arranging SMDs adopted

by the state-of-the-art resource allocation proposals. With regard to resources, SMDs provide context

sensitive, communication and computing capabilities Pérez-Torres et al. (2016). Individually, none of

these capabilities are exclusively found in SMDs. For instance, wireless communication and sensing

capabilities are found in wireless sensors, and many RA mechanisms have been proposed for exploiting

such capabilities, specially in the sensor networks research area Yick et al. (2008); Akyildiz et al. (2002).

The same occurs with SMDs computing capabilities, since these are not different from those found in

fixed hardware, for which also many RA mechanisms have been proposed Hussain et al. (2013).

Then, if SMDs resources are not distinctive and there are many works that propose RA mechanisms

for exploiting such resources, an evident question is what makes the process of allocating resources in

networks of SMDs different from that of allocating resources offered in networks of fixed computers.

In short, the reasons are the SMDs singularities derived from their unique mixture of capabilities, limi-

tations and intended purpose. A detailed explanation of these singularities is provided in Section 2.1.2.

9
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Infrastructure-based networks Ad-hoc networks

Figure 2.1: Networking supports commonly adopted for arranging SMDs

More explicitly, SMDs are not single-purpose devices like sensors but multi-purpose like PCs. However,

they cannot deliver “infinite” resources like PCs because, like sensors, they rely on batteries to operate.

Moreover, unlike many kinds of sensors, SMDs batteries support several charging-discharging cycles,

which means that, despite their resources are not available continuously over time, these are available

for several discrete time periods. Moreover, like PCs, SMDs are used by people, which means that they

cannot be considered dedicated devices to purpose-specific tasks anytime, anywhere, as the case of sen-

sors. However, like sensors, SMDs use wireless networks and the communication is feasible even while

they are moving, nonetheless, such characteristic diversifies the energy costs of maintaining an active

connection and transferring data. Therefore, the dynamic operation and heterogeneity introduced by the

above features pose new challenges to the resource allocation process when resources to be exploited are

provided by SMDs.

2.1.1 Networking support for coordinating SMDs collaboration

In order to exploit SMDs resources an RA mechanism must rely on a networking support to perform

activities such as acquiring knowledge of resource availability, distributing tasks and collecting results.

Figure 2.1 illustrates the two most common alternatives for arranging SMDs, infrastructure-based and

ad-hoc networks. Table 2.1 complements Figure 2.1 with research works targeting each type of network

support. Either alternatives for arranging SMDs presents advantages, disadvantages and open challenges

that are subject of study within the communication research area. As they are out of the scope of this

thesis, I will not provide insights on these challenges other than an overview of key features that affect

the resource allocation process.

Infrastructure-based networks are characterized by the existence of dedicated hardware, known as base

stations, which operate with energy from the electricity grid and render wireless communication services

within the range of the signal coverage. Nodes willing to communicate with other nodes do it through the

services provided by the base station. Examples of base stations are wireless access points and cellular

towers. A proxy-based setting relies on such type of networking support to abstract details of SMDs
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Networking support RAproposals

Ad-hoc Shi et al. (2016); Ghasemi-Falavarjani et al. (2015); Shah (2015);
Mtibaa et al. (2013); Shah et al. (2012); Shi et al. (2012);
Furthmüller and Waldhorst (2012); Murray et al. (2010); Shivle
et al. (2006)

Infrastructure-based Rodriguez et al. (2014); Lee et al. (2014); Birje et al. (2014);
Chunlin and Layuan (2014); Wei et al. (2013); Vaithiya and Bhanu
(2012); Jang and Lee (2011); Ghosh and Das (2010); Ilavarasan and
Manoharan (2010); Park et al. (2003)

Table 2.1: RA mechanisms differentiated by networking support

resources to higher levels of a hierarchical resource organization that can be connected through wired

links. The knowledge of resources availability within the coverage range of a base station is managed by

a special fixed node called proxy where the scheduling logic resides.

The other networking support for arranging SMDs is via an ad-hoc multi-hop network that shares simi-

larities with Peer to Peer (P2P) networks with respect to self-organization, decentralized control capabil-

ities, and connectivity in highly dynamic environments. Examples of these type of networks are Delay

Tolerant Network (DTN)s, Opportunistic Network (OppNet)s and Mobile Ad-hoc Network (MANET),

where nodes operate both as hosts and routers, i.e., they contribute with resources not only for executing

tasks but also for forwarding packets towards other nodes that might not be within the direct transmis-

sion range Castro et al. (2010) of the source node. Here, packet routing is a very complex task due to the

changes in communication paths caused by nodes mobility, and it is also an energy-consuming task due

to the complex treatment of collision and interference situations. Ad-hoc networks have been proposed

to support communication where a fixed networking infrastructure is not available, e.g., in rescue oper-

ations after natural disasters Macone et al. (2013); Monares et al. (2011); Aldunate et al. (2006). The

scheduling logic in such type of networking support is performed by all or selected nodes in the network.

2.1.2 SMDs singularities

Accurate resource quantification is a crucial feature for an RA mechanism to be effective. In fact, when

resources are very heterogeneous and their availability dynamically varies, achieving high effectiveness

becomes complex. Resources provided by SMDs are precisely very heterogeneous, which results not

only from the combination of different hardware models of CPU, GPUs, sensors and wireless radios

that manufacturers include in a single device, but also from the modes in which some of those circuits

are able to operate Marinescu et al. (2003). For instance, CPUs can balance performance and energy

consumption through Dynamic Voltage Frequency Scaling (DVFS) techniques.

Besides, another fact that contributes to resource heterogeneity is the finite energy of SMDs. Dedicated

devices with the same hardware but different remaining energy are not expected to provide the same

amount of resources to execute tasks. Supposing that the amount of resources only depends on the SMD

remaining energy, which in turn is difficult to estimate accurately, then a rank of resource quantity could
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be relatively easy to obtain by ordering SMDs by their remaining energy. However, when the remaining

energy is not the only different feature of SMDs, i.e., their hardware characteristics also differ, such

resources quantification becomes more complex. This complexity increases even more when considering

that resources availability dynamically changes as consequence of the multipurpose and non-dedicated

nature of SMDs. Below, we delineate the aspects that contribute to the resource heterogeneity and

dynamic availability –from now on called SMDs singularities–, which state-of-the-art resource allocation

mechanisms to some extent address for the effective exploitation of SMDs:

• User Mobility: It refers to the fact that SMDs location depends on their owner’s location. It

is a singularity that strongly affects the quantification of SMDs communication resources. The

higher delays, error rates and frequent spurious disconnections that wireless communication of

SMDs presents when compared to wired communication is, in part, due to user mobility. In ad-

hoc networks, mobility can cause the path some data should traverse until reaching the destina-

tion node to change during the transmission process and that, in turn, modifies the time, energy

and intermediate nodes involved in such end-to-end communication Rezende et al. (2011). In

infrastructure-based networks SMDs mobility can increase hand-off events, which are an impor-

tant source of delay in the data transmission process Liu et al. (2008). Even when path changes or

hand off events do not occur, the signal quality of an SMD link is affected by user mobility and

that, in turn, modifies the rate of useful data that is being transferred. User mobility may derive

in connection-disconnection patterns with regard to, e.g., access points in infrastructure-based net-

works or other SMDs in ad-hoc networks. In certain types of networks, like DTNs or OppNets,

the connection-disconnection patterns, rather than being considered faulty situations, are treated

as normal operation conditions under which resources should be exploited Spano and Ricciato

(2016). User mobility does not only contribute as a source of heterogeneity when exploiting com-

munication resources, but also when exploiting sensing capabilities of SMDs. As was pointed

out in a discussion of a participatory sensing survey Khan et al. (2013), the uncontrolled mobility

of people is challenging because it leads to the sensor availability problem, i.e., the rendezvous

among the sensors and the communication infrastructure may not happen on the time scales best

suited to the needs of applications.

• Lack of ownership: It refers to the non-dedicated nature of SMDs. The system or application

that aims at scavenging SMDs idle resources does not have the full control of those resources. In

other words, resources such as CPU time are shared with SMD owner processes and applications.

Irrespective of the incentives that encourage owners to offer their SMDs’ resources Restuccia et al.

(2016); Duan et al. (2014); Vega et al. (2013), external tasks are expected not to (heavily) degrade

the performance of owner’s applications or experience. Such scavenging principle suggests that the

actual resources exploitation level and availability differ from the maximum level that the SMDs

hardware is able to deliver. This is not exclusive to SMDs but an issue also present in desktop

PCs of volunteer computing projects, e.g., the BOINC and XtremeWeb platforms Urbah et al.

(2009). However, with SMDs the non-dedicated issue is brought to foreground because SMDs are

primary computing devices with which people interact very frequently during the day. For this

reason, resource scavenging should be performed in such a way that it does not degrade owner’s



2.2. RESOURCE EXPLOITATION OPPORTUNITIES 13

applications performance to unacceptable QoS levels. Besides, careful energy management must

be ensured, i.e., foreseeing future owner interactions.

• Exhaustible Resources: It is related to the fact that resources provided by SMDs are limited by, or

constrained to, the energy availability of their batteries. This poses another distinctive challenge

to RA mechanisms since finite energy is a new dimension of heterogeneity at the moment of

quantifying the resources that an SMD is able to provide. Resource quantification is a top-priority

issue of RA mechanisms Furthmüller and Waldhorst (2010); Litke et al. (2004) that target battery-

driven devices. Even when resource exploitation is planned to occur while SMDs are plugged to

the electricity grid, the scenario is not challenge-free. As shown in Arslan et al. (2012), such type

of resource scavenging should be regulated so as to not heavily affect the time that the charging

cycle lasts.

All in all, the above singularities pose new challenges to legacy RA mechanisms when using these

latter to exploit resources provided by arrangements of SMDs. However, from a practical point of view,

the impact of singularities on achieving effective exploitation may vary from one resource exploitation

opportunity to another. In short, a resource exploitation opportunity involves aspects such as a place, a

social context, a timescale, a type of communication support and tasks whose completion is performed

with a set of SMDs. All these aspects suppose the existence of a wide variety of resource exploitation

opportunities where some of the singularities may not be a concern that needs to be addressed by the

RA mechanism. An example is user mobility when the SMDs involved are exploited at the same place

during the same time period, like during office hours.

Indeed, the fact that most of the current RA proposals targeting SMDs as resource providers do not

simultaneously address all these singularities, does not invalidate their contributions. By contrast, ad-

dressing a subset of SMDs singularities relates to the resource exploitation opportunity these proposals

target. For this reason, and to avoid focusing simply on whether a work address or not a singularity,

this thesis also contributes with a practical categorization of resource exploitation opportunities based on

the importance or weight each singularity has w.r.t. the resource exploitation approach proposed. The

categorization serves as a criterion for organizing current and future RA mechanisms targeting SMDs,

as well as to better appreciate their contributions and facilitate future comparisons. Section 2.2 deepens

into the idea of resource exploitation opportunity.

2.2 Resource exploitation opportunities

SMDs have become the primary computing device carried by people most of the time. This phenomenon

attracted the attention of many researchers who see in social contexts such as libraries Loke et al.

(2015), university campuses Katsaros and Polyzos (2007), conference rooms Murray et al. (2010), mu-

seums Huerta-Canepa and Lee (2010), or even outdoor public places Satyanarayanan (2010) natural op-

portunities for scavenging the aggregated computing capabilities. There are also researchers Mtibaa et al.

(2013); Park et al. (2003) who differentiate the computing potential of groups of co-located SMDs based

on their connection stability, identifying stable, unstable and very unstable arrangements, or equivalent
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coarse-grained categories to described them. Other works Habak et al. (2015); Shi et al. (2012) incorpo-

rate the notion of connection predictability. In Habak et al. (2015), a stability spectrum is illustrated with

real life examples. At the extreme of the least stable and predictable settings are OppNets, such as those

in which works including Shi et al. (2012); Murray et al. (2010) are based on. At the other extreme,

there is a stable setting exemplified with the Mont-Blanc project Rajovic et al. (2013) where a set of

mobile CPUs were mounted in single chassis to exploit their energy efficient computing capabilities. In

the middle of the spectrum are settings where people congregate with its personal devices at known time

schedules, e.g., a classroom, a theater play, among others.

The computing potentials characterization of SMD clusters based on their connection stability cov-

ers only data transfer-related capabilities of SMDs, and leaves outside other aspects concerning their

processing-related capabilities. Given that tasks scheduled to an SMD share resources with that of its

owner, his/her interaction should be considered for rating the real capabilities. This involves categorizing

the computing capabilities by looking at, for instance, the most used applications, frequency and length

of sessions. An SMD cluster involving owners with a high-demand usage profiles may not represent

the same computing potential than owners with low-demand usage profiles. The first could be the case

of people entertaining themselves with a resource-intensive game while in a waiting room. The case of

low-demand user profiles may refer to a group of students attending motivating lessons in classrooms

of an university campus. In the middle of interaction categorization, there are clients at a coffee shop,

surfing the web or reading an electronic newspaper.

The complexity that SMDs singularities suppose for RA mechanisms should not be analyzed only in

terms of social contexts dynamics, but also through the networking support used to coordinate resources.

To illustrate the idea, let us assume we use SMDs resources by exploiting the regularity of people driving

their particular cars through a highway. Besides, consider that resources coordination is performed either

through a set of cellular towers placed along the highway (infrastructure-based support) or through Ve-

hicular Ad-hoc Network (VANET)s. With the first coordination support, by considering SMDs location

information, long data transfers can be accelerated by avoiding SMDs that traverse high communication

latency areas, e.g., caused by handover operations Zola and Kassler (2016); Ferretti et al. (2016). With

the second coordination support, the fact that clusters of SMDs move in the same direction at a similar

speed do not negatively affect the established links, and the treatments of mobility issues are designed

for special cases rather than for normal operation modes.

Then, to acknowledge how complex would be to provide a holistic categorization for measuring the

computing potential of SMD clusters, we do not have to forget the characteristics of the tasks Shah (2015)

that SMD cluster will execute. In concrete, independent CPU-intensive tasks (e.g., number crunching)

might be less affected by disconnections caused by user mobility than CPU-intensive tasks with data

dependencies. While in the first case interruptions in the communication delay the collection of partial

results, in the second case the entire application progress can be delayed because tasks might not be able

to start until the data produced by all preceding tasks is available. Similarly, tasks with hard deadlines

will be more affected by high-demand usage profiles than tasks with soft deadlines.

Identifying which singularity/ies need to be addressed on every possible resource exploitation opportu-

nity would be impracticable due to the innumerable possibilities of combining SMDs usage contexts, net-
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Shi et al. (2016);
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Singh and Raza
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Shah (2015);
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(2015); Li et al.
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Habak et al.
(2015); Lee et al.

(2014)
#

Ghosh and Das
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Ghasemi-
Falavarjani et al.
(2015); Comito

et al. (2011)

Birje et al. (2014);
Wei et al. (2013);

Ilavarasan and
Manoharan (2010)

#
Rodriguez et al.

(2014)
∼
UM

Table 2.2: Map of RA works by resource exploitation opportunities resulting from a binary valuation of addressing
SMDs singularities

working support and task characteristics. However, resource exploitation opportunities could be coarsely

“clustered” based on the singularities combination that the RA mechanism needs to address for the effec-

tive exploitation of resources. Table 2.2 depicts such a clustering where the need for singularity support

is represented as a binary value. UM refers to user mobility, LO to lack of ownership and ER to ex-

haustible resources. The cells of the Table shows the RA mechanisms which address the singularities

of the resource exploitation opportunity cluster. Each cluster is further divided into ad-hoc and infras-

tructure to give an overview of the distribution of state-of-the-art RA mechanisms assuming each type of

networking support. Notice that the resource exploitation opportunity where none support for singulari-

ties is needed, is marked with N/A. It indicates that outfitting RA mechanisms with special logic to cope

with SMDs singularities would not be necessary for effectively exploiting resources.

An RA proposal is considered to be appropriate for the resource exploitation opportunity provided it

addresses the singularities combination. Addressing a singularity suggests that the RA mechanism pro-

poses an algorithm or a formula using specific information to cope with the issues posed by the singu-

larity. Examples of this include the application of conditional probabilities and Markov chains to model

connection/disconnection of SMDs within a zone, the proposal of SMDs rankings that combine infor-

mation such as GPS location, battery charge level of SMDs to determine their suitability for executing

tasks, among others. Another way of addressing a singularity is from the evaluation methodology. For

instance, there are proposals that do not prescribe concrete actions to deal with user mobility, but the
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evaluation includes SMDs which periodically change their location by following some defined mobility

model.

Moreover, the cross symbol (#) indicates that there is no work in the literature, up to the moment of

writing this thesis, which addresses the singularities combination. The next subsections provide details

of the RA mechanisms that address each singularities combination. It is worth noting that the descrip-

tions provided for the works discussed do not aim to be full characterizations of the efforts but only

highlight the techniques, algorithms, and optionally type of applications targeted, that are related to the

singularities combination these works address. Common features of the surveyed works complementing

these descriptions can be found in the analysis presented in 2.3.

2.2.1 RA proposals that address UM_ER singularities combination

In (Shi et al., 2012), the authors provide concrete actions for dealing with user mobility and resource

exhaustion by means of Serendipity, a system for disseminating tasks in a group of SMDs intermit-

tently connected through ad-hoc links. They propose three tasks dissemination strategies based on the

predictability of future contacts and the existence of a control channel for coordination. When future

contacts are predictable and there is a control channel (ideal case), it is proposed a Water-filling greedy

strategy that iteratively chooses the destination SMD for every task that pursues global minimization

of tasks completion time. When future contacts are predictable but there is not a control channel for

coordination, a Computing on Dissemination (CoD) strategy is used to distribute tasks opportunistically

and tasks time minimization is performed locally. For the case with least context information, i.e., un-

predictable future contacts and no control channel, the authors proposed upCoD, a variation of the CoD

strategy. Instantiation of the strategies are also proposed for increasing the lifetime of participant SMDs

where the residual energy is considered for tasks dissemination. Tasks are assumed to be provided with

information that allow the Serendipity system to determine the execution time and energy spent in each

candidate SMD. The evaluation includes a set of experiments with a simulation software using real traces

and another set with a prototype implementation of Serendipity that uses real SMDs, a speech-to-text ap-

plication and a face detection application.

In (Mtibaa et al., 2013), Abderrahmen Mtibaa et. al propose a resource sharing algorithm for ad-hoc

networks where nodes collaborate on the execution of independent computational tasks is proposed. The

objective of the algorithm is to increase network lifetime, i.e., prolong the time of the first node that

fails due to a battery depletion event. The algorithm considers finite energy of nodes and intermittent

connection when offloading tasks among nodes at one hop, and two-hop distance from the node that

initiates the offloading process. For each task to be executed, the algorithm evaluates the energetic

convenience of delegating it to a neighbor node versus executing the task locally. The criterion to define

such convenience uses the communication and computation requirements of tasks, the energy spent by

nodes while executing and transferring the task and the remaining energy of nodes. For dealing with

intermittent connections and before evaluating the energetic convenience, a check for the existence of

communication paths is performed. The paths should exist to allow the tasks distribution and results

collection to happen within the tasks deadlines. The authors assume that the group of collaborating
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nodes can be derived from the analysis of contact duration and frequency information. Once such group

is identified, the algorithm continues with the evaluation of the energetic convenience. The proposal is

evaluated with experiments that include real mobility traces and energy consumption information derived

from real mobile devices.

In (Chunlin and Layuan, 2014) the authors propose a service composition mechanism for negotiating

SMDs resources using agents. The focus of the proposal is on an economic model that rules the requests

and offers of resources, which aims at maximizing the utility of a resource allocation by the application

of a Lagrange multiplier-based approach. The resource exhaustion is contemplated by the constraint of

SMDs finite capacity in the utility maximization problem statement. The user mobility singularity is not

considered in the approach other than through its evaluation. The authors include simulation scenarios

where SMDs move with a random-walking mobility pattern with speeds varying between 1 and 20 meters

per second.

In (Furthmüller and Waldhorst, 2012), a framework for sharing resources of SMDs is proposed. The

usage of a resource or group of resources are offered and consumed by applications as services. A study

of several service selection criteria is presented with focus on determining the benefits on extending

the battery life of service providers. The proposed selection criteria use information of service energy

consumption and the remaining charge of devices. Additionally, a framework to derive the energy con-

sumption model of SMDs is proposed. Moreover, user mobility is addressed in the same way as Chunlin

and Layuan (2014), i.e., only through the evaluation of the approach.

In (Vaithiya and Bhanu, 2012), the authors propose and simulate the performance of an algorithm that

predicts SMDs availability by using a physical availability factor (PAF) and a battery availability factor

(BAF) for scheduling heterogeneous tasks. The authors assumed that SMDs providing resources are

connected to a base station that is part of the infrastructure of a cellular network. Six adjacent cells of

that network are considered a zone. The resource allocation is structured in a two-level hierarchy where

the first level operates from the central cell of a zone and hides resources heterogeneity details to the inter-

zone level. The PAF is used to infer SMDs future location and is determined based on its movement type,

i.e., moving towards and moving apart from the base station, and the mobility pattern. The movement

type is predicted based on Markov chains, SMDs Global Positioning System (GPS) information and

the Haversine formula. The latter is used to calculate the distance, in this case between an SMD and

a reference base station, taking into account the curvature of the earth. Moreover, the BAF value is

determined with parameters such as SMDs battery capacity, C-rate, battery power usage and total battery

availability. Authors propose to use both factors as criterion for measuring nodes availability.

In (Shi et al., 2016) the authors propose an RA mechanism for local mobile clouds that assigns tasks

to energy efficient processing nodes with an adaptive probabilistic approach. The proposal is not aware

of exhaustible resources, but the singularity is contemplated in the evaluation when authors state that

SMDs are initialized with the same battery level. The RA mechanism operates as follows: for every

task, it selects a set of candidate SMDs able to execute the task within a time constraint determined

with information of SMDs processing capabilities. The definitive SMD in charge of the task execution

is probabilistically selected from the set of candidates where probability is defined based on the energy

each SMD spent on executing the task. Time constraint is, in part, defined by the task deadline, which
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is provided by the task owner, minus a margin value that is calibrated when tasks fail. Task failures

are detected when tasks cannot be completed within the owner task deadline and one cause of these

failures is attributed to unpredictable SMDs queuing delays which are in turn consequence of assignments

from multiple source nodes. The task completion rate achieved by the RA mechanism is evaluated in a

simulated environment with stationary and in-movement SMDs settings, varying the number of SMDs,

their computing capabilities, mobility patterns, tasks requirements, and the interval of topology control

messages.

In Singh and Raza (2017) the authors present a framework that combine concepts of quantum computing

and binary gravitational search to process jobs with execution dependencies. The resulting meta-heuristic

(QBGSA) aims at minimizing the turnaround time of jobs. The exhaustible resources and user mobility

singularities are considered from the fitness function used to evaluate the solutions quality found in

each iteration of the of the evolutionary process. Precisely, the fitness function combines a BP (battery

power) value and aMS (mobility score) value. The first is derived from the remaining energy percentage

reported by SMDs, and the second is calculated using information of the mobility history of SMDs

through different coverage ranges during a week for office time hours. The performance of QBGSA is

compared with that of QGA (quantum genetic algorithm).

In Viswanathan et al. (2015), a resource provisioning framework with autonomic capabilities is proposed

for scheduling independent tasks of real-time in-the-field health care applications. The devices are as-

signed with roles that relate to their capabilities for computing, sensing and transferring data. Nodes with

the service requester (SR) role ask for some data to be processed. Nodes playing the service provider

(SP) role sensor data from the environment and/or offer computing capabilities while a node with the

role of arbitrator (broker) provides resource discovery and allocation services. The RA logic leverages

long-term statistics as a way of managing uncertainty caused by users mobility. Statistical indicators

considered are the average arrival rate of SP nodes and the average times SPs are connected and discon-

nected from an arbitrator. Besides, the novel concept of applications waypoints outfits the RA logic. It is

an aid to mitigate the uncertainty of tasks execution performance caused by unpredictable SPs resource

utilization, inaccurate energy estimation and tasks completion time. The RA can be tuned with policies

to achieve a minimization of the maximum battery drain -lifetime maximization of the network-, or min-

imization of the applications response time without considering battery drain QoS maximization-. The

policies operate with information of nodes availability periods as well as performance metrics such as

energy consumption and resources utilization. Provider nodes voluntarily inform such information to

arbitrator nodes.

2.2.2 RA proposals that address LO_UM singularities combination

In (Ghosh and Das, 2010), the authors provide some insights on the impact of user mobility and lack of

ownership singularities in the completion of CPU-intensive tasks. The work is focused on proposing an

economic model for resource allocation based on non-cooperative bargaining game theory. In addition

to that, they assess the impact of reducing the cost of location update (mobility tracking) of SMDs in

an IEEE 802.11 mobile Grid architecture by proposing a location management framework based on the
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Lempel-Ziv (L778) compression algorithm. They show that using the data provided by such framework,

the task allocator component, accommodates more tasks than when such data is not considered. Besides,

the work contemplates the non-dedicated nature of SMDs by considering non-grid tasks competing for

resources. The execution model of devices is assumed to be a M/G/1 preemptive priority queue where

internal tasks arrival rate can preempt grid tasks.

2.2.3 RA proposals that address ER_LO singularities combination

In (Rodriguez et al., 2014), the authors boost the Simple Energy-Aware Scheduler (SEAS) mobile Grid

scheduler presented in (Rodriguez et al., 2010) with different job stealing techniques. The way SEAS

consider the exhaustible resources of nodes is by predicting remaining node uptime from battery drop

events. Remaining uptime information combined with Float-point Operations per Second (FLOPS) and

assigned tasks is used to rank SMDs and decide the most appropriate one for executing a newly arrived

CPU-bound task. The job stealing techniques are proposed as a protection mechanism against unbal-

anced load produced as consequence of inaccurate remaining uptime predictions that, in turn, derive

from factors such as workload, network usage and inaccurate battery sensor of SMDs. Experiments

include settings with dedicated and non-dedicated SMDs. In non-dedicated settings, SMDs CPU is con-

figured to have 30% utilization simulating an average owner CPU utilization.

2.2.4 RA proposals that address UM singularity

In (Shah et al., 2012), a Two-Phase Resource Allocation scheme (TPRA) for dealing with the user mo-

bility singularity is proposed. TPRA exploits movements history information of SMDs and wireless

communication energy consumption properties to distribute dependent tasks of varying requirements.

The first phase aims at reducing the probability of communication interruptions due to SMDs mobility.

When an SMD needs computing resources, it broadcasts its next probable location and SMDs willing to

provide such resources and share the same location respond to the request. The next probable location is

determined by means of a Markov chain that stores the history of user mobility patterns. The physical

area where nodes movement is mapped to a virtual grid equal-sized cells. The states of the Markov chain

are the cells while transitions from one state to other represent the movements of an SMD between cells.

Movements of each SMD between cells is represented as a probability matrix whose values are updated

every time an SMD moves. The second phase of the RA scheme uses physical distance information

among SMDs to minimize communication latency of tasks that need to exchange data. In (Shah, 2015),

an extension of Shah et al. (2012) called ERRA is proposed, which aims at minimizing SMDs energy

consumption while executing a group of tasks. In ERRA’s second phase, data dependent tasks are as-

signed to the heaviest weight k-devices group, where k is equal to the number of tasks and the weight of

groups is determined with information of the SMDs transmission power level.

In (Lee et al., 2014) the authors propose a fault avoidance approach for scheduling tasks by taking

into account dynamic properties related to communication capabilities of SMDs. Such properties are:

availability, reliability and maintainability -whose individual values are aggregated into another single
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property called effectiveness-, and d-effectiveness -that quantifies user’s movements pattern-. Availabil-

ity is defined as the probability that a device is operational and/or able to return results which, in turn,

depends on the time period the device is able to provide its resources. Reliability is the probability that

a device performs a task for a given time period without failures and maintainability is how quickly a

device recovers from a failure. The product of the these properties values results in an effectiveness value

which is used to rank devices. Device A with higher effectiveness value than device B is supposed to

be available for a longer period to perform tasks, to operate with less failure probability and to recover

quicker when a failure occurs than device B. D-effectiveness property is the ratio of effectiveness to

the Euclidean distance between the availability, reliability and maintainability values in the present with

regard to the same value measured in the past. The prediction quality of d-effectiveness depends on the

fact that users exhibit regular connection patterns w.r.t to the same time-of-day and day-of-week. The

evaluation includes the usage of real-life traces from SMDs.

In Habak et al. (2015), Habak et al. propose FemtoCloud, a system for scheduling independent hybrid

tasks, i.e., with data and CPU cycles requirements. A prototype of the system was implemented for

Android-powered SMDs. The proposal aims at exploiting the computing capabilities of a group of

SMDs putting special attention in the connection periods of SMDs to the controller, a component in

charge of the task assignments. The time at which tasks should be assigned and results collected are

scheduled by two complementary greedy heuristics that take into account the tasks deadline constraints.

One heuristic schedules the time and resource utilization for transferring inputs and executing the tasks.

Another heuristic schedules the appropriate time for SMDs to send the tasks results. The objective is to

achieve the highest amount of useful computation done. The heuristics efficiency is evaluated through

simulations and real arrangements of SMDs.

2.2.5 RA proposals that address ER singularity

In (Birje et al., 2014), a variant of the economic model proposed in Ghosh and Das (2010) is presented. It

does not consider user mobility related issues, neither SMDs lack of ownership but contemplates resource

exhaustion when distributing tasks, a singularity that is not addressed in Ghosh and Das (2010). In the

process of resource negotiation, a resource brokering agency that centralizes the information of SMDs,

assigns them a reliability score. The score is calculated combining information of tasks requirements

and SMDs resources capabilities including processing rate, memory, bandwidth and battery power. The

experiments include a comparison of the proposed RA mechanism against others of the same authors

(Ghosh et al. Ghosh and Das (2010)).

In (Ghasemi-Falavarjani et al., 2015), it is proposed a multi-objective two-step resource allocation ap-

proach that deals with the resource exhaustion of Ghosh and Das (2010)s. The first step employs a

Non-dominated Sorting Genetic Algorithm II (NSGA-II) to obtain a set of solutions near to the Pareto-

optimal front. The second step employs the entropy weight and Technique for Order Preference by

Similarity to Ideal Solution (TOPSIS) to select the best balanced solution that minimizes tasks comple-

tion time and consumed energy. Other constraints considered in the proposal are tasks user acceptance

deadlines, nodes residual energy and budget. The budget constraint corresponds to a virtual payment for



2.3. ANALYSIS OF HOW SMDS SINGULARITIES ARE ADDRESSED 21

offered resources that is proposed as an incentive mechanism for encouraging SMDs collaboration. The

proposal is evaluated with OMMC, a context-aware offloading middle-ware, that was installed on real

SMDs. The experimental scenarios include different combination of SMDs, heterogeneous tasks and

comparisons Shi et al. (2012) proposal.

In (Ilavarasan and Manoharan, 2010), an RA mechanism, named HPSM, targets dependent tasks and the

objective function used to guide node selection, can be tuned to prioritize the conservation of SMDs en-

ergy, to minimize tasks schedule length or to achieve a balance between both opposite goals. As HPSM

is designed for dependent tasks, HPSM considers the execution capability of SMDs and communication

bandwidth between them, as well as, energy spent during task execution and results transferring. The

RA mechanism has a compile-time phase where tasks dependencies, represented as a Directed Acyclic

Graph (DAG), are analyzed to determine groups of tasks at each level of the DAG that can be executed

in parallel. Then, tasks are assigned with a priority based on amount of input data they required, the

output data they generate, the sum of both amounts of data and the average computation time of the

task on every candidate SMD. After that, in a node selection stage, by iterating the list of prioritized

tasks, the SMD that minimizes the configured objective function is assigned with the current task. The

cycle is repeated until all tasks are assigned. A component of the objective function contemplates the

exhaustible resources singularity of SMDs. The performance is evaluated through simulation and com-

parisons against two algorithms named HEFTM and PETSM that are adapted from HEFT Topcuoglu

et al. (2002) and PETS Ilavarasan and Thambidurai (2007) algorithms inherited from traditional hetero-

geneous computing environments, varying the number of DAG instances generated, number of SMDs

and energy consumption rates of SMDs.

In (Comito et al., 2011), an RA mechanism for prolonging network lifetime in a collaborative ad-hoc

network composed by SMDs is proposed. The tasks are generated by SMDs that also participate in the

execution of other tasks. The RA decisions are decentralized and hierarchically organized in clusters. It

means that, a task assignment is firstly evaluated among the SMDs within the scope of the local cluster

where the task execution request originates. If none of the SMDs of the local cluster is able to execute it

without depleting its battery, the assignment is delegated to an inter-cluster level where SMDs of other

clusters are considered. To compute the feasibility of an assignment, the RA mechanism considers the

energy required to compute and transfer the involved task. The evaluation is performed with a system

prototype composed by real SMDs and Android emulators.

2.3 Analysis of how SMDs singularities are addressed

This section analyzes and classifies how SMDs singularities are addressed by the surveyed RA mecha-

nisms. The analysis and classification emerges from the works that have been described in Section 2.2,

and additional ones whose detailed description have been omitted due to their similarity with such works

w.r.t how they address the singularities, their RA goals and the assumptions they make.

Table 2.3 gives a big picture of the amount of RA proposals that are in line with the SMD singularities

explained in Section 2.1.2. One reason that makes an RA proposal to be considered in line with an SMD
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Singularity
Aware Evaluated

Ad-hoc Infrastructure-based Ad-hoc Infrastructure-
based

User
mobility

Viswanathan et al.
(2015); Shah
(2015); Shi et al.
(2012); Mtibaa
et al. (2013)

Singh and Raza
(2017); Habak et al.
(2015); Lee et al.
(2014); Vaithiya and
Bhanu (2012); Jang
and Lee (2011);
Park et al. (2003)

Shi et al. (2016); Li
et al. (2015); Loke
et al. (2015);
Furthmüller and
Waldhorst (2012);
Murray et al. (2010)

Chunlin and
Layuan (2014)

Lack of
ownership

# Ghosh and Das
(2010)

# Rodriguez et al.
(2014), This
thesis

Exhaustible
resources

Viswanathan et al.
(2015); Ghasemi-
Falavarjani et al.
(2015); Shah
(2015); Mtibaa
et al. (2013); Shi
et al. (2012);
Comito et al.
(2011);
Furthmüller and
Waldhorst (2012)

Singh and Raza
(2017); Chunlin and
Layuan (2014);
Birje et al. (2014);
Rodriguez et al.
(2014); Wei et al.
(2013); Vaithiya
and Bhanu (2012);
Rodriguez et al.
(2010); Ilavarasan
and Manoharan
(2010), This thesis

Loke et al. (2015) #

Table 2.3: SMDs singularities addressed by state-of-the-art RA mechanisms
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Approach Perception of user
movement

Focus RA works

Aware
Beneficial (it is an
opportunity to
reduce tasks
completion time)

Search for routing
paths through SMDs
or potential clusters
which favor tasks
distribution and results
collection

Shah (2015); Mtibaa et al. (2013);
Shi et al. (2012)

Harmful (it is the
main cause of task
failure)

Search for SMDs with
good connectivity
metrics in respect to
the resource allocator
coverage region

Singh and Raza (2017);
Viswanathan et al. (2015); Habak
et al. (2015); Lee et al. (2014);
Vaithiya and Bhanu (2012); Jang
and Lee (2011); Ghosh and Das
(2010); Park et al. (2003)

Evaluated Add realism to the
evaluation of the
proposal

Shi et al. (2016); Li et al. (2015);
Chunlin and Layuan (2014);
Furthmüller and Waldhorst
(2012); Murray et al. (2010)

Table 2.4: Identified approaches for addressing user mobility

singularity is that it utilizes information in the RA logic to deal with challenges posed by the singularity,

e.g., the current energy level of a device is frequently used to deal with resource exhaustion singularity.

The other aspect that makes an RA proposal to consider a singularity is when it represents/includes the

singularity within the experimental variables of the performance evaluation. In the first case, the RA

proposal is aware of a singularity, while in the second case, it is evaluated considering a singularity.

Furthermore, works that are aware of a singularity are also evaluated w.r.t. that singularity, but the

opposite does not necessarily hold.

2.3.1 User mobility

As shown in Table 2.4, works that are aware of user mobility are, in turn, differentiated in the way

they perceive the singularity. The fact that works such as Shah (2015); Mtibaa et al. (2013); Shi et al.

(2012) perceive user mobility as beneficial, means that user movements are exploited as opportunities

for offloading computations and returning results back to the source node. These type of works typically

target opportunistic connectivity scenarios Conti et al. (2010), i.e., where SMDs contacts occur from

time to time. The focus of such RA mechanisms is on searching for time-variant routing paths between

SMD with the aim of increasing task computing parallelism, and in this way reduce tasks completion

time and/or balance the energy spent by collaborating SMDs.

In contrast, works perceiving user mobility as harmful for effective resource exploitation are Singh and

Raza (2017); Habak et al. (2015); Lee et al. (2014); Vaithiya and Bhanu (2012); Jang and Lee (2011);

Ghosh and Das (2010); Park et al. (2003). The fact that nodes move away from the communication

range of the component that performs the resource allocation and/or collecting results are seen as an
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Simulation scheme Description RA works

Synthetic Movement guided by a
mobility model

Shi et al. (2016); Li et al. (2015);
Chunlin and Layuan (2014);
Furthmüller and Waldhorst
(2012); Shi et al. (2012); Vaithiya
and Bhanu (2012)

Movement represented
through user
presence/absence information

Singh and Raza (2017);
Viswanathan et al. (2015); Habak
et al. (2015); Jang and Lee
(2011); Park et al. (2003)

In-vitro Movement profiled from real
SMDs: Encounter traces,
Wireless Local Area
Network (WLAN) traces

Lee et al. (2014); Mtibaa et al.
(2013); Shi et al. (2012); Murray
et al. (2010)

Table 2.5: User mobility evaluation methodologies

important source of tasks failure. To deal with this issue, RA mechanisms employ criteria to measure

SMDs service availability, mainly based on historical frequency of connection and disconnection events,

length of connection sessions and/or movement patterns inferred using GPS information.

Finally, there are works Shi et al. (2016); Li et al. (2015); Chunlin and Layuan (2014); Furthmüller and

Waldhorst (2012); Murray et al. (2010) that do not propose concrete actions to exploit user movement

but evaluate the performance of the proposed RA mechanisms under varied user mobility patterns. The

schemes used by these works -and those aware of the singularity- to implement user mobility are outlined

in Table 2.5.

User mobility is implemented through simulation by following a synthetic or an in-vitro scheme. One

type of synthetic scheme uses movements derived from an artificial mobility model, where trajectory

shape -circular, linear, random-, number of stops, time between stops and speed range of an SMD are

common parameters used to characterize the model. SMDs are then configured with a mobility model,

an initial location within a 2D plane and a communication radio. The plane can be associated to the

coverage range of some reference node where the resource allocator logic resides Chunlin and Layuan

(2014); Vaithiya and Bhanu (2012) or to an area where SMDs establish ad-hoc links with other SMDs

in their vicinities Shi et al. (2016); Li et al. (2015); Furthmüller and Waldhorst (2012); Shi et al. (2012).

The other type of synthetic scheme adopted by RA works for considering user mobility is by representing

only connectivity information of SMDs, i.e., presence/absence of SMDs within regions that are supposed

to be from where the RA logic operates. The connectivity information can be represented by probability

scores associated to events of connection and disconnection of SMDs Singh and Raza (2017); Jang and

Lee (2011); Park et al. (2003), or through in/out time intervals Viswanathan et al. (2015); Habak et al.

(2015).

Alternatively, the in-vitro scheme aims at reproducing user mobility through profiles derived from real

SMD traces. The works that adopt this scheme are Lee et al. (2014); Mtibaa et al. (2013); Shi et al.
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(2012); Murray et al. (2010). The scheme is called “in-vitro” by analogy with the experimental method-

ology of biological sciences where a process is performed on some part of an organism but from outside

the organism. In this case, mobility traces (parts) extracted from real SMD users (organism) and used

to evaluate the performance of a resource allocation mechanism (process). The traces basically provide

data of SMDs connectivity frequency and duration. When connectivity is with regard to other SMDs,

for example due to people social interactions, the traces are called encounter traces. Popular encounter

traces were those originated in the Haggle project, the MIT reality mining project and IEEE Infocom

2006 conference. These, and many others traces are available from the CRAWDAD website Kotz et al.

(2009). There are also individual efforts Loke et al. (2015); Shi et al. (2012) that built custom encounter

traces from the controlled study of selected groups of people. When data represents connections to access

points, the traces are called WLAN traces and represent the SMDs user movements through different Ac-

cess Point (AP)s of public or private buildings or campuses Balazinska and Castro (2003). An example

of this type of traces is that of the Dartmouth university campus Kotz and Essien (2005) also available

from the CRAWDAD website.

2.3.2 Lack of ownership

The lack of ownership singularity, understood as the sharable condition of SMDs resources by different

task submitters including SMD owners, has received very little attention by researchers yet. Resources

such as CPU cycles for CPU-intensive tasks or network bandwidth for data-intensive tasks should not

be considered dedicated to external tasks but shared with owner processes and applications for two

reasons. One is to minimize the impact of resources fluctuation caused by owner applications on external

tasks. Since SMD owners have higher priority over resources usage, the load introduced by SMD owner

processes and applications causes resources availability to fluctuate. By ignoring the real resources

availability, the completion time/rate of external tasks can be underrated. The other reason is to minimize

the external tasks invasiveness on SMD owner’s experience. This means preventing external tasks from

overloading an SMD and causing its battery to be depleted without care of the usage context, i.e., owner’s

current and future needs, the existence of power plugs in the proximity to charge the SMD, and/or owner’s

willingness to share resources on specific situations. Advocating to a context-aware RA might integrate

ideas from anticipatory mobile computing Pejovic and Musolesi (2015) where SMDs sensing capabilities

are used to infer current SMD owner context, predict owner’s future context and/or events and propose

a framework to advice the user on future decisions. Table 2.6 outlines the RA mechanisms aware of and

evaluated for the singularity.

There is one work Ghosh and Das (2010) with focus only on external tasks performance which considers

resource fluctuation due to user load. The work assumes that the rate at which resources are consumed/u-

tilized by all tasks in every SMD is known to the RA mechanism. The execution of tasks in SMDs is

modeled as a preemptive priority queue where external tasks compete for computing and bandwidth re-

sources with other P − 1 classes of tasks that represent owner applications. From each class of task,

the RA mechanism assumes to know its priority, arrival rate and load. This information is utilized to

estimate the queue delay of external tasks on every node.
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Approach Focus Objective RAworks

Aware
Improve external
tasks performance

Exploiting resources to reduce
external tasks failure rates (or to
increase tasks completion rates)
in presence of resource
fluctuation

Ghosh and Das (2010)

Balance external
tasks performance
and SMD owner’s
experience

Exploiting resources while being
aware of the future resource
needs of the SMD owner

N/A

Evaluated Add realism to the evaluation of
the proposal

Rodriguez et al. (2014)

Table 2.6: Approaches for addressing lack of ownership

As Table 2.6 shows, there are not RA mechanisms which consider lack of ownership with focus on

external tasks and SMD owner’s experience. There is, however, one work Rodriguez et al. (2014) that

considers the singularity within the variables of the experiments to evaluate the proposed RA mechanism.

The evaluation methodology of these works and Ghosh and Das (2010) are outlined in Table 2.7.

Simulation scheme Description RA works

Synthetic Non-available resources
simulated via arrival rate of
SMDs owner tasks

Ghosh and Das (2010)

In-vitro Non-available resources
simulated via CPU profiles

Rodriguez et al. (2014)

Table 2.7: Lack of ownership evaluation methodologies

As in the case of user mobility, the methodology utilized for including lack of ownership singularity

within the experimental evaluation is simulation. A synthetic simulation scheme is adopted in Ghosh and

Das (2010) where external tasks processing capability of SMDs is modeled as a portion of the maximum

processing capability of SMDs that does not vary in time. Different SMDs are associated with different

portions.

In (Rodriguez et al., 2014), it is employed an in-vitro scheme to simulate non-dedicated CPUs of SMDs.

The CPU availability of each SMD is modeled through the configuration of a non-free CPU usage profile.

A non-free CPU usage profile represents the CPU usage that an SMD used to execute owner processes

and/or applications. When simulating dedicated scenarios, the CPU usage configured as base profile

represents the CPU usage derived from the execution of the OS, which fluctuates around [2-10]% de-

pending on the SMD model with the same OS version. In non-dedicated scenarios, the CPU usage

fluctuates around 30% and represents the CPU cycles derived from the interaction of an average SMD

owner who performs activities such as surfing the Web, checking emails, using a chat application, among

other non-intensive CPU tasks. The fluctuation was not randomly generated but obtained by means of a
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Approach Focus RA works

Aware
Conservative
resource
exhaustion

Pure Furthmüller and Waldhorst (2012); Comito
et al. (2011)

Light Viswanathan et al. (2015);
Ghasemi-Falavarjani et al. (2015); Mtibaa
et al. (2013); Shi et al. (2012)

Greedy resource exhaustion Singh and Raza (2017); Chunlin and
Layuan (2014); Birje et al. (2014);
Rodriguez et al. (2014); Wei et al. (2013);
Rodriguez et al. (2010)

Evaluated Shi et al. (2016); Loke et al. (2015)

Table 2.8: Approaches for addressing exhaustible resources

profiling process with an Android application that runs in the background on real SMDs.

2.3.3 Exhaustible resources

Table 2.8 outlines the RA mechanisms that address exhaustible resources. The works aware of the

singularity are focused either on a conservative or a greedy resource exhaustion policy. Those in the

first group aim at extending, as much as possible, the time of the first SMD leaving the network due

to battery depletion. In those works, the concepts of fairness Jain et al. (1984) and/or network lifetime

are commonly used to measure the quality of RA decisions. Works that promote a conservative resource

exhaustion can be, in turn, pure conservative –when the extension of the network lifetime has top-priority

over other criteria used in the RA decisions- or light conservative -when other than the aforementioned

criterion, e.g., accomplishing tasks deadlines, are prioritized-.

An example of pure conservative RA mechanism is Comito et al. (2011) where a bottom-up strategy

guided by nodes residual energy is used for assigning tasks. The scheduling logic is hierarchically

organized in a set of interconnected cluster heads, each one in charge of the local scheduling decisions

within their vicinity. The head of the nodes cluster from where a task is submitted tries to schedule

the task within SMDs of the cluster. If no SMD of the local cluster is able to execute the task with its

available energy, the task scheduling is delegated up to an inter-cluster scheduling level where the task

execution is evaluated by the other cluster heads of the network. The less affected cluster –in terms of

energy spent– by the execution of the task is assigned with the task. Other examples of pure conservative

approaches are the service selection strategies called “Fair spending” and “Remaining charge” presented

in (Furthmüller and Waldhorst, 2012). The Fair spending strategy distributes tasks (service requests) in

such a way each SMD spends the same amount of energy, while the Remaining charge strategy selects

the SMD whose remaining charge is less affected by the task execution.

By contrast, light conservative RA mechanisms do not have energy conservation as the top-priority ob-

jective but also pursue other QoS-related objectives, e.g., violating as few tasks deadlines as possible.

Examples of these RA mechanisms are Ghasemi-Falavarjani et al. (2015); Viswanathan et al. (2015),
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which propose multi-objective optimization approaches that aim at balancing tasks completion within

tasks deadlines and maximization of the minimum residual energy of SMDs. In Mtibaa et al. (2013),

tasks energy consumption is evaluated on every candidate SMD at one-hop and two-hops distance from

the node willing to offload a task. The offloading cost is compared to the local execution and the option

that maximizes the residual energy and allow the task to be completed within its deadline is selected.

Similarly, the energy-aware offloading version of heuristics presented in (Shi et al., 2012) target the min-

imization of an utility function that contemplates tasks energy consumption on every candidate node and

nodes residual energy without ignoring task deadlines. Notice that in these works the extension of SMDs

lifetime is took into account upon every task assignment, provided this does not compromise the tasks

execution deadlines.

On the other hand, greedy RA mechanisms adopt a resource exhaustion handling scheme that is not

focused on making the whole distributed system last longer, but in exploiting resources to achieve the

highest profit, the highest throughput, or the lowest tasks completion times. In those cases, RA mecha-

nisms are aware of SMDs resource availability at the time of evaluating the feasibility of RA decisions.

Examples following this scheme are Chunlin and Layuan (2014); Birje et al. (2014), where resources

utilization is ruled by a market-based model where SMDs resources are offered at prices that resource

consumers pay to the distributed system in exchange of certain QoS. By taking into account the resource

providers energy constraints, the RA decisions must assure the QoS expected by the resource consumer

while maximizing the profit. Other examples which follow a greedy resource exhaustion are Singh and

Raza (2017); Rodriguez et al. (2014, 2010): they predict the resource quantification using information

of remaining charge reported by the OS Application Programming Interface (API) to decide the num-

ber of tasks each resource provider should be assigned and maximize the amount of executed tasks that

the distributed system completes. In (Wei et al., 2013), resource exhaustion is not inferred from SMDs

remaining energy. The RA is modeled as a multidimensional 0-1 knapsack problem, where each SMD

provides a fixed countable units of each resource type. For instance, resource provider p provides u units

of resource type r. Hence, given the available amounts of each type of resource each SMD provides,

the amount of resources each task requires, and the profit each task generates, the RA decisions are fo-

cused on maximizing the global profits of the distributed system, subject to the resources constraints of

resource providers.

RA mechanisms prioritizing the utilization of energy-efficient resources, e.g., the “Minimum energy”

strategy of Furthmüller and Waldhorst (2012), or ERRA Shah (2015), do not qualify neither as con-

servative nor greedy resource exhaustion approaches because RA decisions are not evaluated based on

the current and/or future impact on residual energy. This causes that the most energy-efficient resource

providers leave the system very early compared to the less-efficient ones.

Table 2.9 summarizes aspects concerning exhaustible resources. One of the aspects is the methodology

used to reflect the resource exhaustion of SMDs itself, while the other aspect refers to the inclusion of

baseline resource consumption that encompasses consumptions other than those directly caused by tasks

execution, such as energy consumed by SMD owner interaction, background processes, OS runtime,

connectivity maintenance, RA execution and administrative tasks (e.g., SMDs/tasks status messages

updates), among others.
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Aspect Details RA works

Resource
exhaustion
evaluation
methodology

In-vivo laboratory tests Ghasemi-Falavarjani et al.
(2015); Viswanathan et al.
(2015); Loke et al. (2015); Shi
et al. (2012); Rodriguez et al.
(2010)

Simulated

Synthetic,
guided
by:

Tasks
energy
consumption

Wei et al. (2013); Chunlin and
Layuan (2014)

Resource
energy
consumption

Singh and Raza (2017); Vaithiya
and Bhanu (2012); Ilavarasan and
Manoharan (2010)

In-vitro,
guided
by:

Tasks
energy
consumption

Viswanathan et al. (2015); Mtibaa
et al. (2013); Shi et al. (2012);
Comito et al. (2011)

Resource
energy
consumption

Rodriguez et al. (2014);
Furthmüller and Waldhorst
(2012)

Consideration
of baseline
consumption

Yes Ghasemi-Falavarjani et al.
(2015); Viswanathan et al.
(2015); Loke et al. (2015); Hirsch
et al. (2016); Rodriguez et al.
(2014); Furthmüller and
Waldhorst (2012); Shi et al.
(2012); Comito et al. (2011);
Rodriguez et al. (2010)

No Chunlin and Layuan (2014);
Mtibaa et al. (2013); Wei et al.
(2013); Vaithiya and Bhanu
(2012); Ilavarasan and
Manoharan (2010)

Table 2.9: Implementing aspects of resource exhaustion singularity
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Since SMDs resources provision is performed with finite energy sources, it is relevant to faithfully reflect

the energy consumption of the resource utilization in order to avoid obtaining from an SMD more or

less resources than it is actually able to provide. One methodology to represent resource exhaustion is

through in-vivo laboratory tests, which suggests that energy consumption is directly experienced by the

real SMDs that compose the experimental testbeds Ghasemi-Falavarjani et al. (2015); Viswanathan et al.

(2015); Loke et al. (2015); Shi et al. (2012); Rodriguez et al. (2010). This methodology involves the setup

of a wireless network for allowing SMDs to communicate, the installation of a middleware on SMDs

from where the resource allocation logic operates, and the execution of a real/artificial parallel task-based

application on SMDs. By nature, the methodology includes some baseline energy consumption, e.g.,

those derived from basic connectivity maintenance chores, SMDs OS and middleware runtime including

RA administrative chores such as querying job status, remote nodes status monitoring, among others.

An alternative methodology commonly adopted for representing resource exhaustion is through simu-

lation, which can be performed by employing a synthetic or an in-vitro scheme. In either schemes, the

approaches for decreasing resources availability can be guided by tasks or resources energy consumption

information. In the first case, tasks are associated to fixed amounts of energy consumption values, one

for each type of resource utilized during task execution. For instance, the amount of energy consumed by

I/O operations, CPU utilization, etc. Since SMDs present heterogeneous hardware performance, these

amounts are different for each candidate SMD where a task could execute. For simulating resource

exhaustion with this approach, SMDs energy -or battery capacity- is decremented according to the en-

ergy waste value associated to the task an SMD is assigned with. In synthetic schemes, as in (Chunlin

and Layuan, 2014; Wei et al., 2013), the tasks energy waste values are randomly defined. In in-vitro

schemes Viswanathan et al. (2015); Mtibaa et al. (2013); Shi et al. (2012); Comito et al. (2011), energy

waste values are extracted by profiling tasks on real SMDs. For example, in Viswanathan et al. (2015),

the energy consumption of a distributed object recognition application was profiled in seven SMDs in-

cluding smartphones, tablets and laptops. In (Mtibaa et al., 2013) a power monitor hardware was used

to profile the energy waste of different combinations of data transferring and computing operations in

two smartphones. In (Comito et al., 2011), the authors derived the average energy waste of a data min-

ing algorithm running over a dataset of 800 Kbytes in a smartphone. In (Shi et al., 2012), one set of

experiments results are reported based on energy waste values derived from profiles of a face detection

application and a speech-to-text application executed on two smartphones.

When simulation is guided by resource energy consumption, resources utilization units are associated

with energy consumption units (e.g., Joules per MIPS, Joules per KB transferred) and tasks are as-

sociated to resource utilization units (e.g., amount of float-point operations, amount of input/output

data). With this approach, tasks requirements are specified independent of SMDs hardware capabili-

ties. For reflecting resource exhaustion, energy of SMDs is decremented conforms the value resulting

from TaskResourceUtilizationUnits ∗ SMDEnergyWastedPerResourceUtilizationUnit. In synthetic

schemes guided by this approach, e.g., Singh and Raza (2017); Vaithiya and Bhanu (2012); Ilavarasan

and Manoharan (2010), energy consumption is expressed as a fixed rate per resource utilization unit,

and those rates are randomly defined. By contrast, in works using in-vitro schemes Furthmüller and

Waldhorst (2012); Rodriguez et al. (2014), resources energy consumption is profiled.
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In (Rodriguez et al., 2014), the profiling procedure derives in energy consumption traces and involves

sampling energy level drops reported by the OS while maintaining an specific level of CPU utilization.

The sampling starts with a fully-charged SMD battery and finishes when the SMD shuts down due

to battery depletion. The procedure is repeated for several CPU utilization levels that represent idle,

medium and full usage CPU states. The traces are used by a simulation software to imitate the energy

consumption caused by the execution of CPU-intensive tasks, as well as the baseline energy consumption

derived from SMD OS execution. In (Furthmüller and Waldhorst, 2012), the resource profile, called by

the authors the energy model of an SMD, encompasses several resources. The profile is built from a

set of benchmarking tests that exercise different resources usage combinations. Each combination is

expressed as a linear equation that models the energy value obtained through the measurement of the

energy consumed at benchmark execution time. By solving the linear equation system derived from all

tests, the energy consumption rate of each resource under consideration is obtained. Baseline energy

consumptions derived from OS processes are included in these rates. The simulation software uses SMD

energy models to reflect tasks energy consumption that are described by a resource demand vector that

indicates the quantities of each resource needed.

2.4 Discussion

In Section 2.1.1, the most frequently networking supports adopted by state-of-the-art RA proposals were

presented. In this sense, it was observed a balanced amount of efforts targeting infrastructure-based and

ad-hoc networks. Despite both network supports treat SMDs as resource providers and provide solutions

in line with the singularities presented in Section 2.1.2, there are notable differences regarding how these

have been addressed and evaluated.

In principle, RA efforts targeting infrastructure-based networks cover more singularities combinations

than the efforts targeting ad-hoc networks, while these latter are exclusively focused on singularities

combinations that include user mobility and resource exhaustion. Particularly, user mobility is a topic

that has been extensively studied in communication research areas Elmangoush et al. (2015); Akyildiz

et al. (2004); Camp et al. (2002), however not from the same perspective presented here.

When analyzing how user mobility is addressed, it is found that works targeting ad-hoc networks, par-

ticularly OppNets and DTNs, attribute the singularity a beneficial effect for resource allocation. Their

strategy is centered on exploiting SMDs movements and future locations as opportunities for offloading

computations to nearby SMDs and routing results back to the requesting node.

Works targeting infrastructure-based networks tend to associate user mobility with harmful effects. Their

strategy for mitigating such effects is centered on quantifying connection reliability/availability sup-

ported on SMDs information of connection/disconnection events or SMDs movement parameters –such

as direction and speed– that are individualized for each SMD. A missing feature in several works fol-

lowing this approach Lee et al. (2014); Vaithiya and Bhanu (2012); Park et al. (2003) is that the crite-

ria employed to differentiate candidate SMDs do not include computing-related capabilities of SMDs,

which limits the applicability of the criteria to homogeneous arrangements of SMDs. This is not the case



32 CHAPTER 2. BACKGROUND AND RELATED WORKS

of Ghosh and Das (2010) where SMDs computing capabilities are considered in the resource allocation

phase. The phase operates isolated from the technique used to select candidates SMDs which aims at

mitigating user mobility effects. Other missing feature that several authors recognize as a strong lim-

itation of their proposals is the exclusion of resource exhaustion-related indicators to complement the

criteria used to rate the availability of SMDs under the control of a centralized resource allocation com-

ponent. Some recent proposals Singh and Raza (2017); Viswanathan et al. (2015); Habak et al. (2015)

addressing mobility-related issues also provide some treatment for the resource exhaustion singularity,

which will be discussed hereafter.

As pointed out by several researchers in the area Fernando et al. (2013); Furthmüller and Waldhorst

(2010), considering resource exhaustion is a top-priority goal when designing RA mechanisms that in-

clude battery-driven resource providers, like SMDs. In relation to how the singularity has been addressed,

there is a tendency of RA proposals for infrastructure-based networks to adopt a greedy resource exhaus-

tion policy, while those for ad-hoc networks tend to use a conservative resource exhaustion policy.

The usage of a conservative policy has a relation with an objective that traditionally characterized ad-hoc

communication and sensor networks research areas, namely maintaining network reachability. Deplet-

ing the energy of a hub node in an ad-hoc network very quickly means not only loosing that node as

resource provider but also potentially loose connection with a whole subgroup of resource providers.

This problem is likely to affect purpose-specific scenarios where success strongly depends on the pres-

ence of all SMDs that integrate the distributed system, e.g., in rescue missions, surveillance operations,

military units coordination, among others. A similar problem is observed in OppNets and DTNs where

the adoption of conservative resource exhaustion policies is necessary to achieve the best usage of com-

munication channels originated from intermittent SMDs encounters. In these types of networks, SMDs

act as task executors and task carriers due to their movements. When two nodes make contact, i.e., two

nodes are within their communication range for some time interval, an opportunity for allocating tasks

and/or forwarding tasks results arises. Scheduling the tasks that a node should execute, or the tasks a

node should store, carry and forward, demands the usage of conservative resource exhaustion policies.

By contrast, the usage of greedy resource exhaustion policies is often found in RA proposals targeting

infrastructure-based networks. The application scenarios of these type of proposals are governed by

different rules from ad-hoc networks application scenarios. In principle, SMDs are not expected to play

the role of tasks and message forwarders to other SMDs, so less energy is spent on network maintenance

duties. In other words, RA mechanisms for infrastructure-based networks operate with a wide view of

available resources, which relates to the fact that communication with SMDs is usually assumed to be

through single-hop links and with the support of dedicated communication infrastructure plugged to the

electricity grid. Such one-to-one relationship between the RA component and the available resources

turns the utilization of an SMD less dependent from the utilization of other SMDs, i.e., the resource

exploitation is more loosely-coupled than in ad-hoc scenarios. Application scenarios of infrastructure-

based networks are found in a wide range of domestic situations and public places where some sort of

back-end communication infrastructure, e.g., cellular antenna or WLAN access point, is available.

In respect to the issues derived from the lack of ownership singularity of SMDs, there is a small subset

of works Rodriguez et al. (2014); Ghosh and Das (2010) that superficially consider the singularity when
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allocating resources. Any stronger effort in line with this singularity would help to better understand how

to properly deal with the singularity, not only for improving the performance of external tasks execution

but also to avoid deteriorating SMD owner experience. The proposal in (Ghosh and Das, 2010) focuses

exclusively on external tasks performance and heavily relies on exact knowledge of SMDs internal task

rates to operate. The authors recognized that such information is highly volatile and they plan to study

impact of the refreshing period including network delay parameters. Another weakness of such proposal

is its evaluation, since it does not use specific information of mobile user internal tasks rate, but fixed

servers internal tasks rate. In (Rodriguez et al., 2014) no specific criteria is proposed to contemplate

issues related to lack of ownership, but a simplified study of the effect of SMDs owner load on tasks

completion rate is performed. The evaluation comprises simulations of non-dedicated SMDs with a

constant CPU usage of 30%, which represents the typical load of an average mobile device user. All

in all, there is plenty of room for improvements with regard to this singularity, not only in terms of

indicators for RA criteria -with focus on either external tasks performance solely, or external tasks and

owner tasks performance-, but also in the techniques used to capture and model SMD user-inflected load.

After analyzing the way works evaluate their proposals, it is found that few of them Loke et al. (2015);

Ghasemi-Falavarjani et al. (2015); Shi et al. (2012) perform tests on real SMDs, while the majority use

simulation software. Testing with real SMDs, i.e., in-vivo tests, has the benefit of observing how resource

allocation decisions impact on the SMD hardware whose state is expected to change by such decisions.

As a consequence, results are the closest to what one could observe in reality if the same experimental

conditions were recreated. However, recreating the experimental conditions is the main drawback of

in-vivo tests, due to it is extremely hard, when not impossible, to set the numerous variables that affect

each element -nodes and links- of a distributed computing environment. For this reason, simulation is

a widely accepted evaluation practice in the research of RA mechanisms comprising SMDs as resource

providers.

Works targeting ad-hoc network scenarios use extensions of well-known simulation software, such as

the OMNet++1 or the NS-3 simulator 2, which were developed for simulating data routing algorithms,

nodes movement and communication ranges in mobile networks. Several works targeting infrastructure-

based scenarios that evaluate their proposals through simulators do not make the software available, and

thus reproducibility of experiments is compromised.

Other works, by contrast, employ software traditionally used in Grid Computing research, e.g., Grid-

Sim Buyya and Murshed (2002), SimGrid Casanova (2001), extensions of JavaSIM3, among others. A

further discussion on simulation models for mobile Grids is presented in Section 4.2 of Chapter 4. In

short, the strengths of the aforementioned softwares reside on the capabilities for simulating different

nodes processing rates and, in some cases, nodes mobility patterns, links capacities, different types of

task relationships, i.e., dependent and independent. Besides, some of these simulators have been ex-

tended to simulate exhaustible resources, but in every case, it is done through oversimplified synthetic

models with no support for dealing with real energy consumption traces. Another missing feature of

1https://omnetpp.org/
2https://www.nsnam.org/
3http://javasim.ncl.ac.uk>
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current simulators is the lack of models to represent SMDs owner activities.

Last but not least, from the above analysis it is clear that, irrespective of the networking support adopted,

singularity/ies combination targeted and the methodology used for evaluation, most state-of-the-art RA

mechanisms need to be fed with highly accurate knowledge of tasks requirements to operate. In other

words, the performance of RA mechanisms heavily depends on accurate descriptions of tasks require-

ments, i.e., resources needed. Task requirements are assumed to be provided typically by the user who

creates the task and the forms of indicating them is through processing time, amount of CPU cycles,

million of instructions or an equivalent value expressed in Joules spent on execution. This limits the

applicability of many RA mechanisms. In part, this is because, in practice, tasks historic execution time

is not always available to be used as scheduling input. Moreover, in the general case, to predict task exe-

cution time it is firstly necessary to know whether the task actually ends, which means solving the halting

problem Wilhelm et al. (2008). Assuming that tasks execution time is known by the RA mechanism, the

requirement of knowing the energy that tasks consume is another barrier that limits the applicability of

many proposals. Precise models to estimate battery consumption are based on complex differential equa-

tions Chang (2013); Hu and Yurkovich (2012), and solving them represent a computationally complex

task itself.



Chapter 3
A two-phase scheduling approach for
CPU-bound jobs

3.1 Motivation

Wireless infrastructures to which people connect with SMDs are present in an increasing number of daily

life in public and private places. Coffee shops, restaurants, shoppings, university campuses, work offices,

just to mention few examples, are equipped with WLAN access points to let people surf the Web, check

emails, read newspapers, play online games, or simply to stay connected for receiving messages and no-

tifications of their interest. These contexts represent potential resource exploitation opportunities where

aggregated computing capabilities of SMDs are available to solve complex computational problems.

Taking advantage of the wide view and centralized control of resources offered by infrastructure-based

networks, and foreseen proper incentives that encourage people to share their unused computing capa-

bilities of SMDs Restuccia et al. (2016); Duan et al. (2014), the outcome of such system heavily depends

on the criteria that the RA mechanism utilizes to distribute jobs.

From the extensive literature review presented in the previous Chapter it was noticed that current RA

efforts have several limitations, namely:

• Current RA proposals targeting distributed computing using SMDs suffer from requiring hard-to-

obtain information of tasks in order to operate.

• There are no works proposing easy-to-implement guidelines for greedily exploiting SMDs com-

puting capabilities while coordinating nodes via infrastructure-based networks.

• Simulation is the most accepted evaluation practice in the research field, however existing sim-

ulation tools do not allow to faithfully reflect battery consumption of SMDs derived from the

execution of CPU-intensive tasks in a more realistic way other than synthetic models.

35
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• None of the existing simulation tools used for evaluating RA mechanisms of CPU-intensive tasks

in mobile Grids model the non-dedicated nature of SMDs using data of CPU utilization derived

from real SMDs owner interaction. By considering that owner interaction do not only influences

tasks execution time but also the rate at which energy from battery is consumed, including this

feature is necessary to advance the research and evaluation of new RA proposals that consider

SMDs as CPU cycles providers.

3.2 Problem statement and hypothesis

The above limitations represent the motivation for the present thesis. In this way, the scheduling problem

and conditions that guides the RA approach proposed in this thesis is described as follows: Given a set

of CPU intensive tasks of varying size and a set of heterogeneous SMDs in terms of battery capacity and

computing capabilities, find a mapping of tasks to nodes to allow the distributed computing system to

finalize as much tasks as possible with the available energy. The resource allocation is subject to the

following conditions:

1. Neither individual nor the whole set of tasks execution time, number of Mega Float-point Opera-

tions (MFLOP)s required for completion or energy units consumed are known in advance to the

scheduling logic.

2. Tasks have no parallel dependencies nor priorities, and are scheduled by following an online

scheme.

3. The scheduling component has a buffer of size zero, meaning that a decision for every task needs to

be taken as soon as each they arrive to the scheduling component, sending the corresponding task

input to the selected node. Such condition comes from the fact that SMDs resources are available

for a limited time.

4. Scheduling decisions taken for tasks arrived at time t are not affected by the arrival of a new task,

nor the completion of already mapped tasks at time t+ α. It means that tasks re-scheduling is not

allowed unless an idle SMD is detected.The work hypotheses on which this thesis is based on were

mentioned in Chapter 1 and are detailed again below:

Hypothesis 1: Task scheduling criteria that estimate future SMDs potential computing capabilities using

energy-related factors achieve better throughput than criteria that do not use it.

Hypothesis 2: The unknown tasks requirements, inaccurate estimations of SMD computing potential

and unknown tasks requirement partially break previous energy-aware task scheduling decisions creat-

ing sub-exploited slots of computing cycles that can be exploited through a dynamic task re-balancing

mechanism.

Hypothesis 2.1: The improvement achieved by such re-balancing mechanism is conditioned by the

energy-aware scheduling decisions made in the past, namely the first scheduling phase.
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3.3 The proposed approach

Motivated by the challenges posed by the idea of considering SMDs as first class citizens of computing

power and the limitations of current research efforts in the area, in this thesis I propose a two-phase ap-

proach for scheduling CPU-intensive tasks in infrastructure-based mobile Grids subject to the conditions

1-4 described in Section 3.2. The approach addresses issues from a singularity combination that has

been little explored in state-of-the-art works, which is the exhaustible resources singularity combined

with lack of ownership singularity of SMDs.

The awareness of the approach with regard to exhaustible resources is through the criteria that the sched-

uler uses to estimate SMDs computing capability. Besides, since the objective of the scheduling approach

is to achieve the highest amount of finalized tasks per energy unit, it falls into the category of those works

focused on greedily exploiting exhaustible resources.

Moreover, the proposed approach addresses the lack of ownership singularity through an in-vitro scheme

implemented using information of real SMD users interaction sessions. Exhaustible resources is also

implemented through an in-vitro scheme guided by resource energy consumption, i.e., with energy con-

sumption profiles extracted from real SMDs. Details of the singularities implementation materialized in

a simulation tool, and the experiments that validate its functioning are provided in Chapter 4.

The strengths of the approach are three-fold: the singularities combination it addresses, the dual in--

vitro evaluation methodology it employs, and its practical applicability. The last strength is due to the

scheduling approach does not depend on hard to obtain tasks information to operate, but on easy to obtain

SMDs information.

As stated at the beginning of this Section, the proposed scheduling approach is structured in two phases.

The first phase activates as soon as a task arrives to a central component called proxy that maintains an

active one-hop wireless connection to every candidate SMD that offer its computing resources for task

execution. The candidates are ranked based on the criterion of the scheduler and the best ranked SMD is

assigned with the task.

Figure 3.1 depicts a proxy-based mobile Grid environment composed by Fixed Virtual Resource (FVR)

and Mobile Virtual Resource (MVR) integrated by fixed computers and SMDs, respectively. In this

context, this thesis focuses on the study of intra-MVR battery-aware local schedulers. A Virtual Resource

is seen as a single node by the entire Grid environment and differs from a traditional cluster mainly

because it could be composed by heterogeneous hardware. Offering local resources behind a proxy to a

Grid environment is a strategy commonly adopted by traditional Grid platforms such as Ibis-Satin van

Nieuwpoort et al. (2010) and GridGain (www.gridgain.com).

With every new task arrival, the list of candidates is ordered using novel battery-aware criteria. Dif-

ferent criteria are proposed to rank SMDs computing capability which are presented in Section 3.3.1.1,

Section 3.3.1.2 and Section 3.3.1.3. The criteria, which are easy to implement with current technolo-

gies Hirsch et al. (2017c), combine static information of SMD computational characteristics, dynamic

information of available SMDs energy and currently queued tasks.
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Figure 3.1: Proxy-based Grid environment

Tasks information is assumed to be unknown by the battery-aware criteria. Moreover, tasks execution

time is assumed to vary from node to node. Intuitively, SMDs assigned with a subset of tasks will finish

their assignments, while others will drain their batteries leading to queued tasks whose execution will

not ever start. Such effect may also be caused as consequence of SMD owner interaction. Irrespective of

the case, the energy of idle SMDs, namely the computing capability, would be wasted if tasks load is not

re-balanced. The second phase of the proposed scheduling approach aims at dealing with such potential

waste of computing capabilities. It employs job stealing techniques, which has been successfully ap-

plied in traditional Grid and cluster computing middlewares1 van Nieuwpoort et al. (2010). The second

phase acts as a load re-balancing mechanism where SMDs play an active role in scheduling decisions.

Figure 3.2 illustrates the two-phase scheduling approach. As soon as tasks arrive to the proxy, the first

phase of the scheduling approach activates and each task is assigned to an SMD. As the time passes,

and the tasks queue of an SMD empties, the second phase of the scheduling activates to trigger a load

re-balancing session.

Section 3.3.1 deeps into details of how the first phase of the scheduling approach is materialized in a

proxy-based network. Section 3.3.2 provides details of the second phase of the scheduling approach, i.e.,

the decentralized participation of SMDs in scheduling decisions through job stealing techniques.

3.3.1 Centralized first phase

The first phase of my scheduling approach consists in assigning every task submitted to the proxy to

an SMD, which is selected based on a ranking performed over the candidate SMDs using energy-aware

criteria. The adoption of a proxy-based networking support favors a registration process where SMDs

1https://www.gridgain.com/api/javadoc/org/gridgain/grid/spi/collision/jobstealing/
GridJobStealingCollisionSpiMBean.html
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willing to offer computing resources join the proxy Khalaj et al. (2010). That registration process is an

opportunity for the proxy to identify and categorize all SMDs, e.g., in terms of computing capability. For

this purpose, the approach associates each SMD a feature profile. The feature profile contains properties

of an SMD, including benchmarks results and manufacturer data. The former group is composed by the

scores derived from the execution of a benchmarking software –e.g. Linpack for Android2 or SciMark

2.03–, while the latter comprises information about the typical battery specifications declared by the

device manufacturer. Same model devices are supposed to have similar feature profiles. Therefore,

instead of generating a feature profile for each device upon proxy registration, all the devices of the same

models might be represented under the same feature profile. The feature profile data is later employed

by the proposed energy-aware criteria to rank SMDs computing capability.

Table 3.1 lists the investigated feature profiles (as columns) for different SMD models. The first row

of each feature profile shows the computing capability of the device expressed in Mega Float-point

Operations per Second (MFLOPS). These values are the average of twenty runs obtained with Linpack

for Android. Another way of measuring the computing capability is by aggregating the quantity of a set

of different well-known benchmarks –second row– that the SMD was able to perform within a certain

time period. That value is presented in the third row, while the time period is the time the battery

last from full charge (100%) to cut-off voltage (0%). The feature profile also includes energy-related

properties, i.e., battery capacity as informed by the manufacturer. The last row presents a novel way

of rating the computing capability of a device, which comprise benchmarks information with battery

capacity information into a score called Job Energy Consumption Rate. This score is a constant used by

the node ranking formula of the battery-aware criterion developed in Section 3.3.1.2.

Scheduling decisions based only on static properties of SMDs, i.e., read from the feature profile, would

not contemplate resource exhaustion and actual load of an SMD. Then, dynamic information, i.e.,

2https://play.google.com/store/apps/details?id=com.sqi.linpackbenchmark&hl=en
3http://math.nist.gov/scimark2/about.html
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Samsung
I5500

ViewSonic
ViewPad 10s

Acer Iconia
Tab A100

Mega FLOPS 7.60 17.07 61.66

Benchmark

Gaussian random generator 10 42 30
Prime checker 10 42 30
Fast Fourier Transform 11 43 30
Sieve of Eratosthenes 10 43 30
Towers of Hanoi 10 42 30

# Total Executed Benchmarks 51 212 150
Battery Capacity (µAh) 1,200 3,300 1,530
Job Energy Consumption Rate 23.53 15.57 10.20

Table 3.1: Feature profiles of SMDs

generated at runtime is also considered. Such dynamic information comprises the current State Of

Charge (SOC) of an SMD, and historic workload stats, i.e., current number of assigned tasks to an

SMD and average tasks execution time of an SMD.

Below, three alternatives for energy-aware criteria combining feature profiles and dynamic data devel-

oped in the course of this thesis are described. These criteria are the Enhanced Simple Energy-Aware

Scheduler (E-SEAS) (Section 3.3.1.1), the Job Energy-aware Criterion (JEC) (Section 3.3.1.2) and the

Future Work aware Criterion (FWC) (Section 3.3.1.3).

3.3.1.1 The Enhanced Simple Energy-Aware Scheduler (E-SEAS)

The E-SEAS is an improved version of the SEAS Rodriguez et al. (2010). It is built upon the combination

of almost the same three components of the SEAS formula. The difference is the component through

which the remaining uptime of the SMD is estimated. The formula applied for such estimation works

well with notebooks and netbooks Rodriguez et al. (2012) -the kind of devices for which SEAS was

initially proposed-. However, when trying to apply the same formula to estimate the remaining uptime

of SMDs such as smartphones and tablets, it is required a considerable time (several minutes or even

hours) until the uptime estimations become precise. This causes spurious ranks of SMDs which derives

in chaotic scheduling decisions. Therefore, this thesis introduces a change in regards to how the SEAS

handles the remaining uptime. The change derives in the E-SEAS that use the SOC in exchange of the

estimatedRemainingUptime component of SEAS. The E-SEAS SMD rank formula is:

SMDRank =
SOC ∗ flops

assignedJobs+ 1
(3.1)

where SOC is the percentage of remaining battery charge which is accessible through the SMD OS API,

flops is equivalent to the benchmarkm component of the SEAS formula, and assignedJobs refers to

the number jobsm component.
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3.3.1.2 The Job Energy aware Criterion (JEC)

An SMD rank based on this criterion takes into account the relationship between the energy used
and total of benchmarks an SMD is able to execute. These values are extracted from the device fea-
ture profile. Energy used refers to the battery capacity in milliamperes-hour as reported by the de-
vice manufacturer (Battery Capacity row in Table 3.1) while total of benchmarks refers to the quan-
tity of established benchmarking tests that the SMD is able to complete before the battery depletion
event Rodriguez et al. (2012) (# Total Executed Benchmarks row in Table 3.1). The quotient of energy
used over total of benchmarks gives the rate of energy consumption per benchmark, or from now on,
jobEnergyConsumptionRate (Eq. 3.2):

jobEnergyConsumptionRate =
BatteryCapacity

#TotalBenchmarks
(3.2)

The ranking formula defined by this criterion is presented in Eq. 3.3:

SMDRank =
SOC

jobEnergyConsumptionRate
∗ 1

assignedJobs+ 1
(3.3)

JEC combines runtime information (SOC and assignedJobs), and static properties associated to SMDs

represented by the jobEnergyConsumptionRate score. For example, in case two devices A and B

have equal SOC and assignedJobs, but device B has lesser jobEnergyConsumptionRate than de-

vice A, then the criterion gives a higher rank to device B than that of device A with the assumption that

device B might better exploit its energy to execute tasks.

3.3.1.3 The Future Work aware Criterion (FWC)

This criterion, unlike JEC, is purely based on runtime information. It considers that the future avail-

able computational resources of an SMD could be estimated by analyzing the available computational

resources the SMD had in the past. In other words, FWC assumes that the computing performance de-

livered by an SMD in the past is sustained in the future. Like for E-SEAS and JEC criteria, SOC is

obtained through the battery events periodically reported by a SMD OS, and assignedJobs is the num-

ber of jobs in the SMD queue. Moreover, the averageT imeToCompleteJob value is calculated by the

scheduler and represents the average time an SMD takes to complete each of its scheduled tasks. All in

all, the ranking formula is defined in (Eq. 3.4):

SMDRank =
SOC

averageT imeToCompleteJob
∗ 1

assignedJobs+ 1
(3.4)

The left quotient of the formula penalizes high average task execution times while considers remain-

ing battery percentage through SOC values, while the right quotient avoids leaving some SMDs less

loaded than others. When comparing two SMDs with equal SOC and assigned jobs, the one with less
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averageT imeToCompleteJob value would be assigned a higher SMDRank value. Consequently, the

SMD with the highest rank value has the highest chance of being assigned a task.

A distinctive characteristic of this criterion is the cold start effect. While schedulers based on JEC

and E-SEAS operate effectively from the first scheduled task, FWC based schedulers need some time

to achieve effectiveness because FWC uses information of historical jobs finalization time to calcu-

late the averageT imeToCompleteJob value. At the time of determining the SMDRank of a de-

vice, if no tasks have been finalized yet, but there is a task currently executing in that device, then the

averageT imeToCompleteJob is computed as twice the time the task has spent executing so far. If

no tasks have been finalized yet, nor a task is executing in the device, a value of “one” is returned as

averageT imeToCompleteJob to prevent the left quotient from being invalid.

3.3.2 Decentralized second phase

The above energy-aware criteria uses runtime information to consider the potential availability of com-

puting resources. However, the unknown computational requirements of tasks, and the lack of updat-

ed/accurate information, e.g., of future CPU usage due to owner activities affect the scheduling decisions

of the first phase, making them perfectible as the time passes. A second phase –re-balancing phase– is

important to adapt scheduling decisions made in the past to periodically changing resource availability

in a MVR.

Job Stealing techniques have been effectively applied as a re-balancing mechanism in traditional dis-

tributed computing van Nieuwpoort et al. (2010) and also in mobile Grids Loke et al. (2015); Rodriguez

et al. (2014). Basically, Job Stealing aims at minimizing unused SMDs in distributed environments,

preventing tasks in an SMD from waiting to be executed when there are idle SMDs elsewhere. For the

purposes of this thesis, this behavior in conjunction with a detailed study of the dynamics of an MVR

inspired the formulation of the second scheduling phase, instantiated with Job Stealing.

In the approach, the use of Job Stealing involves configuring a victim selection strategy and a stealing

policy, i.e., the SMD from which tasks will be stolen and the quantity of tasks to steal respectively.

Steals are performed from an idle SMD or stealer. One victim selection strategy and one stealing policy

represent a particular configuration of the Job Stealing technique. Given the number of possible con-

figurations, this set is shortened by selecting the best configurations in terms of throughput explored in

similar earlier works (Rodriguez et al., 2014). Then, the considered victim selection strategies in this

thesis are:

Best Ranking Aware Stealing (BRAS): This strategy selects the SMD with the highest ranking accord-

ing to the criterion used. This strategy aims at offloading the least overloaded SMDs. As a result,

victims are more likely to become idle and, in turn, they would be themselves able to take jobs

from other SMDs. Basically, this strategy is expected to generate an offloading chain reaction.

Worst Ranking Aware Stealing (WRAS): Instead of selecting the best ranked SMD, it selects the

worst ranked one. In this case, the goal is to globally balance the load because idle SMDs take

tasks from the most loaded SMDs.



3.3. THE PROPOSED APPROACH 43

Moreover, the next two stealing policies describe how a stealer determines the number of tasks it will

try to steal upon each attempt. In practice, stealing several tasks at once might reduce the networking

overhead because it requires establishing only one connection. Networking requires energy Ding et al.

(2013) and reducing the need for that might extend battery life. For this issue, the policies considered in

this work are:

Fixed Number: A stealer always steals the same (statically configured) number of tasks. For n-core

SMDs, each steal attempt might actually try to steal n tasks (the number of tasks the SMD is able

to physically execute in parallel according to the number of cores).

Exponential: The number of stolen tasks exponentially increases based on the number of times the

SMD became idle. If an SMD becomes idle for the nth time, it would steal 2n tasks. For example,

the first time, the stealer steals one task (20), the second time, the stealer steals two tasks (21), and

so on.

An aspect that differentiates this Job Stealing instantiation with respect to that of Rodriguez et al. (2014)

is the consideration of the networking energy cost inherent to a decentralized scheduling logic. By intro-

ducing Job Stealing as part of the scheduling logic, SMDs are more active in terms of data transferring

because when an SMD finalizes all its queued tasks, Job Stealing looks for other SMDs to steal their

queued tasks. By considering that, such decentralized scheme implies a communication overhead, due

to SMDs sending stealing messages and eventually moving tasks from a victim’s queue to the stealer’s

queue. The potential gains offered by this technique are evaluated by considering the networking energy

overhead associated.
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Chapter 4
Evaluation methodology

4.1 Preliminaries

As shown in the analysis presented in Section 2.3 of Chapter 2, in-vivo experimentation has been used to

evaluate those RA mechanisms which address the resource exhaustion singularity only. In-vivo experi-

mentation results in a slow, tedious, expensive and hard-to-reproduce evaluation methodology. Arrang-

ing tens or hundreds of real SMDs implies either encouraging real users to participate in experiments or

acquiring a varying set of SMDs.

Moreover, to provide solid statistically-significant results, RA mechanisms must be tested many times

against different scenarios varying amount of jobs, job sizes, job start times, small/medium/large mobile

Grids, etc. With in-vivo experimentation, testing many times is slow, mainly due to the time it takes to

charge and discharge batteries to prepare devices for the next experimentation round. Such time is to

some extent known and controllable when using dedicated SMDs, but that is not the case for SMDs that

belong to real users. In-vivo experimentation also suffers from the low reproducibility issue. Configuring

or resetting experimental conditions is extremely hard to achieve because hardware state is under the

control of the SMD owner. In addition, the well-known aging problem Takeno et al. (2005) of Li-ion

batteries contributes to such difficulty. Charging and discharging SMDs repeatedly as a consequence of

periodic execution of experiments might compromise the consistency of results over time, and of course,

the lifetime of the batteries.

RA research in traditional distributed computing environments, i.e., Grid Computing or Cloud Com-

puting, embraced simulation as evaluation methodology to reduce experimentation time and produce

repeatable tests. GridSim Buyya and Murshed (2002) and the CloudSim Calheiros et al. (2011) toolkits

evidence of this fact. To quantify this claim, according to Google Scholar, just the reference papers of

both toolkits have received in conjunction over 5,000 citations. Like in traditional distributed comput-

ing, research in mobile Grids traverses similar challenges with regard to complex environments given

by nodes heterogeneity, complex nodes configuration and behavior. For this reason, simulation is a

commonplace evaluation methodology in the area.

45
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Despite simulation is far the most practiced evaluation methodology in the area, there is much work

to do with regard to models for simulating the dynamics of mobile Grids, specially concerning energy

consumption caused by computing resources. Many RA efforts use software developed with a focus on

modeling wireless connectivity issues (e.g., due to nodes mobility), or energy consumption caused by

computing resources but by employing synthetic models that do not faithfully reflect resource exhaustion

of real devices. Besides, none of the aforementioned software considers the lack of ownership singularity.

In this chapter, it is presented a simulation tool specially developed in the context of this thesis for inves-

tigating the performance of scheduling algorithms in proxy-based mobile Grid settings. The simulation

tool goals are summarized as follows:

• Providing an end-to-end support for research in job scheduling algorithms that is focused on mimic

the computing potential and resource exhaustion of SMDs caused by CPU usage derived from job

execution and/or user interaction.

• Supporting variability of the infrastructure-based mobile Grid model adopted in the tool. Partic-

ularly, variability is considered for the following aspects: devices energy consumption, devices

non-dedicated computing resources, and job characteristics. Devices energy consumption sub-

model uses traces of real Android devices to mimic the energy consumption caused by CPU us-

age. Devices non-dedicated resources sub-model uses a third-party empirical probabilistic model

to mimics the CPU usage caused by owner interaction. Lastly, the job characteristics, i.e., arrival

time, CPU operations, input and output data size, are generated using statistical distributions.

• Complementing the computing/energy consumption sub-models with a networking model for re-

flecting resource exhaustion caused by data transferring operations between the proxy and devices.

• Offering an open source implementation, which is programmed in Java and available in GitHub1.

The software is composed by modular software artifacts that include:

– An object-oriented design to represent the dynamics of infrastructure-based mobile Grids

which can be externally configured through configuration files.

– A simple ad-hoc simulation engine that follows an integrated approach, i.e., combining pro-

cess driven and event driven approaches Kesaraju and Ciarallo (2012) for running models.

– An experimental methodology for researchers users, materialized in an application, for cap-

turing energy depletion traces at discrete CPU usages from real Android devices.

– In line with the above item, an application for creating traces to represent device user inter-

actions by composing discrete CPU usage traces and empirical user interaction models.

– Storage of simulation output in plain text logs, and in a lightweight relational database model

for post-simulation analysis.

In Section 4.2 of this chapter, it is discussed related efforts concerning simulation in distributed com-

puting. It is also argued why the software currently employed for simulating the dynamics of mobile
1https://github.com/cmateos/mobileGridSimulator
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Grids do not fulfill the features required for evaluating the proposed schedulers. Section 4.3 discusses

the functional features, the core design of the simulation model, and relevant implementation details of

the software materializing it. Section 4.4 deeps into simulation input concerns. It provides an intro-

duction of how to configure each component of a mobile Grid or MVR instance. Then, Section 4.4.1

details the Android application developed to capture battery consumption profiles from real devices, and

Section 4.4.2 explains how battery consumptions profiles targeting discrete CPU usages are combined

to simulate user activity. Profiles serve as input to the model when simulating specific mobile Grid in-

stances. Section 4.5 shows the output capabilities of the simulation tool. Lastly, modeling correctness is

assessed in Section 4.6.

4.2 Related efforts

From the distributed computing standpoint, SMDs were initially embraced by the MCC paradigm Fer-

nando et al. (2013); Khan et al. (2015), a subset of Cloud Computing. MCC augments devices capabili-

ties by using resources (mainly power and storage) in remote servers to overcome smartphone constraints

and enhancing user’s experience Khan et al. (2015). A related recent paradigm known as Fog Comput-

ing Gupta et al. (2017) follows the same idea as MCC but uses nearby servers, i.e. in the same local

network. Moreover, Mobile Crowd Computing (MCrC) is a subset of MCC in which nearby devices can

act as the destination “server” when offloading jobs or data from a surrounding device Fernando et al.

(2016). Mobile devices willing to provide computational resources to other mobile devices are arranged

into the so-called mobile Grids or mobile-edge Clouds, using an infrastructure-based or an ad-hoc net-

working support. The simulation tool presented in this chapter sits in the area of MCrC and particularly

infrastructure-based mobile Grids. Far from being only different forms of arranging devices, there are

substantial differences in how schedulers operate in infrastructure-based and ad-hoc networks that turn

some assumptions in one research area not valid in the other and vice versa. The differences relate to the

way information traverses the network.

In ad-hoc mobile Grids, for example, wireless data transferring occurs through multi-hop paths where

mobile devices can play the roles of senders (clients), receivers (servers) and forwarders (routers) of

data. In infrastructure-based mobile Grids, wireless data transferring occurs through one-hop links since

mobile devices are assumed to be connected to a stationary access point or antenna playing the role of

server. Then, in ad-hoc mobile Grids, due to the potential absence of a direct communication channel

between client and servers, job scheduling effectiveness relies on how load among nodes is distributed

for resources discovery and coordination, jobs data and results dissemination, which in turn heavily de-

pends on the effectiveness of data routing algorithms. In infrastructure-based mobile Grids, the impact

on energy of all these issues is minimized due to the scheduling component has the global view of all

resources and direct communication with all mobile devices. Then, it is common in ad-hoc mobile Grids

research to adopt existing network simulation frameworks, such as NS-3 and OMNET Chengetanai and

O’Reilly (2015), which provide abstractions for modeling physical processes affecting wireless commu-

nications, namely node mobility, signal propagation Shah (2015) and collision, or even aspects asso-

ciated to networking processes such as packet fragmentation, packet buffering, packet retransmissions.
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All these features revolve around data transferring-related concerns, and leave outside computing-related

concerns –e.g., how mobile device CPU usage affects energy consumption– that are relevant for research

in schedulers for infrastructure-based mobile Grid.

Simulation frameworks with built-in support for modeling computing-related concerns are those con-

ceived for Grid Computing research. Notably, GridSim Buyya and Murshed (2002) is an event-driven

simulation toolkit that provides abstractions for modeling large-scale distributed computing systems in-

tegrated by million of resources with single or multi-processors, with shared or distributed memory man-

aged by time or space shared schedulers. Among the recently added features are functionalities to read

real workload traces taken from supercomputers. A more versatile option is SimGrid Casanova (2001),

upon which specific models have been created for simulating a variety of distributed systems including

clusters, content sharing in wide and local area networks, data centers, and Cloud environments. How-

ever, these models allow to simulate the behavior of dedicated computing resources connected through

wired networks. Modeling non-dedicated computing resources is a crucial aspect for MCrC any simula-

tor since mobile devices computing resources are shared with the owner.

SimGrid has also been used as base for volunteer computing simulation models, e.g., ComBos Alonso-

Monsalve et al. (2017) which provides functionality for modeling the whole BOINC infrastructure in-

cluding scientific projects, server components providing input files associated with project’s jobs, clients

donating CPU cycles of desktop computers and the scheduling component at the client side that schedules

resources among different projects. The volunteer computing paradigm also deals with non-dedicated

computing resources but ignores energy consumption concerns as resources are fixed (desktop comput-

ers). Modeling energy-aware resource schedulers is supported in simulators for Green Computing such

as GreenCloud Kliazovich et al. (2012), but such simulators are not applicable to infrastructure-based

mobile Grid research for several reasons. First of all, energy saving strategies in Green Computing in-

volve operations which require special privileges over hardware resources, including dynamic shutting

down of components, which is clearly unfeasible from the scheduling logic in mobile Grids due to the

lack of resources ownership. Secondly, energy awareness does not imply being aware of finite energy

but using less energy or dissipating less heat for computing resources which are plugged to the electricity

Grid, while in mobile Grids computing resources rely on energy supplied by batteries.

All in all, extending any of the above frameworks for providing the missing functionality necessary for

modeling the computing resource provision of infrastructure-based mobile Grids might lead to much

more effort than building a new simulation tool designed to support the specific features, which repre-

sents a side contribution of this thesis. Besides, from the usability perspective, by extending some of the

above frameworks, the modeler might be in the necessity of configuring components that are not relevant

to the problem being modeled. To make things worst, by running models with many irrelevant compo-

nents, valuable modeling time and memory/CPU cycles for running heavy model implementations could

be wasted. This motivates the development of this simulation tool, which provide a model for simulat-

ing jobs with CPU and data transferring requirements using mobile devices as resource providers and

coordinated through a central component called proxy where scheduling takes place.
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4.3 Modeling and simulating infrastructure-based mobile Grids

This section deeps into the core of the model built and simulation related aspects. The content is divided

in two sections. Section 4.3.1 presents the conceptualization and scope of the model, where the reader

will find the level of detail with which domain specific aspects are modeled. Section 4.3.2 provides details

of structural and dynamic views of the simulation tool, including components of the execution engine for

loading and running models, and the infrastructure-based domain specific components developed from

scratch.

4.3.1 Defining the conceptual model

As suggested in simulation practice literature Robinson (2014); Sokolowski and Banks (2010); Banks

et al. (2005), I start by defining the conceptual model of the system. Firstly, it is described the objective

of the model, its inputs (also known as experimental factors), outputs (reports), assumptions and then,

the main components of the model and their possible interactions.

Objective: To mimic the computing potential of mobile Grids considering the effects of fluctuating

CPU and limited operation time caused by the finite energy of battery-driven devices. This is

in turn done with the aim of advancing research in scheduling mechanisms targeting common

performance metrics, e.g. maximize the amount of completed different jobs.

Input: Scheduling criteria relying on static and dynamic parameters of device performance. A list of

jobs with varying time of arrival, computing and data requirements. A varying number of devices

that act as computing cycles providers, each one associated to traces corresponding to real devices

that correlate different levels of computing resources usage (%CPU) with battery depletion for

an entire battery discharge cycle. Heterogeneous and independent data transferring cost for each

proxy-device wireless link indicated through an Received Signal Strenght Indicator (RSSI) value.

Output: Reports of the scheduling criteria performance and devices behavior, e.g., quantity of com-

pleted jobs, job execution time, time in which each job traverse intermediate completion states,

devices under utilized periods, devices energy employed by each type resource utilization, etc.

It is worth noting that the representation of the model is subject to the following assumptions and sim-

plifications:

1. Owner and/or OS processes execution cause CPU usage to fluctuate. Grid jobs which run with the

lowest priority in a device should adequate their execution to the unused CPU availability.

2. Remaining energy of a device is affected by CPU utilization and networking activity.

3. The computing capability of a device is not modeled at the core level but at the device level. In

other words, Grid jobs running in a device are assumed to be programmed so as to use all available

cores.
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4. The scheduling of mobile Grid computational resources is performed from a centralized node

called proxy to which devices maintain a single hop communication link. The proxy is assumed

to operate without energetic constraints and within the coverage range of an infrastructure-based

communication support, e.g. a WiFi AP or a cellular antenna.

5. Jobs have no data or control dependencies between them (bag-of-tasks Grid applications are mod-

eled), and the execution of an individual job starts and ends in the same device. After finishing

executing a job, the device sends the job output data back to the proxy.

4.3.2 The discrete-event driven design of the system model

The conceptual model of Section 4.3.1 gives a panorama of the main concepts and the level of detail that

should be present in the logic model. Now, it is presented the object oriented design of the latter and the

discrete-event abstraction layer corresponding to the execution engine that runs the configured models.

A structural view of the main components are shown in the class diagram of Figure 4.1.

Device

-em: ExecutionManager

-bm: BatteryManager

-nm: IOManager

+processEvent(e:Event)

Proxy

-s: Scheduler

-devices: List<Device>

+processEvent(e:Event)

1

1

Job

+status: int

+dataInputSize: int

+dataOutputSize: int

+totalOps: long

+remainingOps: long

+createJob(): Job

IO

-incomingTransfersQueue: List<Message>

-outgoingTransfersQueue: List<Message>

-destNode: Node

+rssi: int

+processEvent(e:Event)

1

*
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Node

+send(m:Message)

+receive(m:Message)

Entity
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-name: String

+processEvent(e:Event)

Event
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+data: Object
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SimulationEngine

-entities: Hash<Integer,Entity>
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+run(masterConfiguration:File)

+addEntity(en:Entity)

+addEvent(ev:Event)

1
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+source: IO

+dest: IO

+deliveredStatus: int

+data: Object

+seqNmb: int
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+createMessage()

**

*

*

* 1

Figure 4.1: Main classes of the infrastructure-based mobile Grid model: UML class diagram

A Device object is associated to a Proxy object, and this latter is associated to many devices objects. The

Proxy and Device classes implement the Node interface that declares basic communication primitives.

Node is used by IO objects. A pair of IO objects coordinate the usage of a link and manage the queues

of incoming and outgoing data, i.e. they model device-proxy communication. All networking operations

between the proxy and a device or vice versa is delegated to such pair of IO objects. Each device has its

own IO object while the proxy has many, one per device. The pair of IO instances conforming a point-to-

point link has an RSSI attribute that IO objects use to define the delay (and energy spent by battery-driven

nodes) of a message transfer operation. The Message class represents the fragments in which all data

exchanged through a link is split, which is how network protocols operate. The splitting operation is

applied to job data input, job data output, devices status updates, and any other future data transfer
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supported by the mobile Grid model. By splitting a data transfer into a sequence of messages, the energy

consumption of networking operations and those resulting from other utilization sources, e.g., CPU

usage, can be interleaved. Modeling this interleaving is important to faithfully reflect energy depletion

due to the simultaneous utilization of parallel connected devices components Furthmüller and Waldhorst

(2012) (CPU and network card in this case). Lastly, Job objects represent the state and attributes of

jobs submitted for execution to the mobile Grid system. From the model execution perspective, job and

message objects are transient, i.e., objects that flood through different processes which are modeled as

entities, e.g., scheduling process, transfer process and execution process.

It is worth to clarify that auxiliary attributes, methods –e.g., setters, getters– and classes have been

omitted in the diagram to avoid compromising readability. Among the classes excluded, there are the

ExecutionManager, BatteryManager and IOManager classes, which are associated with the Device class

and encapsulate behavior for managing computing resource availability, remaining battery level and net-

working related state variables respectively. Moreover, Proxy utilizes an Scheduler object that contains

the logic for deciding which job is assigned to which device. It is important to highlight that the criteria

encapsulated by the scheduler object represents a strong point of variability that should be provided by

modelers and, as mentioned at the introduction, is what motivates the creation of this tool.

The gray-background classes of Figure 4.1 represent the abstraction layer that encapsulates the type of

objects seen by the execution engine. At this point, it is worth to mention that the system dynamics is

treated as a discrete-event system. It means that all components (classes) referred in the previous para-

graph relate to the classes that encapsulate functioning principles and basic building blocks of such type

of simulation. For instance, in Figure 4.1 it can be noticed that Proxy, Device and IO classes inherit

from the Entity abstract class. An entity object provides a concrete implementation of the processEv-

ent() method that receives an Event object as argument. An Event instance has four arguments: a time

argument that specifies the point in the simulation time where the event occurs, an entity id that gives the

engine information of the entity instance/s that should process the event, a type of event argument that

gives the entity information of the event nature, and associated data that stores state information or com-

plementary data needed by the entity which processes the event. The events processing could produce

system state changes, i.e., changes in the attributes of model components, and/or trigger the creation of

new events. Later in this section, it will be described specific events and entities modeled to reflect the

system dynamics of the conceptual model. Before that, I will describe the execution protocol utilized to

run different infrastructure-based mobile Grid models.

Figure 4.2 outlines the execution protocol –in terms of the involved method call chain– of the simulation

engine when the run method of the SimulationEngine class is invoked. The method firstly initializes and

loads all entities and a minimal set of events which are necessary to start the simulation of the model

configured by the modeler. Entity instances are maintained in an entity hash, while events instances are

added to the fel -future event list- of the engine. The initialization consists in reading entities, attributes

and events from the modelConfigFile provided by the modeler. The whole initialization is performed with

several auxiliary classes. There is, for instance, a SchedulerLoader in charge of creating the proxy entity.

The latter encapsulates the logic/criteria for scheduling incoming jobs. Then, it is invoked the load

method of a DevicesLoader which, in dual nested loops, creates all devices entities, and for each one
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se:SimulationEngine

run(modelConfigFile)

sl:SchedulerLoader dl:DevicesLoader jl:JobsLoader

load()

addEntity(proxy)

load()

addEntity(device)

addEvent(CPUChangeEvent)

load()

addEvent(jobArrivalEvent)

addEvent(deviceJoinEvent)

fel:SortedSet<Event>

removeFirst()

eventObject

ent:Entity

updateClock

processEvent(eventObject)

:Event

createEvent(time=any,entity=proxy.id,type=device_join,data=device)

deviceJoinEvent

createEvent(time=any,entity=proxy.id,type=job_arrival,data=job)

jobArrivalEvent

createEvent(time=any,entity=device.id,type=CPU_usage_change,data=CPU_value)

CPUChangeEvent

loop

loop

loop

[while fel.size > 0]

loop

Figure 4.2: Mobile Grid model load and execution: UML sequence diagram

creates and adds a deviceConnectEvent and all configured CPUChangeEvents. The initialization finishes

with the loading of all configured jobs by the JobsLoader object. Notice that in every event creation

(createEvent call of Event class) an entity id, which is unique for every entity object, is passed within

the arguments of the event constructor method. Such entity id is used to retrieve the entity instance from

the list of entities that should handle the event. For example, CPUChangeEvent objects have devices id

associated, while DeviceJoinEvents and JobArrivalEvents have the proxy id associated. It worth noting

that, during model initialization, the time argument of createEvent calls is, in fact, instantiated with the

corresponding time configured by the modeler. For example, if the configured arrival time for jobId = 1

is 500 millisecond, then the time argument of the createEvent call, that returns the corresponding job

arrival event, will be instantiated with value 500.

Before going into details of event scheduling approach that the execution engine follows to simulate

the model, it is important to highlight that the initialization phase, which is automatically performed

by the engine, is based on the components configuration provided by the modeler. Please refer to Ta-

ble 4.1 for a list of currently supported configurable attributes for each component. Model variability

is mostly supported through configuration files and, as said, the scheduling logic, should be provided

programmatically.

Once the initialization phase is completed, the run method enters into the model execution loop that

consist in repeatedly consuming events from the fel sorted set, updating the current clock to the time

associated to the consumed event and invoking the processEvent method of the entity associated to the

event. These steps are repeated until the set is empty. Notice that during a processEvent invocation
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new events could be dynamically created and added, which is done by calling the addEvent method of

SimulationEngine. Every event added to the fel set is inserted in a chronological order, which is done by

comparing events based on their associated time.

Now, I explain how specific components of the infrastructure-based mobile Grid components layer in-

teract through concrete events to reflect the system dynamics. Figure 4.3 gives an schematic overview

Proxy

Events
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Events

   out

IO

Events
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Events

   out

Mobile

Device

Events

    in

Events
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ready_to_transfer
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device_left

device_status

update

ready_to_transfer

_device_status_update

ready_to_transfer

_job_output

message_transferred

battery_level_update

CPU_usage_change

job_received

job_finished

job_output

Figure 4.3: Mobile Grid components and events connections: Schematic view with custom notation

of the events processed and created by each component while simulating a mobile Grid. Arrowed lines

entering a component -or connecting by its left side- represent input events, i.e., events for which the

component provide handling logic. Lines exiting a component by its right side represent output events,

i.e., events that the component adds to the simulation engine. Some events are processed by the same

component that create them, e.g., battery_update, CPU_usage_change and job_finished are created and

processed by a mobile device component. Other events are created by a component but processed by

other components: these are any of those departing from the right side of a component and connecting

by the left side to a different component. Notice that jobs and messages are not present in Figure 4.3

since they are not modeled as components that process or create events. Instead, jobs and messages

are transient objects whose state is updated as they complete a phase in their flow through the system.

Job states are differentiated between submitted, input_transferred, finished, and completed, while mes-

sages are differentiated between delivered and not delivered. Before describing each component internal

functioning, I present Table 4.1, which summarizes the state variables, statistic counters and all currently

supported configurable attributes of the model. Configurable attributes can be used by modelers to variate

mobile Grid features, e.g., number of nodes, nodes characteristics such as computing capability, energy

consumption traces, CPU usage traces, scheduling logic of the proxy, and so on. This is precisely how

modelers can exhaustively assess the performance of newly-proposed job scheduling criteria for mobile

Grids.

The UML activity diagrams of Figure 4.4, Figure 4.5 and 4.6 outline the actions took by the proxy,
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Component State variables and statistic counters Configurable attributes

Device Current battery level, Future battery update,
Current job in execution, Current CPU
usage, Current owner CPU usage, Queued
jobs, Current battery depletion trace, Last
notified status

Computing capability (in MFLOPS),
initial battery level, baseline CPU usage
trace, baseline battery depletion trace,
full CPU usage trace, full battery
depletion trace

IO Queued data transfers, Total energy spent in
data transferring, data being transferred
progress, Current link RSSI, link active

Link RSSI

Proxy Active connected devices,
Submitted jobs

Scheduler criterion, list of connected
devices

Message Sender I/O end, Receiver I/O end, Data type,
Data size, Data, Delivered status

Maximum size

Job Completion status, Execution progress,
Device in charge of execution

MFLOP, data input size, data output
size, arrival time

Table 4.1: Infrastructure-based mobile Grid simulation model: Components, state variables and configurable
attributes

IO and devices components when processing input events. The processing of each input event is repre-

sented by individual activities, with their own start and end nodes, and named as “Process <event_name>

event”. The diagrams show the steps executed by the component which trigger state and/or internal data

structures changes. From the execution protocol perspective, the processing of an event is the sequence

of internal calls that the entity in charge of handling the event performs before returning the control to

the simulation engine. Action nodes whose name start with the “Create event” prefix represent output

events, i.e., creation and addition of new events to the simulation engine internal event list. Nodes with

an upside-down pitchfork symbol indicates call activity nodes, whose name is the name of an activity

surrounded by an visual frame.

Update job status

to submitted

Is scheduler

active?
Create event

ready_to_transfer_scheduled_job

[yes]

[no]

Process job_arrival event

Read device

information

Process device_status_update event

Update job status

to complete

Process job_output event

Add device to

candidates list

Process device_join event

Remove device from

candidates list

Process device_left event

      Process device_status_update event

Figure 4.4: Proxy events processing and creation: UML activity diagram
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When the proxy component processes a job_arrival event it updates the status of the associated job

object to the submitted status and then evaluates, based on the job scheduling criterion configured by the

modeler, whether the job should be immediately assigned (online scheduling) or after some condition is

met, e.g., schedule a job bulk size (batch scheduling). Job assignments are represented by the creation of

ready-to-transfer scheduled job events. The processing of a device_status_update event involves that the

information of device resources used by the scheduling logic to assign jobs is updated. The event models

the lack of update device information managed by the scheduling logic. The processing of a job_output

event triggers an status update of the associated job which is set to "completed". The processing of a

device_join event add a device to the list of candidate devices that the scheduling logic can use to assign

jobs. After updating the list, the information of device resources is obtained. Lastly, the processing of a

device_left event involves removing a device from the list of candidate devices to execute jobs.

Process message_transferred event

Process ready_to_transfer_scheduled_job event

Queue transferring

      Process battery_level_update event
Update transferring

progress

Could message

been delivered?

Set success
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Set failed
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     Transfer data
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Process ready_to_transfer_job_output event

     Transfer data

Process ready_to_transfer_device_status_update event

     Transfer data

Create event

message_transferred

[no]

Figure 4.5: IO events processing and creation: UML activity diagram

An IO component processes ready-to-transfer and message transferred events. For processing ready_-

to_transfer_scheduled_job, ready_to_transfer_job_output and ready_to_transfer_device_status_update

events a common sequence of actions is performed. The sequence involves firstly checking whether

the IO object is already busy performing other data transfer operation. If there is another operation in
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device_left

Figure 4.6: Device events processing and creation: UML activity diagram

progress, the new data transfer is queued otherwise it starts, which triggers the creation of the first mes-

sage_transferred event. The time of such event defines the delay after which the IO component of the

receiver node processes the message. The current model for sending and receiving messages manages

transferring based on a FIFO (First In First Out) queue scheme. Besides, the time of the next message is

computed when the time of the previous message is received. The processing of a message_transferred

event involves to firstly update the current battery level of the node with the corresponding energy con-

sumption associated to the message transfer. Time and energy values are calculated using the message

size and the RSSI of the link. Exhaustive empirical studies Ding et al. (2013); Rice and Hay (2010);

Balasubramanian et al. (2009) show a correlation between the RSSI indicator and the time spent/energy

consumed when transferring data. Then, if the message could not be delivered, i.e., the battery of the

node was depleted, the message status is set to "not delivered" and the activity ends. Otherwise, the trans-

ferring operation continues by updating the progress of the current transfer. If the transfer is completed,

depending on the type of transferring a job_received event, job_output event or device_status_update

event is created. The entities associated to those events are Device, the Proxy, and the Proxy, respec-

tively.

With regard to events of the device component, the processing of battery_level_update event triggers an



4.3. MODELING AND SIMULATING INFRASTRUCTURE-BASED MOBILE GRIDS 57

update of the current battery level of the device. After this action is performed, it is checked whether the

update do not mean battery depletion. If it is not, the next battery level update event is created, otherwise,

a device shutdown is performed. The battery level and time of subsequent battery_level_update events

correlate with a certain CPU usage. All this data, in turn, derive from a profiling procedure of real de-

vices, which will be explained in Section 4.4.1. A device shutdown causes that all events to be processed

in the future by the device to be removed from the system. Events noticing about job finished, CPU

state changes and outgoing messages transfers are included in such remotion. Moreover, the IO object

associated to the device is put into an "unreachable" status, which causes delivery failures of all incoming

messages to the device. The processing of a job_received event starts by checking if any execution slot

is available. If not, the number of queued jobs is increased by one. Otherwise, job execution begins, and

the following actions are performed:

1. A switch of the current battery depletion trace to the full CPU usage trace occurs. This involves

using a set of battery level update events that reflect the energy consumption of a device which is

executing a Grid job. Since I is assumed that Grid jobs are programmed to use as much CPU as

available in the device, it means that CPU usage elevates to 100%. It does not mean that Grid jobs

use the 100% of CPU, since owner processes can be using some percentage of CPU as well. The

last does not affect the rate at which energy is consumed but the execution progress of the Grid

job.

2. Create a job_finished event to occur at time Tj , relative to the current simulation clock. Tj is

computed based on the time that the job is expected to be executing in the device, and to know

that, the configured number of job MFLOPs and the device available MFLOPS are utilized. The

resulting time is the time of the job_finished event.

3. The device variable that points to the current job in execution is updated to reflect the job that has

obtained the CPU.

The processing of a CPU_usage_change event triggers an update on the device current owner’s CPU

usage. If there are Grid jobs executing in the device that have not finished yet, the CPU_usage_change

event triggers an update of all expected finished times. To make the corresponding update, all cur-

rent job execution progresses, expressed in terms of remaining FLOP to execute, are calculated by

following the equation: remainingJobMFLOP = totalJobMFLOP − executedMFLOP where

executedMFLOP are the float point operations of the job executed up to the CPU_usage_change

event. After that, job_finished events time are adjusted. The adjustment consists in removing from

the main event list the old job_finished events and create new ones with times computed based on

the remainingJobMFLOP and the actual value of available device MFLOPS. The available device

MFLOPS derive from nonOwnerCPUusage ∗ deviceMFLOPS where nonOwnerCPUusage =

100−currentOwnerCPUUsage. For details about how CPU usage change events representing owner

interaction are generated, please refer to Section 4.4.2.

A job_finished event triggers an update of the job status to the finished status. The associated device

object counter, which maintains the amount of finished jobs, is increased. Besides, if the device queue is
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not empty, the next job is dequeued and its execution starts. Otherwise, the device changes to the "idle"

state which means that the full CPU usage battery depletion trace is swapped for a baseline CPU usage

battery depletion trace. In either case, a ready_to_transfer_job_output event is created to initiate the job

output transfer to the proxy.

A key feature of the model is the representation of devices energy consumption derived from CPU usages

and IO resources simultaneously. It is appropriate, at this point, to explicit the relation between battery

level update events, CPU usage change events, and message transferred events in the determination of

the overall device energy consumption.

First recall that, from the mobile Grid perspective, a device state changes from idle to busy -and vice

versa-. In idle state, a device is one not executing Grid jobs but not necessarily means that the device is

not consuming energy from its battery. In fact, its energy is being consumed at a rate that that is referred

as baseline. The data for creating baseline battery level update events derive from samples of the baseline

battery depletion trace configured for each device. The time gaps among samples are not arbitrary, but

correspond to the rate at which battery level decreases for a targeted CPU usage. This usage, which

might fluctuates in time, corresponds to OS and owner processes execution. The data for creating CPU

usage change events derived from samples of the baseline CPU usage trace. The usage of traces also

applies for a device which is busy, i.e., executing a Grid job. In this case, the energy is consumed at a rate

referred as full CPU usage. The data for creating full CPU usage battery level update events derive from

samples of the full CPU usage battery depletion trace. A switch between these two battery depletion

traces occurs every time a device state passes from idle to busy and vice versa.

Figure 4.7 illustrates an example of the battery level updates (at the top) and CPU usage fluctuation (at

the bottom) of a device whose state changes from idle to busy and then to idle again. As the simulation

clock advances and the device is idle, its current battery level is updated with samples of the baseline

battery depletion trace. At the time a job execution starts, a switch of the battery depletion trace is

performed to reflect the device state change from idle to busy. From that time on, the current battery

level is updated according to events created with samples information of the full battery depletion trace.

When the simulation clock advances to the time in which the the job finished event should be processed

(black star), a new switch of the battery depletion trace, in this case, to the baseline battery depletion

trace is performed. Upon every switch between battery depletion traces, a synchronization operation

is performed by the BatteryManager object of the device to maintain the time-line consistency of the

battery depletion. For instance, if at simulation time x, the battery level is 98%, and the device state

changes from idle to busy, the synchronization operation involves jump to the sample, of the full usage

CPU battery depletion trace, whose battery level matches the current battery level of the device, i.e.,

98%. As consequence of the jump, some battery level samples will be discarded as candidate future

battery level update events. A similar operation is performed when the device state changes from busy

to idle but the synchronization operation is performed over the baseline battery depletion trace.

Resuming the description of Figure 4.7, after the job finished event is processed, the device battery

depletion curve shows two scarped slopes. Such battery drops correspond to message_transferred events.

At the time a message transferred event is processed by the device IO component, the associated energy

cost is discounted from the current battery level of the device. Such operation is performed following the
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Figure 4.7: Device battery depletion and CPU fluctuation during job execution: Outline of events

next steps:

1. Compute the energy spent by the message transferred event: the message size to be sent or received

by the device and the RSSI value of the link are used to compute the energy spent. The model

used to compute RSSI values exploits empirical results from a third-party work Ding et al. (2013)

studying the energy cost of network usage under different packet sizes and RSSI values.

2. Reflect the message transferred event on the current battery level: since message transferred events

can occur at a time t for which there is none battery level update sample associated in a trace,

the current battery level at t is obtained by evaluating the linear function that contains the last

battery level update and the next battery level update Hoque et al. (2015). The level obtained is

decremented by the energy consumption value computed in step 1.

3. Bring future battery level update events backward in time: after the current battery level of the de-

vice is updated, the time of future battery level update event needs to be brought backward in time.

This operation reflects the shortening of the device lifetime as a consequence of the cumulative

energy consumption of parallel connected device components Furthmüller and Waldhorst (2012)

(CPU and network card). To perform this operation, it is necessary first to determine the equation

of the linear function that joins the last battery level update with the current battery level, and then

use the equation to calculate and update the new time in which the next battery level update should

occur.
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Finally, with regard to the bottom part of Figure 4.7, it is shown that the baseline CPU usage is present

while the device is either in the idle or busy states. Baseline CPU usage fluctuation is reflected by

CPU usage change events (black triangles). As explained, each CPU usage change events trigger an

adjustment of the job finished time currently being executed by the device (not shown in Figure 4.7).

4.4 Simulation input

The configurable attributes of mobile Grid components represent an input source of model. These at-

tributes are specified in easy-to-read configuration files, as explained, parsed by the simulation engine in

the initialization phase. There is a configuration file to specify the attributes of each job, including amount

of floating-point operations, input and output data size in bytes and arrival time. Arrival time is relative

to the simulation start time. Each job specification is converted into a job arrival event, which is added

to simulation engine event list. The simulation tool includes a Java application to create job specification

files that can be parametrized with ranges of values for each attribute. In turn, attribute values within a

range can be generated using probabilistic distributions contains in the apache.common.math Java

library.

There are also configuration files to specify proxy attributes including scheduling criterion and devices

that integrate the mobile Grid, IO and messages attributes, including RSSI for each device-proxy wireless

link, and maximum messages size. Other files are used to indicate devices attributes including computing

capability, battery capacity in Joules (as indicated by the device manufacturer) and devices usage profiles.

A device usage profile is, in fact, a short name for indicate the files associated to the battery depletion

and CPU usage traces. Each device is configured with two usage profiles: a baseline CPU usage profile

and a full CPU usage profile. Usage profiles are expected to vary from one device to another, not only

to represent different interaction patterns and installed applications but also to represent varying energy

consumption as result of varying hardware features. Figure 4.8 illustrate the relation between configu-

ration artifacts -represented by XML and CSV files- with software artifacts of the simulation tool. The

execution engine, mobile Grid model and model loader software artifacts have been described in Sec-

tion 4.3.2. A master or mobile grid model configuration file points to other files that contains the values

of the configurable attributes of each component of the model. The figure also shows complementary

software, i.e., device profiler, user interaction generator and job generator, available to the modeler for

creating variations of mobile Grid components, in summary, different type of devices usage profiles, job

lists and schedulers.

Device usage profiles are an important source of variability of devices sub-model. Feeding the simulation

with battery depletion events and CPU usage fluctuation events derived from real mobile devices is the

core of the in vitro scheme of the simulation tool. Currently, the simulation tool provides a set of ready-

to-use usage profiles for the devices models outlined in Table 4.2. The next section explains the procedure

for obtaining usage profiles targeting discrete CPU usages for any mobile device. Hence, this procedure

can be used to perform simulations including devices other than the ones listed in Table 4.2. Section 4.4.2

deeps into the procedure to interleave several discrete CPU usages profiles to generate new, mixed CPU

usage profiles that represent owner’s interaction.
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4.4.1 Mobile device profile generator

As explained, data to create battery level update events and CPU usage change events is extracted from

traces and a set of traces are used by the device sub-model to represent idle and busy states. The traces

are obtained from profiling real devices. Device profiling is an off-line procedure performed with an

Android application, but the proposed profiling methodology can be easily adapted to other mobile device

platforms, such as iOS or Windows Mobile.

The device profiler app, from now on simply device profiler, monitors three variables, time, CPU usage

and battery charge, and keeps CPU usage near to the selected CPU usage target. Time is measured, using

the mobile device internal clock. CPU usage is measured by a dedicated thread that uses the Linux file

/proc/stats for reading the current CPU state (as the top Linux command does) and reads the file

every 200 milliseconds. The CPU used is calculated by averaging the last 30 measurements to reduce

noise. Battery charge is measured using the event based system battery report via the Android Intent

API Mednieks et al. (2012). The device profiler logs samples of battery charge and the time, upon each

new battery event issued by Android system, in a battery depletion trace file. At the same time, time and

CPU usage changes samples are logged in a CPU usage trace file.

The device profiler operates by performing floating-point operations in separate threads (one thread per

core). Operations are executed in chunks separated by a sleeping time. Each thread consumes nearly

100% of each core when the sleeping time is zero. Therefore, a monitoring component periodically

adjusts a delay time between the operations to support lower target CPU usage.

Algorithm 4.1 shows the CPU usage generator algorithm run per core. The sleeping time is adjusted

according to Algorithm 4.2, which runs in another thread. In contrast, the number of operations (CY-

CLES) is fixed. This constant had to be defined because current mobile devices processors are relatively

fast, so it was impossible to control the CPU usage by only executing few floating-point operations and

sleeping. In all the usage samples built so far (see Table 4.2), CYCLES equals one million. Yet, this

number should be re-configured for other processors.

Algorithm 4.1 aims at artificially generating CPU usage by performing floating-point operations. The

SLEEP parameter regulates how much CPU is used. When SLEEP equals 0, the algorithm generates near

100% CPU usage. To adjust SLEEP for other CPU usage targets, Algorithm 4.2 runs in another thread,

modifying SLEEP according to the rate between current CPU usage and target CPU usage. Finally, when

target CPU usage is 0%, neither algorithm is run.

Figure 4.9 shows a screen-shot of the device profiler GUI. The software should be initiated on a mobile

device with fully charged battery and plugged to the electrical power line. When pushing the “Start”

button, the software begins to generate CPU usage attempting to find an sleep time that results into a

CPU usage near to the target CPU usage within the given threshold. Upon convergence, a notification

indicates the user to unplug the device and left the software run without human interaction until battery

depletion. The usage profile is stored on the device SD card. During the profiling procedure, WiFi should

be ensured to stay active since a mobile device offering resources to an infrastructure-based mobile Grid

is expected to be connected to a wireless network. Then, the energy consumed in keeping the WiFi on is

considered, which produces more realistic usage profiles.
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1: procedure CPUUSAGEGENERATOR
2: while true do
3: if SLEEP > 0 then
4: WAIT(SLEEP )
5: end if
6: count← 0
7: while count < CY CLES do
8: PERFORMFLOATINGPOINTOPS
9: count← count+ 1

10: end while
11: end while
12: end procedure

Algoritmo 4.1: CPU usage generator algorithm

1: procedure CPUUSAGEADJUSTER(TargetCPUUsage, Threshold)
2: while true do
3: cpuUsage← GETCPUUSAGE
4: diff ← cpuUsage/TargetCPUUsage
5: if −Threshold < 1− diff < Threshold then
6: NOTIFYSTABLE . CPU usage is near TargetCPUUsage
7: LOG(cpuUsage)
8: else
9: sleep← CPUUsage.GETSLEEP()

10: if sleep = 0 then
11: sleep← 1
12: end if
13: CPUUsage.SETSLEEP(sleep ∗ diff)
14: end if
15: end while
16: end procedure

Algoritmo 4.2: CPU usage adjuster algorithm

Note that the Android scheduling subsystem is very aggressive and might terminate the software, which

intensively uses the CPU, especially when the mobile device screen is locked. To avoid this, the threads

run within an Android Service in foreground. A Service Mednieks et al. (2012) is an application com-

ponent that performs long-running operations without graphical interface. Another issue is that Android

might reduce the CPU frequency to preserve battery. However, it is assumed that CPU of a device is

fully used when it executes a job of the mobile Grid. Android provides power locks, which allow user

applications to tell the OS whether the applications need to keep some part of the device fully active. In

particular, partial wake locks Mednieks et al. (2012) are exploited to keep the CPU active, but not the

screen or the physical key lights on.

4.4.2 The user modeling module

A baseline profile provides information of the actual non-available CPU, when the device is busy. As

explained in Section 4.3, the time of a job_finished event is computed based on it. When a device is idle,

the non-available CPU information is not used. Instead, the useful information the baseline profile is the

battery depletion data associated to the CPU usage.
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Figure 4.9: Device profiler app: Screenshot

Baseline profiles targeting discrete CPU usage for the whole device battery discharging cycle might not

represent a real user interaction. For this reason, it is also provided a methodology to build baseline

profiles that imitate CPU fluctuation (and the corresponding energy consumption) caused by processes

and applications as a result of owner’s interaction. To this end, discrete CPU usage profiles i.e., 0%, 30%,

75% and 100%, generated via the methodology described in Section 4.4.1 are interleaved. Interleaving

is not random but employs empirical probabilistic models of a third-party study Falaki et al. (2010) to

obtain two key parameters that describe user interaction, namely user session length and time between

sessions. The study analyzed intentional user interactions over a dataset of 33 Android users monitored

over 9 weeks in average and 222 Windows Mobile users monitored over 16 weeks in average. It is worth

to clarify that the baseline profile which results from this interleaving procedure does not include energy

consumption related to device data transferring that can be involved with the owner interaction other than

Grid jobs data, which is a future work.

The probabilistic models capture three aspects of device usage (interaction sessions, interaction time and

diurnal patterns). First, it is exploited the sub-model describing interaction sessions, i.e., session lengths

or interaction intervals, which is given by:

SessionLength = r ∗ Exp(λ) + (1− r) ∗ Pareto(xm, α) (4.1)

where r is the relative mix of the two distributions, λ is the rate of the Exponential distribution, and

xm and α are the location and shape parameters of the Pareto distribution. In Falaki et al. (2010) it is

concluded that most sessions are very short and the frequency drops exponentially as the session length

increases. But, inconsistently with the exponential behavior, there are some very long sessions in the tail

for each device user, which are modeled with Pareto. Moreover, it is exploited the sub-model associated

to interaction time, i.e., the elapsed time between a session and the next one by each user. The sub-model

uses a Weibull distribution together with scale and shape parameters.

These two sub-models are further refined by using a discretization of the curves that authors inferred

for each distribution parameters (r, λ, xm, scale/shape for Weibull). Furthermore, I selected a value of

α = 0.2 since this is the average value found for a 60% of the use cases via a percentile analysis Falaki

et al. (2010).
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1: procedure CREATEMIXEDPROFILE(cpu0Profile, profilesWithCpuUsage[ ],
sessionLengthModel, sessionT imeModel)

2: mixedProfile← empty
3: currentBatteryPercentage← 100%
4: usageProfileIndex← 0
5: upperLimit← 0
6: profileType← 0 . 0/1 for including events of 0%/above 0% of CPU
7: while currentBatteryPercentage >= 1% do
8: if profileType == 0 then
9: offset← sessionT imeModel.GENERATESAMPLE

10: events← GETEVENTS(cpu0Profile, upperLimit, offset) . Events from upperLimit plus
offset

11: APPEND(mixedProfile, events) . events are appended to mixedProfile events
12: else
13: offset← sessionLengthModel.GENERATESAMPLE
14: events← GETEVENTS(profilesWithCpuUsage[usageProfileIndex], upperLimit,

offset)
15: APPEND(mixedProfile, events)
16: usageProfileIndex← usageProfileIndex+ 1 mod profilesWithCpuUsage.SIZE
17: end if
18: currentBatteryPercentage← mixedProfile.GETCURRENTBATTERYPERCENTAGE
19: upperLimit← offset
20: profileType← profileType+ 1 mod 2
21: end while
22: return mixedProfile
23: end procedure

Algoritmo 4.3: User interaction-driven base profile generator algorithm

Samples of the above sub-models are used to define the time when a new interleaving action should be

introduced (time between session) and the duration of the CPU usage profile employed for the interleav-

ing action (session length). As suggested above, interleaving includes discrete CPU usage profiles of

0% (to simulate standby state), 30% (to simulate an interaction requiring low-mid CPU demand), 75%

(to simulate interactions requiring mid-high CPU demand) and 100% (to simulate interactions requir-

ing high CPU demand). This allows modelers to model infrastructure-based mobile Grids with varying

owner-device interaction profiles (e.g., office users versus gamer users).

Algorithm 4.3 shows the procedure used to interleave profiles. As input, the procedure uses a 0% CPU

usage profile, a profiles array of constant CPU usages, a session length generator logic and a time between

session generator logic based on the above probabilistic sub-models. Figure 4.10 shows examples of

usage profiles representing CPU usage fluctuation caused by user interaction for two tablets (Acer A100

and Viewsonic ViewPad 10s).

It is important to highlight that the interleaving procedure should not be performed at runtime, i.e. while

running the mobile Grid model. One of the reasons is the reduction of the effective simulation time.

Interleaving discrete CPU usages during simulation would heavily increase the computational overhead

and memory requirements of mobile Grid model simulations. This is because the interleaving procedure

involves loading into memory and sequentially read several files with tens of thousand battery and CPU

samples and a relatively small fraction of all those files samples are finally included in the baseline pro-

file. Besides, from all those included, many of them can be discarded during simulation. Computational
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Figure 4.10: Examples of base usage profiles with fluctuating CPU usage derived from user interaction

overhead could be overcome with powerful hardware, however, irreproducibility of experimental condi-

tions would not be accepted in any case. This is the other reason why the interleaving procedure should

not be performed at runtime. By sampling information from a probability distribution, the samples val-

ues and order that give shape to the experimental conditions, cannot be assured for several runs which is

important when several scheduling strategies are compared.

4.5 Simulation output

Running a mobile Grid model outputs a log of status changes experimented by devices and jobs. Exam-

ples are device x joining/leaving the mobile Grid, job a assigned to device x, and job a finishing in x.

Status changes have a time stamp, which is useful to derive scheduling metrics within a time window.

For instance, by filtering all executed jobs, throughput –percentage of executed jobs– can be computed.

Additionally, by tracing back the status changes of a job, it is possible to determine the device(s) which

handled its execution due to job re-assignations, or counting how many jobs were successfully executed

by specific devices (e.g., those having over m FLOPS).

DEVICE [table]

DEVICE_ID INTEGER NOT NULL

SIM_ID INTEGER NOT NULL

NAME VARCHAR(50) NOT NULL

BATTERY_CAPACITY BIGINT

MIPS BIGINT

JOIN_TOPOLOGY_TIME BIGINT

LEFT_TOPOLOGY_TIME BIGINT

SIMULATION [table]

SIM_ID INTEGER NOT NULL

SIM_NAME VARCHAR(80)

SCHEDULER VARCHAR(80) NOT NULL

COMPARATOR VARCHAR(80) NOT NULL

POLICY VARCHAR(80) NOT NULL

STRATEGY VARCHAR(80) NOT NULL

CONDITION VARCHAR(80) NOT NULL

LINK VARCHAR(80) NOT NULL

TOPOLOGY_FILE VARCHAR(80) NOT NULL

JOBS_FILE VARCHAR(80) NOT NULL

BASE_PROFILE VARCHAR(80) NOT NULL

START_TIME TIMESTAMP

F
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_
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JOBSTATS [table]

JOBSTATS_ID INTEGER NOT NULL

JOB_ID INTEGER NOT NULL

SIM_ID INTEGER NOT NULL

SUCCESS BOOLEAN NOT NULL

SUCCESS_TRANSFERRED_BACK BOOLEAN NOT NULL

START_TIME BIGINT NOT NULL

START_EXEC_TIME BIGINT

FINISH_TIME BIGINT

LAST_TRANSFERRED_NODE INTEGER NOT NULL

FK_JOBSTATS_LAST_TRANSFERRED_NODE

FK_JOBSTATS_SIM_ID

JOBTRANSFERRED [table]

JOBTRANSFERRED_ID INTEGER NOT NULL

JOBSTATS_ID INTEGER NOT NULL

FROM_DEVICE_ID INTEGER

TO_DEVICE_ID INTEGER NOT NULL

HOP INTEGER NOT NULL

TIME BIGINT

STARTTIME BIGINT NOT NULL

LAST_HOP BOOLEAN NOT NULL

FK_JOBTRANSFERRED_FROM_DEVICE_ID

FK_JOBTRANSFERRED_TO_DEVICE_ID

FK_JOBTRANSFERRED_JOBSTATS_ID

Figure 4.11: Simulation output: Entity-Relation Diagram

For each job, the simulator logs its identifier, arrival time at the proxy, and status changes ("submitted",

"input_transferred", "finished", and "completed"). For each device, the simulator logs its identifier, the
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time at which it joins/leaves the mobile Grid, when it receives/starts/finishes a job, and when it changes

to idle state.

These data along with extra performance metrics are logged to standard output. The simulator has classes

that allow the output to be persisted in a relational database, whose entity-relation diagram is shown in

Figure 4.11.Simulation stores the parameters for a mobile Grid model instance, including the Java class

that implement the scheduling criteria, the files for configuring jobs and devices attributes, among oth-

ers. A simulation is associated to tuples in Device, which stores the devices information. Moreover,

jobstats stores jobs data. Each job tuple is, in turn, associated to tuples in jobstransferred,

which stores jobs transfers related information, i.e.,times when input/output transfer is initiated and ter-

minated, and the total/current distance in hops w.r.t. the device that originally offloaded a job. This latter

is since jobs can be re-scheduled between devices several times until it is actually executed by a specific

device.

4.6 Validation

At the core of the infrastructure-based mobile Grid model is the logic to reflect battery consumption of

mobile devices due to executing Grids jobs, owner/OS processes, and sending/receiving data through the

network. As explained in past sections, the time between battery level updates have a correspondence

with a CPU usage, and this information is obtained from traces that are unique for a specific device

brand. Moreover, energy consumed in transfer operations is computed and cumulatively discounted

from the device current battery level. Recall that battery level is updated with data extracted from the

baseline and the full usage CPU profiles. Jumps between both usage profiles are synchronously done for

mimics the battery depletion caused by energy-hungry activities happening in a device.

The simulator assumes that the charge at any time between two samples in a trace can be approximated

using a linear function. This is since mobile device OSs report battery level changes at discrete steps,

and then, the real discharge function between two reports are unknown. However, the energy model

is not built upon the assumption that the whole set of discharge samples are adjusted to a single linear

function. The reasons behind this decision are validated in Section 4.6.1. On the other hand, in Sec-

tion 4.6.2 there are presented experiments to validate that the above scheme suffices to account for the

extra energy consumed when transfer data in addition to using CPU. It is also shown that using baseline

usage profiles with fluctuating CPU usage also serves to account for the effects of user’s interaction in

energy availability and task termination times.

4.6.1 Discharge model validation

In this experiment, 24 profiles where generated using 6 different Android devices under 4 discrete CPU

usages. Since these profiles contain discrete battery charge samples only, it is assumed that the charge at

any time between two samples in a trace can be approximated using a linear function. This is because

energy consumption at any given moment maintaining the same CPU usage is expected to remain con-



68 CHAPTER 4. EVALUATION METHODOLOGY

stant. However, it does not mean that this linear behavior is profile-wide, which is a strong assumption

upon which the device battery depletion sub-model discussed in Section 4.3 builds.

Device Type Target CPU

usage in %

Generated CPU

usage in % (mean)

Generated CPU

usage (standard

deviation)

Number of

samples

Elapsed time

(hh:mm:ss)

ViewSonic

ViewPad 10s
Tablet

0 10.23 2.26 5,476 27:15:39

30 30.11 2.02 4,154 19:29:27

75 76.93 1.79 2,951 13:49:49

100 99.98 0.07 2,424 11:20:24

Samsung

I5500
Smartphone

0 3.83 1.01 7,030 35:23:08

30 30.06 1.44 3,466 15:37:12

75 75.62 1.04 2,174 11:14:22

100 99.98 0.04 2,065 09:45:25

Acer A100 Tablet

0 2.03 1.49 4,877 27:08:35

30 30.34 3.07 2,139 10:15:13

75 77.78 1.02 1,810 8:28:06

100 99.98 0.11 1,557 7:17:01

Samsung

Galaxy SIII
Smartphone

0 3.11 2.44 14,752 74:35:37

30 30.18 3.15 10,162 48:17:27

75 75.78 1.38 3,855 18:06:29

100 99.98 0.31 1,332 6:13:37

Samsung

Galaxy Tab 2
Tablet

0 1.24 1.26 29,520 147:44:32

30 30.17 1.79 12,065 56:45:10

75 76.14 1.36 5,060 23:43:48

100 99.74 1.07 4,185 19:37:18

LG Optimus

l9
Smartphone

0 0.69 0.56 9,261 46:16:42

30 30.25 2.85 4,634 21:47:42

75 76.13 1.32 1,227 5:44:25

100 99.99 0.11 932 4:21:24

Table 4.2: CPU usage generated with the profiler app

Regarding the CPU usage generated by the device profiler app, Table 4.2 depicts the average CPU usage

generated and its standard deviation. In all cases, the standard deviation was less than 4%. The worst

trace was generated for the Viewpad 10s with a target CPU usage of 0%. However, in this case the profiler

does not generate CPU usage, so the CPU usage was mostly generated by Android OS and pre-installed

applications. Visually, the table shows that each trace has a fairly constant CPU usage regardless the

target CPU usage and the device.
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Device Type Target CPU

usage in %

Slope Avg. slope

between

data points

Standard

deviation

MAE MAE

Ranking

ViewSonic

ViewPad 10s
Tablet

0 -9.6649e-07 -1.0036e-06 1.5613e-07 0.9230 7

30 -1.3403e-06 -1.3984e-06 4.2052e-07 0.9702 8

75 -2.1044e-06 -2.0661e-06 1.1525e-07 0.6557 5

100 -2.4676e-06 -2.6582e-06 1.9584e-06 1.0460 10

Samsung

I5500
Smartphone

0 -6.1921e-07 -1.3731e-06 2.6462e-06 7.3122 23

30 -9.6927e-07 -1.8618e-06 4.2646e-06 6.2197 22

75 -2.0773e-06 -2.9023e-06 2.7395e-06 5.1535 21

100 -4.0704e-06 -6.9098e-06 2.1892e-05 7.6921 24

Acer A100 Tablet

0 -9.7457e-07 -9.7457e-07 4.8063e-07 1.1511 13

30 -2.6036e-06 -2.6984e-06 2.4494e-07 1.3690 15

75 -3.1817e-06 -3.2294e-06 2.6793e-07 0.8034 6

100 -3.7897e-06 -3.9345e-06 3.6718e-07 1.3207 14

Samsung

Galaxy SIII
Smartphone

0 -3.6936e-07 -4.1044e-07 1.1489e-07 2.7278 19

30 -5.7783e-07 -6.2874e-07 1.6604e-07 2.4341 18

75 -1.5268e-06 -1.6278e-06 3.0953e-07 2.1199 16

100 -4.2384e-06 -4.5708e-06 7.0395e-07 2.3279 17

Samsung

Galaxy Tab 2
Tablet

0 -2.0572e-07 -2.3048e-07 7.4680e-08 2.8096 20

30 -5.0410e-07 -5.0403e-07 1.4248e-08 0.1275 1

75 -1.1739e-06 -1.1795e-06 2.5609e-08 0.2745 2

100 -1.4090e-06 -1.4200e-06 3.4190e-08 0.3181 3

LG Optimus

l9
Smartphone

0 -6.2271e-07 -6.3943e-07 2.0427e-07 1.0620 11

30 -1.2884e-06 -1.3445e-06 2.9517e-07 1.0677 12

75 -4.9520e-06 -5.1157e-06 1.0162e-06 1.0262 9

100 -6.5652e-06 -6.5879e-06 1.1522e-06 0.5740 4

Table 4.3: Linear regression: Battery charge given time
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To empirically assess whether there is a linear relationship between time and battery, it is performed

a linear regression minimizing the Mean Squared Error (MSE) by gradient descent. The goal was to

provide a charge estimation (Ce) given a time (T ), and an initial charge (IC) using Equation 4.2 that

minimize the error (E) as defined in Equation 4.3, where Ci is the real charge for each logged battery

sample i, ECi is the estimated charge for that sample and N is the number of logged samples. Here, IC

is known (100) because the battery is fully charged at T = 0. Hence, the only parameter to adjust is the

slope (S).

Ce = S.T + IC (4.2)

E =

∑N
i=1(Ci − ECi)

2

N
(4.3)

Table 4.3 depicts the slopes obtained for the different traces considering the charge (0 to 100). This table

also presents the average slope between two arbitrary data points and its standard deviation. Finally, it

also shows the Mean Absolute Error (MAE), as defined in Equation 4.4, for the profile and its standard

deviation:

E =

∑N
i=1 |Ci − ECi|

N
(4.4)

In short, in some cases, there seems to be a linear relationship between time and charge: Figure 4.12

depicts both real charge and estimated charge for the three traces which obtained the lowest MAE. There

is no noticeable difference between the regression and the real data. Furthermore, Figure shows 4.13 the

same information, but for the linear regressions with highest MAE. It can be seen that the data points

are not far from the estimated charge, which supports the idea that when mobile device CPU usage is

rather constant a linear function provides an accurate estimation Hoque et al. (2015). However, for many

profiles, MAE values are not negligible. This is the base of the device battery depletion model, which

instead of performing a profile-wide adjustment to a linear function, it only assumes linearity between

two trace samples.

4.6.2 Network usage and user’s interaction validation

Figure 4.14 depicts validation tests to show how the mobile Grid model accounts for the effects of user

interaction and data transferring over jobs and energy consumption. To show the user interaction effect,

i.e., CPU usage and energy shared among user processes and Grid jobs, different mobile Grid settings

are simulated by varying the amount of dedicated devices (those without user activity). All mobile Grid

settings are composed by one hundred devices –20 Acer A100 devices, 41 ViewSonic Viewpad 10s
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(a) Galaxy Tab 2 - 30% (b) Galaxy Tab 2 - 75%

(c) Galaxy Tab 2 - 100% (d) LG Optimus L9 - 100%

Figure 4.12: MAE: Four of the best ranked profiles
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(a) I5500 - 0% (b) I5500 - 30%

(c) I500 - 100% (d) Galaxy Tab 2 - 0%

Figure 4.13: MAE: Four of the worst ranked profiles
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Figure 4.14: User interaction and data transferring validations
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devices and 39 Samsung I5500 devices– and process the same jobs set. Job assignments are performed

with a scheduling criterion that assigns as many consecutive arrived jobs to each device as the latter is

able to execute. To this end, the heuristic uses the number of FLOP each job requires to be executed and

the maximum number of FLOPs each device is able to execute with its available energy. Figure 4.14a

depicts how jobs state changes w.r.t. a reference mobile Grid setting with all devices its dedicated. The

more the devices with non-dedicated baseline profiles are included in a mobile Grid setting, the more the

job executions are delayed, and the more job executions do not finalized, which shows that CPU usage

caused by user interaction do not only alters the finish time of Grid jobs but also the devices energy used

to perform them.

To validate the mechanism that cumulatively accounts for the energy spent on data transferring using a

battery depletion traces referring to CPU usage, it is performed a test that consists in making a device

to transfer one megabyte at intervals of two minutes, and compare its lifetime degradation for different

transferring costs. To this end, it is simulated a mobile Grid setting with several devices of the same

device brand configured with the same baseline battery depletion profile (0% CPU usage) but connected

to the proxy with different RSSI values that directly lead to different transferring costs. All devices

are initialized with the same battery level (full-charged battery) and the transferring test is repeated

until their batteries are depleted. Figure 4.14b depicts how lifetime of two specific device brands varies

considering different RSSI values. The Samsung Galaxy S3 smartphone lifetime is more heavily affected

than the Acer A100 table lifetime. This is because the smartphone is equipped with a battery with less

capacity in Joules than that of the tablet. The figure also explains why the cost associated to the same

data transferring operation at the same RSSI -which is simplified to be the same for all devices brands-,

represents a bigger battery percentage drop in the smartphone compared to the tablet.
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Chapter 5
Experimental evaluation

5.1 Experimental scenarios

In this section, it is delineated the design of experimental scenarios used to validate the work hypotheses

stated in Section 3.2. All scenarios run in a controlled simulated environment whose functioning princi-

ples, technical details, and scope were explained in Chapter 4. Heterogeneity is reflected in experimental

scenarios through different variables including SMDs computing capability, composition of MVR in-

stances, jobs sizes and job arrival rates. Below, I explain the meaning and justify the selection of these

variables, as well as, the values considered.

SMD computing capability refers to the throughput an individual node is able to deliver. This can be

measured in the traditional form, i.e., as a rate of float-point operations performed by the node within a

time window, or as a rate of amount of completed work per energy unit. Throughput of fixed computers

is usually associated to computing hardware features, however, in SMDs throughput also implies battery-

related features. From this perspective, SMDs equipped with different computing and battery hardware,

such as the Acer Iconia Tab A100 tablet, the ViewSonic ViewPad 10s tablet and the Samsung I5500

smartphone, render different throughputs (see Table 3.1). Given such differences, these three SMD

models are selected as representative of heterogeneous computing capabilities for the designed scenarios.

Apart from hardware features, other source of heterogeneity that characterizes SMD computing capa-

bility is owner interaction. As explained in Chapter 4, owner interaction profiles make the available

computing capability to fluctuate in time and the energy not to be consumed in processing instructions

of external jobs. Recall from Section 4.3.1 that external jobs are assumed to be programmed to use as

much CPU as available in an SMD. It means that the computing capability of an SMD available to ex-

ecute external jobs is subject to how intensively in CPU terms the owner interacts with the device. See

Section 4.4.2 for details of simulated interaction profiles.

From the resource availability perspective, computing capability of SMDs is classified into dedicated and

non-dedicated. A dedicated SMD model means that its computing resources are exclusively employed

to execute external jobs. By contrast, when it is non-dedicated computing resources (including energy)

are shared to execute external jobs and owner processes.

75
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Given the variability of SMD models that might coexist in a resource exploitation opportunity, other

aspect present in the design of scenarios is the heterogeneity of MVR composition. The MVR instances

defined for the experimental scenarios have the particularity of being composed by the same number of

SMDs (100) and similar aggregated computing capacity (ACC). Such a decision was made to favor

cross-MVR comparisons of finalized jobs. MVR instances, however, differ in the quantity of each SMD

model and total Joules with which the ACC is provided. The ACC of a MVR is expressed as the sum

of all SMDs individual computing capacity (ICCSMDmodel), which, in turn, is defined as:

ICCSMDmodel =MFLOPSSMDmodel ∗DischargeBatteryCycleSMDmodel (5.1)

whereMFLOPSSMDmodel denotes the Mega Float point Operations the SMD model is able to perform

per second, andDischargeBatteryCycleSMDmodel the time, assuming a full-charged battery, the SMD

model lasts running at 100% of CPU usage. Then, the ICC values of the SMD models used in the

experimental scenarios are 1.6E6, 0.85E6 and 0.266E6 for Acer Iconia Tab A100, ViewSonic ViewPad

10s and Samsung I5500 respectively. To create MVR instances with similarACC supported by the same

number of SMDs the following equation is used:

ACC = 1.6E6 ∗X + 0.85E6 ∗ Y + 0.266E6 ∗ Z ± ε (5.2)

, where X , Y and Z are the resulting quantity of A100, ViewPad 10s and I5500 nodes respectively.

Variable Value Description

SMD Comp.

capability

Dedicated without owner interaction (owner CPU usage of 0%)

Non-dedicated owner CPU usage fluctuates between 0%, 30% and 75%

MVR instance

MVR1
Nodes combination: 10 A100, 64 ViewPad 10s, 26 I5500

ACC: 77.320 TFLOP. Energy: 6,445,008 Joules

MVR2
Nodes combination: 20 A100, 41 ViewPad 10s, 39 I5500

ACC: 77.220 TFLOP. Energy: 5,035,752 Joules

MVR3
Nodes combination: 30 A100, 18 ViewPad 10s, 52 I5500

ACC: 77.132 TFLOP; Energy: 3,626,496 Joules

Jobs set
Short 1,910 jobs with size in the range [3,232.27 - 9,696.82] MFLOP

Long 11,608 jobs with size in the range [19,393.65 - 59,180.95] MFLOP

Job arrival rate

150x1010 FLOTES Job arrival time window of 50 seconds

12.5x1010 FLOTES Job arrival time window of 10 minutes

6.25x1010 FLOTES Job arrival time window of 20 minutes

Table 5.1: Variables and values of the simulated scenarios

When creating MVR instances targeting the same ACC value but with the constraints that total number

of nodes, i.e. X + Y + Z, should be the same and X , Y and Z should be positive integers, an error ε
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appears. That error, for the MVR instances created, is ±188,000 MFLOP, which represents a difference

of approximately 0.24% in computing capacity. Table 5.1 outlines the values ofX , Y and Z for the three

MVR instances created along with their ACC values and total number of Joules.

Moreover, when evaluating the performance of schedulers it is natural to consider heterogeneity in the

sets of external jobs. In my experiments, heterogeneity is present in job sizes, which are expressed in

Million Float point Operations (MFLOP), and in the time each one arrives to the proxy. With regard to

job sizes, it is considered a set of long jobs with operations in the range [19,393.65 - 59,180.95] MFLOP,

and a set of short jobs with operations that vary in the range [3,232.27 - 9,696.82] MFLOP. The long

and short jobs sets are generated by sampling size values from a continuous uniform distribution, so

that to assure a balanced number of job of different sizes. The base of this decision is to ensure more

heterogeneous set of jobs than sampling sizes, for instance, from a Normal distribution. The number

of long jobs and short jobs in each set are 1,910 and 11,608, respectively. These values are selected

according to the ACC of MVR instances. The idea is to exceed the MVR ACC, so as to avoid reaching

a hundred percent of finalized jobs, which would hinder the comparison of the schedulers performance.

All jobs have a fixed input/output data size. Input represents data and code that need to be present at the

node in charge of executing a job, while output represents the job result transferred to the proxy. Input

and output data sizes do not represent a variable in simulated scenarios, and are set to 1,024 bytes and

4 bytes respectively for all jobs. Those numbers are reasonable for CPU-bound jobs, which is the type

of targeted applications of the proposed schedulers.

In online scheduling, it is also appropriate to consider the time between jobs arrivals as a variable, spe-

cially because the criteria for distributing jobs changes with information generated while the system runs,

e.g., periodic battery updates sent by SMDs. Considering that jobs are described in terms of amount of

FLOPs, a unified way of indicating job arrivals, irrespective of jobs quantity and size, is through Float-

point Operations To be Executed per Second (FLOTES). The indicator defines the rate of Float point

operations that the system receives for execution within a time window. It is worth to clarify that several

values of this variable are only studied for the set of experiments which validates the hypothesis 3.2 -first

phase experiments-. The reason behind not extending the study of several values of the variable to the

experiments which validate hypothesis 3.2 and hypothesis 3.2 -second phase experiments- is because

these two hypothesis refer to the re-balancing phase of the approach where runtime information is ex-

pected to be already generated. More specifically, at the time the re-balancing phase is triggered, all jobs

are expected to be already distributed to SMDs, several of them might have finalized and consequently

the corresponding updated information is expected to be available for re-balancing. The FLOTES val-

ues utilized are 150x1010, 12.5x1010 and 6.25x1010, meaning that all jobs, either short or long, arrive

within a time window of 50 seconds, 10 minutes and 20 minutes, respectively. For the experiments of the

second phase jobs arrive at a rate of 150x1010 FLOTES. Table 5.1 summarizes the variables and values

described along this section.
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5.2 Simulation results

In this section, it is reported and analyzed the performance of the two-phase scheduling approach, in-

stantiated for the different energy-aware criteria and job stealing techniques proposed in Chapter 3. The

performance is measured in number of finalized jobs, because the more the jobs a scheduler finalizes, the

more energy-efficient it is. The terms “device” and “node” will be used interchangeably to refer to SMD

instances.

The results are organized as follows: Section 5.2.1 deeps into details about the first allocation phase

performance for all energy-aware criteria proposed. The results derived from the simulated scenarios

and the tests which prove statistical significance of results are used to validate hypothesis 3.2. It is

appropriate at this point to clarify that the Round Robin scheduler is employed as the representative

strategy of non energy-aware schedulers against which the energy-aware criteria proposed for the first

phase are compared. The Round Robin scheduler has been selected due to several reasons. One of these

is that, like all our battery-aware criteria proposed, it is designed with practical applicability in mind since

it does not depend on jobs requirement information to operate. The other reason is that it is a widely

known strategy in the Distributed Computing community that has been used as baseline for assessing

scheduler performance.

Section 5.2.2 details the performance achieved by the second allocation phase, i.e., the gains of the re-

balancing techniques with regard to the performance achieved by the first allocation phase. The results of

these scenarios and the tests proving the statistical significance of results are used to validate the hypoth-

esis 3.2 and hypothesis 3.2. Finally, Section 5.2.2.2 presents a discussion about the energy implications

of the two-phase scheduling instantiations which best performed in average.

5.2.1 First phase: Evaluation of ranking-based battery-aware criteria

The first allocation phase is the part of the decision making process that assigns a job as soon as it ar-

rives to the proxy. The results reported in this section show the performance that non battery-aware and

battery-aware schedulers achieved for the scenarios designed. The Round Robin (RRN) is the representa-

tive of non battery-aware schedulers, while the E-SEAS, JEC and FWC are the battery-aware schedulers.

The results are used to validate the hypothesis 3.2, which states that using battery-related information in

the SMDs ranking allows the system to achieve better throughput, i.e., to finalize more jobs.

Table 5.2 summarizes the performance ranges, measured in number of finalized jobs, that each scheduler

achieved for all simulated scenarios of the first allocation phase. Each range comprises the results of

dedicated and non-dedicated scenarios considering all job arrival rates outlined in Table 5.1. The analysis

of results is supported with the histograms of Figure 5.1, Figure 5.2 and Figure 5.3. The histograms area

are split in three vertical parts and each part corresponds to the performance of schedulers using different

MVR instances. The area associated to an MVR instance is, in turn, split to differentiate dedicated and

non-dedicated scenarios. The latter correspond to those bars with gray-out background. It is worth to

mention that the analysis of schedulers performance made for short jobs scenarios also applies for long
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Job Set MVR
Non battery-
aware

Battery-aware

RRN E-SEAS JEC FWC

Short
MVR1 [9,429 - 9,605] [10,026 - 10,147] [10,130 - 10,422] [9,432 - 9,949]

MVR2 [8,477 - 8,614] [9,776 - 10,047] [9,851 - 10,070] [8,522 - 9,280]

MVR3 [7,506 - 7,625] [10,159 - 10,481] [9,472 - 9,684] [7,519 - 8,595]

Long
MVR1 [1,504 - 1,528] [1,619 - 1,647] [1,625 - 1,674] [1,499 - 1,573]

MVR2 [1,346 - 1,370] [1,577 - 1,629] [1,577 - 1,616] [1,355 - 1,428]

MVR3 [1,194 - 1,213] [1,637 - 1,699] [1,520 - 1,567] [1,195 - 1,313]

Table 5.2: First phase finalized jobs of non battery-aware and battery-aware schedulers

job scenarios, unless it is specifically indicated. To ease the interpretation of schedulers performance, I

will also express the count of finalized jobs in percentages over the size of the corresponding job set.

Figure 5.1 outlines the performance of all schedulers considering a job arrival rate of 150x1010 FLOTES,

which means that all job assignments are made within the first 50 seconds, i.e. the time interval in which

the whole set of jobs arrive to the proxy. Figure 5.1a and Figure 5.1b discriminates the performance of

all schedulers for short and long job scenarios, respectively. Figure 5.1a shows that, in MVR1 scenarios,

E-SEAS and JEC finalize notably more jobs than RRN. FWC performance is not as high as the other

battery-aware schedulers. In fact, its performance is quite similar to RRN. E-SEAS outperforms RRN

by [4.67 - 5.28]%. JEC improvements are within the range [6.04 - 6.49]% and FWC difference is in the

range [(-0.22) - 0.03]%.

In MVR2 scenarios, the differences in favor to battery-aware schedulers increase. E-SEAS, for example,

outperforms RRN in [11.31 - 12.34]%, JEC in [11.84 - 11.93]%, and FWC in [0.28 - 0.39]%. In MVR3

scenarios, improvements in favor to battery-aware schedulers were also obtained. These improvements

are [22.88 - 24.53]%, [16.94 - 17.03]% and [0.11 - 0.5] for E-SEAS, JEC and FWC respectively. A

similar behavior, with approximately the same magnitude of differences, are registered for all schedulers

in long job scenarios.

The incremental pattern of improvements observed with a cross-MVR analysis seems to be related to

MVR computing capability. To be more specific, as the computing capability of mid-end SMDs, i.e.,

ViewPad nodes, is switch by that of high and low-end SMDs, i.e., A100 and I5500 nodes respectively,

the battery-aware schedulers performance increases compared to RRN.

The 50 seconds-window in which all jobs arrive to the proxy, whose results were previously described,

represent a stressed operation condition for the schedulers. This is since neither battery nor jobs infor-

mation is updated in such a short time interval. The performance of all schedulers is further analyzed for

two slower job arrival rates, which represent less stressed conditions for all criteria and favor quicker up-

date of ranking formula components built upon dynamic information. Figure 5.2 shows the performance

considering a job arrival rate of 12.5x1010 FLOTES, which means that all jobs arrive -and are scheduled-

within the first 10 minutes of simulation. Such a time interval represents less stressed conditions for all



80 CHAPTER 5. EXPERIMENTAL EVALUATION

 7000

 8000

 9000

 10000

 11000

 12000

R
R

N
 

E
−

S
E

A
S

  

J
E

C
  

F
W

C
  

R
R

N

E
−

S
E

A
S

J
E

C

F
W

C

R
R

N
 

E
−

S
E

A
S

  

J
E

C
  

F
W

C
  

R
R

N

E
−

S
E

A
S

J
E

C

F
W

C

R
R

N
 

E
−

S
E

A
S

  

J
E

C
  

F
W

C
  

R
R

N

E
−

S
E

A
S

J
E

C

F
W

C

Dedicated         Non−dedicated Dedicated         Non−dedicated Dedicated         Non−dedicated

J
o

b
 C

o
u

n
t

FINALIZED JOBS

NON FINALIZED JOBS

MVR3MVR2MVR1

(a) First phase finalized jobs of all schedulers for short job scenarios

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

R
R

N
 

E
−

S
E

A
S

  

J
E

C
  

F
W

C
  

R
R

N

E
−

S
E

A
S

J
E

C

F
W

C

R
R

N
 

E
−

S
E

A
S

  

J
E

C
  

F
W

C
  

R
R

N

E
−

S
E

A
S

J
E

C

F
W

C

R
R

N
 

E
−

S
E

A
S

  

J
E

C
  

F
W

C
  

R
R

N

E
−

S
E

A
S

J
E

C

F
W

C

Dedicated         Non−dedicated Dedicated         Non−dedicated Dedicated         Non−dedicated

J
o

b
 C

o
u

n
t

FINALIZED JOBS

NON FINALIZED JOBS

MVR3MVR2MVR1

(b) First phase finalized jobs of all schedulers for long job scenarios

Figure 5.1: First phase performance of all schedulers using a job arrival rate of 150x1010FLOTES
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schedulers than a time interval of 50 seconds. In less than 10 minutes all devices are able to sent at least

one battery update message, which causes their respective ranking to vary at the proxy. Such updates are

specially capitalized by the FWC scheduler whose ranking criteria is purely based on dynamic informa-

tion. The improvements w.r.t. RRN for short job scenarios are in the range of [1.76 - 2.21]% in MVR1

scenarios, [4.88 - 5.2]% in MVR2 scenarios and [7.93 - 8.22]% in MVR3 scenarios. When comparing

the FWC performance in short jobs scenarios for a job arrival rate of 12.5x1010 FLOTES (Figure 5.2a)

with the performance achieved by the same scheduler for job arrival rate of 150x1010 FLOTES, it is ob-

served a gradual take off effect represented by increments in the ranges of [1.73 - 2.42]%, [4.49 - 4.91]%

and [7.71 - 7.82]% for MVR1, MVR2 and MVR3 respectively.

When the same analysis is applied to E-SEAS and JEC, i.e., their own performance is compared w.r.t.

their performance achieved for scenarios of 150x1010 FLOTES, there are observed small performance

decrements for E-SEAS and small increments for JEC. E-SEAS decrements are in the ranges [(-0.14) -

(-0.09)]%, [(-0.26) - (-0.06)]% and [(-0.37) - (-0.03)]% for MVR1, MVR2 and MVR3 respectively. By

contrast, JEC increments are in the ranges [0.4 - 0.58]%, [0.4 - 0.55]% and [0.64 - 0.71]% for MVR1,

MVR2 and MVR3 scenarios respectively. Despite these small performance differences, both battery-

aware schedulers still clearly outperform RRN.

In long jobs scenarios with 12.5x1010 FLOTES (Figure 5.2b) FWC scheduler performance also improves

w.r.t. to that of RRN. Improvements are in the ranges [0.63 - 1.2]%, [1.57 - 1.78]% and [1.78 - 2.62]%

for MVR1, MVR2 and MVR3 respectively.

Figure 5.3 outlines the performance of all schedulers for a job arrival rate of 6.25x1010 FLOTES, which

equals to a time interval of 20 minutes. In this time interval, more battery updates are received and poten-

tially alter the rank of devices at the time scheduling decisions are made. The results reveal that neither

for short jobs (see Figure 5.3a) nor in long jobs (see Figure 5.3b), E-SEAS and JEC loose competitive-

ness w.r.t. the non battery-aware scheduler. The same affirmation applies to FWC, whose performance is

always better than that of RRN. Now, in respect to the incremental improvement of FWC along different

job arrival rates, in short job scenarios, it seems that the criterion experiences a convergence effect, which

is not experienced for long job scenarios. For the latter, new improvements are obtained in the ranges

[1.83 - 2.36]%, [3.04 - 3.19]% and [4.66 - 5.24]% for MVR1, MVR2 and MVR3 respectively.

5.2.1.1 First phase concluding remarks

After comparing the performance of the three battery-aware schedulers with that of a representative

non battery-aware scheduler with controlled experiments for heterogeneous conditions represented by

scenarios with different job sizes, SMDs computing capability, MVR composition, and job arrival rates,

there is evidence to accept the statement of hypothesis 3.2. The statistical significance of such results

is, in turn, tested with two-side Wilcoxon tests. The test is appropriate to compare matched samples

of two populations, to assess whether the mean of such populations differ. The samples matching is

given by the performance of a non battery-aware scheduler for a specific scenario with that of a battery-

aware scheduler for the same scenario. It means that independent tests are run for all non battery-aware
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(a) First phase finalized jobs of all schedulers for short job scenarios
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Figure 5.2: First phase scheduling criteria performance for a job arrival rate of 12.5x1010FLOTES
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(a) First phase finalized jobs of all schedulers for short job scenarios
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Figure 5.3: First phase scheduling criteria performance for a job arrival rate of 6.25x1010FLOTES
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- battery-aware combinations. The data sets of each test are the performance values, i.e., number of

finalized jobs for all scenarios.

The null hypothesis (H0) is formulated as follows: the mean number of finalized jobs achieved with

a non battery-aware scheduling criterion is equal to the mean number of finalized jobs achieved by a

battery-aware scheduling criterion. The alternative hypothesis (H1), then, states that the mean number of

finalized jobs achieved with a non battery-aware scheduling criterion differs from the mean number of

finalized jobs achieved by a battery-aware scheduling criterion.

Non battery-aware
scheduler

Battery-aware scheduler P-value

RRN E-SEAS 0.000000167809576708

RRN JEC 0.000000167882883144

RRN FWC 0.000000634258559543

Table 5.3: P-values of statistical tests for non battery-aware vs. battery-aware schedulers

The p-values resulting from two-side Wilcoxon tests are outlined in Table 5.3, and indicate that H0 is

rejected for all non battery-aware - battery-aware scheduling combinations with a significance level of

α = 0.01. Having evidence that the mean number of finalized jobs of all battery-aware criteria is over

the mean number of finalized jobs of the non-battery aware criterion, and these means are statistical

significant, the hypothesis 3.2 is accepted.

5.2.1.2 First phase battery-aware schedulers observations

The following are observations of the battery-aware schedulers behavior that could originate further

work hypotheses and are made based on the scenarios run and presented in Section 5.2.1. One of such

observations is that battery-aware schedulers which achieve the best performance alternates between

JEC and E-SEAS, while FWC is always relegated to the third place. Moreover, a cross-MVR analysis

shows that the number of finalized jobs by JEC and FWC schedulers degrades as more A100 devices are

included in the MVR instance. By contrast, the performance of the E-SEAS scheduler slightly increases

with such inclusion, or at least, the performance seems to be less affected than the other two battery-

aware schedulers.

A zoom into the jobs final state, shown in Figure 5.4, provides insights of schedulers operation for

different node types. Bars on the left half correspond to short job scenarios while bars on the right

to long job scenarios. Non-finalized jobs are indicated in dark gray while finalized jobs in light gray.

The following analysis is done for dedicated scenarios but also applies for non-dedicated scenarios. In

Figure 5.4a it is observed, for all MVRs and job sets, that non-finalized jobs are mainly accumulated

in A100 devices and a comparatively small quantity in I5500 devices. By counting with the computing

capability of Viewpad nodes instead of that of Acer and I5500 nodes, which is progressively given in

MVR1, MVR2 and MVR3, the performance of the criterion is not penalized. This seems to be related to

the fact that E-SEAS nodes ranking prioritized exploitation of these type of nodes more than exploitation
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(a) E-SEAS short job and long job scenarios
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(b) JEC short job and long job scenarios
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(c) FWC short job and long job scenarios

Figure 5.4: Jobs final state: Occurrences discriminated by node type



86 CHAPTER 5. EXPERIMENTAL EVALUATION

of average nodes (Viewpad) when balancing the load. This helps to explain why the replacement of

Viewpad nodes appears to have neutral to positive effects on E-SEAS performance.

The switching from mid-end devices to high-end and low-end devices in the MVR seems to cause an

inverse effect for JEC and FWC schedulers. As Figure 5.4b and Figure 5.4c outline for JEC and FWC

respectively, nodes are prioritized differently in order to exploit them. The highest amount of non final-

ized jobs, for both schedulers, is accumulated mostly in the device type with lowest MFLOPS (I5500),

and a minor amount in mid-end devices. High-end devices finalized all their assigned jobs, meaning that,

compared to the finalized jobs number that such devices present with E-SEAS, their computing capabil-

ity is being underexploited. It explains why changing from mid-end devices to A100 devices negatively

affects JEC and FWC performance.

These behaviors stems from the way rank values associated to each type of SMD vary according to each

criterion formula. Analytically, with E-SEAS, for instance, for an I5500 node to rank higher than an

A100 node, the former should have more than 8 times the remaining battery percentage of the A100.

For example, by assuming that both nodes have not been assigned with any jobs yet, when the I5500

has approximately 40% of remaining battery, the A100 needs only 5% of its remaining battery to ranks

equal. Alternatively, if both devices have the same remaining battery percentage, an I5500 would rank

higher than an A100 if the latter has been assigned with 8 times the number of assigned jobs of the I5500.

That makes an E-SEAS-based scheduler prone to saturate with jobs those nodes with high FLOPS first,

then nodes with less FLOPS, and so on.

The opposite situation to that of E-SEAS occurs for node rankings derived from the application of JEC.

Assuming the case in which the weakest and the strongest nodes are compared and none have been

assigned any job yet, for an I5500 node to rank better than an A100 node, the former needs approximately

more than 2.3 times the remaining battery percentage of the latter. Such condition is easier to meet for an

I5500 node than when it is ranked with the E-SEAS. Thus, a JEC-based scheduler tend to assign jobs to

the weak nodes first and then to the strong ones. However, this allocation criteria seems to create bigger

underused periods of CPU cycles –i.e. sub-exploited states– than E-SEAS as ICC disparity among of

nodes increases.

The behavior of FWC is quite similar to JEC. The major difference is that the multiplier factor of re-

maining battery percentage, which weak nodes need to overcome to rank better than strongest nodes,

varies as the time passes. For this reason FWC suffers from a cold start effect. In numbers, considering

short jobs, the multiplier starts with 1, because there is no information about the time a job lasts until

the strongest nodes finalize their first allocated job. After that occurs, the multiplier factor changes to 2

because weakest nodes are still executing the first assigned job and the FWC ranking formula considers

them to be in the middle of the execution time. In summary, the multiplier factor increases in multiple

of 2 until 8 because the weakest node is 8 times weaker than the strongest one. It happens because the

ranking formula of FWC is built upon pure dynamic components while E-SEAS and JEC have static

components, i.e. MFLOPS and JobEnergyConsumptionRate respectively in their ranking formulas.
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5.2.2 Second phase: Evaluation of job stealing with battery-aware criteria

The experiments of this section aim at testing hypothesis 3.2 and hypothesis 3.2. The former states that

due to system dynamics, inaccurate estimations of SMD computing potential and unknown tasks re-

quirements partially break previous energy-aware task scheduling decisions creating sub-exploited slots

of computing cycles that can be exploited through dynamic task re-balancing. Hypothesis 3.2, in turn,

states that the improvement achieved by re-balancing is conditioned by the energy-aware scheduling

decisions made in the past, namely the first scheduling phase.

This section presents the results of the second allocation phase, which are compared with those obtained

in the first scheduling phase. A separate analysis is presented for each battery-aware criterion. The

Round Robin scheduler is excluded from this set of experiments since it does not represent energy-aware

scheduling decisions and it did not show competitive performance in the first allocation phase. Other

change that attains to experiments is the elimination of job arrival rates from the variables of interest,

decision whose justification was exposed at the end of Section 5.1.

Before explaining the results, some details of the notation used in the histograms is provided. First

phase results are labeled with the name of the criterion –e.g. E-SEAS, JEC, FWC–. Second phase

results notation are indicated with JS (referred to Job Stealing) followed by a letter that indicates the

victim selection strategy, i.e., “W” for Worst Ranking-Aware Strategy and “B” for Best Ranking-Aware

Strategy. Following the letter indicating the victim selection is another letter to indicate the offloading

policy, i.e., “E” for Exponential policy and “F” for Fixed policy. When referring to the second phase,

Job Stealing configuration or re-balancing phase results should be read the same.

Job Set MVR
E-SEAS first
phase

Second phase

JS_BF_E-SEAS JS_WE_E-SEAS JS_WF_E-SEAS

Short
MVR1 [10,042 - 10,147] [10,042 - 10,147] [10,042 - 10,147] [10,042 - 10,147]

MVR2 [9,790 - 10,047] [9,774 - 10,020] [9,790 - 10,047] [9,790 - 10,047]

MVR3 [10,162 - 10,472] [10,151 - 10,472] [10,162 - 10,472] [10,162 - 10,472]

Long
MVR1 [1,624 - 1,647] [1,626 - 1,643] [1,624 - 1,647] [1,623 - 1,647]

MVR2 [1,590 - 1,629] [1,587 - 1,607] [1,590 - 1,629] [1,590 - 1,629]

MVR3 [1,642 - 1,699] [1,643 - 1,699] [1,655 - 1,715] [1,655 - 1,716]

Table 5.4: Finalized jobs by E-SEAS based schedulers in the first and second phase

To ease the analysis and comparison of results, the visualization of each two-phase battery-aware sched-

uler performance for all scenarios is complemented with histograms. Figure 5.5a shows the performance

of the first and second phase scheduling using E-SEAS for short job scenarios. Notice that re-balancing

through any of the Job Stealing configurations using E-SEAS as criterion for victim selection does not

improve the performance achieved during the first phase. The cause is explained after the performance

description of JEC and FWC, but in principle it relates to in which node type the E-SEAS relies the com-

pletion of the highest amount of jobs during the first phase. The results associated to long job scenarios,
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Job Set MVR JEC first phase
Second phase

JS_BF_JEC JS_WE_JEC JS_WF_JEC

Short
MVR1 [10,130 - 10,358] [10,506 - 10,554] [10,644 - 10,919] [10,688 - 10,939]

MVR2 [9,851 - 9,999] [9,991 - 10,060] [10,793 - 11,091] [10,761 - 10,903]

MVR3 [9,472 - 9,602] [10,448 - 10,880] [10,768 - 11,049] [10,818 - 11,089]

Long
MVR1 [1,628 - 1,659] [1,703 - 1,717] [1,706 - 1,748] [1,706 - 1,746]

MVR2 [1,577 - 1,603] [1,608 - 1,620] [1,727 - 1,783] [1,733 - 1,782]

MVR3 [1,520 - 1,545] [1,600 - 1,549] [1,751 - 1,792] [1,756 - 1,796]

Table 5.5: Finalized jobs by JEC based schedulers in the first and second phase

Job Set MVR FWC first phase
Second phase

JS_BF_FWC JS_WE_FWC JS_WF_FWC

Short
MVR1 [9,432 - 9,580] [9,592 - 9,636] [10,597 - 10,806] [10,639 - 10,771]

MVR2 [8,522 - 8,647] [9,504 - 9,853] [10,693 - 10,940] [10,539 - 10,679]

MVR3 [7,519 - 7,683] [10,443 - 10,654] [10,662 - 10,769] [10,674 - 10,963]

Long
MVR1 [1,499 - 1,528] [1,511 - 1,560] [1,689 - 1,731] [1,701 - 1,726]

MVR2 [1,355 - 1,374] [1,509 - 1,596] [1,712 - 1,764] [1,697 - 1,725]

MVR3 [1,195 - 1,224] [1,464 - 1,469] [1,766 - 1,785] [1,713 - 1,768]

Table 5.6: Finalized jobs by FWC based schedulers in the first and second phase

depicted in Figure 5.5b, show that re-balancing slightly improved the performance achieved by the first

phase, particularly for the MVR3 environment. In this case, JS_WE_E-SEAS and JS_WF_E-SEAS are

the second phase configurations that slightly boost the performance of the first phase.

Figure 5.6 outlines the performance of the first and second phase scheduling using JEC. For all short jobs

scenarios shown in Figure 5.6a, all JS configurations using JEC significantly improve the performance

achieved during the first phase. The most efficient configurations are JS_WF_JEC and JS_WE_JEC.

Furthermore, unlike JEC first phase results, the performance of these configurations does not decrease

when including more powerful devices. It means that re-balancing using JEC suppresses that undesired

effect, i.e., renders the scheduling performance less influenced by such type of devices, at least with the

MVR instances studied. Regarding long job scenarios results, Figure 5.6b reveals that re-balancing has

a similar effect to that observed in short job scenarios.

Figure 5.7 depicts the performance of the first and second scheduling phase using FWC. For short jobs

scenarios, shown in Figure 5.7, all Job Stealing configurations improve the first phase using FWC.

JS_WF_FWC and JS_WE_FWC obtained the highest performance boost while JS_BF_FWC the lowest

one. Once again, long jobs scenarios results of Figure 5.7b follow the performance improvement pattern

seen in short job scenarios.

The negligible performance boost of E-SEAS relates to the most overloaded nodes type and the time
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(a) Short job scenarios
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(b) Long job scenarios

Figure 5.5: E-SEAS performance: First and second phases

those nodes stay connected to the proxy. If overloaded nodes leave the MVR before least loaded or

balanced nodes, then steals never occur or its frequency is low. Node departures, in the context of this

thesis, is given by battery depletion events. Such effect is observed in the first phase scheduling using

E-SEAS, where A100 nodes are overloaded. It is worth mentioning that it is assumed that queued (not

started) jobs in nodes which leave the MVR are not re-scheduled and are considered non-finalized jobs.

I leave that function to a fault tolerance mechanism that is out of the scope of this thesis.

5.2.2.1 Second phase concluding remarks

The performance boost all two-phase battery-aware schedulers introduce at the re-balancing phase shows

that sub-exploited slots of computing cycles remain after the first phase job scheduling performed with

an energy-aware scheduler, which is the statement of hypothesis 3.2. The statistical significance of
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(a) Short job scenarios
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Figure 5.6: JEC performance: First and second phases
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Figure 5.7: FWC performance: First and second phases

such results is tested with a new set of Wilcoxon tests. In this case, paired samples derived from the

performance of the battery-aware scheduler in the first phase and the performance achieved with a job

stealing configuration for the same scenario. Since the second phase of each two-phase battery-aware

scheduler was evaluated with three different job stealing configurations, independent tests are run for

each configuration.

The null hypothesis (H0) states that the mean number of finalized jobs achieved by a battery-aware

scheduler during the first phase is equal to the mean number of finalized jobs achieved by a re-balancing

phase that uses the same battery-aware criterion for victim selection. The alternative hypothesis (H1)

states that the mean number of finalized jobs achieved with a battery-aware scheduler differs from the

mean number of finalized jobs achieved when the same criterion is used for victim selection in a re-

balancing phase. The significance level or maximum acceptance of error type I is α = 0.01.

Table 5.7 depicts the p-values of the tests for each two-phase battery-aware scheduler. Since p-values for

all tests corresponding to JEC and FWC schedulers are less than the significance level selected then H0
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First phase Re-balancing phase P-value

E_SEAS
JS_WF_E-SEAS 0.0229090993544

JS_WE_E-SEAS 0.0022177214642

JS_BF_E-SEAS 0.0280561241492

JEC
JS_WF_JEC 0.0022177214642

JS_WE_JEC 0.0022177214642

JS_BF_JEC 0.0022177214642

FWC
JS_WF_FWC 0.0022177214642

JS_WE_FWC 0.0022177214642

JS_BF_FWC 0.0022177214642

Table 5.7: P-values of statistical tests for the first phase vs. the re-balancing phase

is rejected for these schedulers. It means that the first phase of these schedulers can be boosted with a

re-balancing phase. The same does not hold for E-SEAS scheduler since p-values of the corresponding

tests are over the significance level selected. There is evidence to accept hypothesis 3.2 although the

analysis is not conclusive for the E-SEAS criterion.

In light of the performance boost registered with different re-balancing mechanisms, now is the turn

to validate the sub-hypothesis 3.2 which, states that the improvement achieved by such re-balancing

mechanism is conditioned by the energy-aware scheduling decisions made in the past, namely the first

scheduling phase. The paired samples that constitute inputs of the new set of Wilcoxon tests are the

number of finalized jobs achieved with a particular job stealing configuration whose first phase was per-

formed by different battery-aware schedulers. Separate tests are run for re-balancing phase represented

by JS_WF, JS_WE and JS_BF combined with all battery-aware criteria.

The null hypothesis H0 is formulated as follows: the mean improvement, should be read as the final per-

formance, achieved with a re-balancing mechanism does not vary with the energy-aware task scheduling

decisions made in the first phase. The significance level or maximum acceptance of error type I is se-

lected to be α = 0.01.

The p-values resulting from the aforementioned tests are outlined in Table 5.8. With p-values under

the threshold selected, H0 is rejected for JS_WF and JS_WE. It means that the performance achieved by

these re-balancing mechanisms is conditioned by the battery-aware scheduling decisions made in the first

phase. The same does not hold for JS_BF re-balancing mechanism since p-values of the corresponding

tests are over the threshold selected. There is evidence to accept the hypothesis 3.2 but the analysis is not

conclusive for those job stealing configurations exploiting the JS_BF policy.

5.2.2.2 Second-phase battery-aware scheduling observations

As with first phase results, in this section it is presented a set of observations derived from the analysis of

the second phase results reported in Section 5.2.2. The observations might be taken into account, in the
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Re-balancing mechanism 1 Re-balancing mechanism 2 P-value

JS_WF_JEC
JS_WF_E-SEAS 0.00221772146424

JS_WF_FWC 0.00221772146424

JS_WF_E-SEAS JS_WF_FWC 0.00221772146424

JS_WE_JEC
JS_WE_E-SEAS 0.00221772146424

JS_WE_FWC 0.00416350414614

JS_WE_E-SEAS JS_WE_FWC 0.00221772146424

JS_BF_JEC
JS_BF_E-SEAS 0.02805612414920

JS_BF_FWC 0.00221772146424

JS_BF_E-SEAS JS_BF_FWC 0.08437944259400

Table 5.8: P-values of statistical tests for different rebalancing mechanisms

future, for the elaboration of further work hypotheses. From a cross two-phase battery-aware schedulers

analysis the observations presented below arise.

Despite E-SEAS is among the criteria with the best performance during the first phase scheduling, such

performance does not improve with a re-balancing mechanism, so that it does not keep the improvement

pace achieved by the other two-phase battery-aware schedulers. Concretely, in short job scenarios, none

of the two-phase E-SEAS-based schedulers, i.e., JS_WE_SEAS, JS_WF_E-SEAS or JS_BF_E-SEAS,

performed better than all the other two-phase schedulers. Quantitatively, from 11,608 short jobs, the

best two-phase E-SEAS-based scheduler finalizes around [5.32 - 8.99]% and [5.57 - 8.64]% less jobs

than the best two-phase scheduler in dedicated and non-dedicated scenarios respectively. Seamlessly,

from 1,910 long jobs, the best two-phase E-SEAS-based scheduler finalized around [4.19 - 8.06]% and

[4.19 - 7.49]% less jobs than the best two-phase scheduler in dedicated and non-dedicated scenarios

respectively.

Concerning the behavior of FWC-based schedulers, recall from the first phase results that the perfor-

mance is quite under that of achieved by all other battery-aware competitors, and also suffers from the

cold start effect. However, when outfitted with a re-balancing mechanism, the resulting two-phase FWC-

based schedulers improve the performance, targeting higher number of finalized jobs than JS_WE_SEAS

and JS_WF_E-SEAS in all scenarios. More specifically, JS_WE_FWC outperforms JS_WE_E-SEAS by

[2.56 - 7.78]% and JS_WF_FWC to JS_WF_E-SEAS by [2.72 - 6.45]%.

In respect to the behavior of JEC-based schedulers, during the first phase it is within the criteria with the

highest number of finalized jobs, but unlike E-SEAS, the re-balancing phase improves its performance.

In fact, two-phase JEC-based schedulers, concretely JS_WE_JEC and JS_WF_JEC, are those that target

the highest outcomes in all scenarios.

The followings are observations focused on highlighting energy implications of the best two-phase JEC-

-based schedulers. The usage of job stealing as re-balancing mechanism is likely to introduce adminis-

trative costs due to the network activity overhead produced by steal requests messages, which eventually
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derive in job movements between stealer and victim nodes. The consequence of such administrative

cost is that SMDs incur in energy waste -caused by extra networking activity- and underexploited CPU

cycles -caused by the time a stealer waits until the stolen job is ready to be executed-. As a guide to

differentiate between the two-phase schedulers with highest performance their energy implications are

analyzed. The less steals a job stealing configuration produces per extra finalized job, the more efficient

it is considered. For measuring steal efficiency it is used the steal revenue indicator. Such indicator, sixth

column of Table 5.9, is defined as the extra finalized jobs over steals produced: (extraF inalizedJobs)
#ofSteals . The

extraF inalizedJobs is the difference between the finalized jobs in the second phase minus the finalized

jobs in the first phase. Table 5.9 (last column) shows the steal revenue along with the data used in the

Jobs

size

MVR

instance

SMD comp.

capability

JEC 1st phase

performance

2nd phase performance # steals Steals revenue

JS_WE JS_WF JS_WE JS_WF JS_WE JS_WF

Short

jobs

MVR1 Dedicated 10,358 10,919 10,939 4,674 619 0.120 0.938

Non-dedicated 10,130 10,644 10,688 3,810 596 0.135 0.981

MVR2 Dedicated 9,999 11,091 10,903 9,824 1,220 0.111 0.741

Non-dedicated 9,851 10,793 10,761 6,189 1,015 0.152 0.896

MVR3 Dedicated 9,602 11,049 11,089 16,138 1,914 0.090 0.777

Non-dedicated 9,472 10,768 10,818 10,735 1,548 0.121 0.870

Long

jobs

MVR1 Dedicated 1,659 1,748 1,746 221 104 0.402 0.836

Non-dedicated 1,628 1,706 1,706 211 92 0.369 0.848

MVR2 Dedicated 1,603 1,783 1,782 511 210 0.352 0.852

Non-dedicated 1,577 1,727 1,733 378 171 0.397 0.912

MVR3 Dedicated 1,545 1,792 1,796 687 319 0.360 0.787

Non-dedicated 1,520 1,751 1,756 590 271 0.392 0.871

Table 5.9: Steal revenues comparison of best two-phase JEC-based schedulers

calculation of such value. The values of the fourth column and fifth columns (with its sub-columns) are

number of finalized jobs. Fifth sub-columns show only values for JS_WE_JEC and JS_WF_JEC because

these are the schedulers which, in average, achieve the highest number of finalized jobs.

The higher the steal revenue is, the more efficient the Job Stealing configuration is. JS_WF_JEC config-

uration outperforms JS_WE_JEC in all scenarios. This is because the stealing policy of JS_WF produces

much less steals than that of JS_WE. The quantity of steals produced could serve to guide the selection

of the best balanced scheduler for the case of communication channels with lower/higher latencies and

energy costs.

Table 5.10 summarizes the improvement achieved by JS_WF_JEC, the two-phase scheduler with the

highest performance. The data is analyzed from the perspective of the finite energetic constraints imposed

by the used MVR instances. The FJ/E, expressed in e-4 notation, increases as total Joules of MVR

instances decreases (see Table 5.1 for Joules information). It means that the two-phase scheduler for

MVR1 achieves less FJ/E than for MVR2, and even less for MVR3. These relation is aligned with the
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fact that the ACC/TotalEnergy of MVR1 is bigger than that of MVR2, and the latter bigger than that

of MVR3. This efficiency in energy utilization is, on one side, naturally given by the energy properties of

the devices composing the MVR, and on the other side, due to the two-phase scheduling criteria applied.

The last affirmation stems from the fact that finishing less number of finalized jobs with the same energy

means less energy efficiency, which is behavior shown by the other two-phase schedulers.

Finally, it is observed that JS_WF_JEC improvements of the second phase over the first phase increase

as the target MVR is composed by more Acer A100 devices. Despite the JEC scheduler performance

in the first phase decreases, the re-balancing phase not only compensates such decrements but boosts

the performance to new maximums. This suggests that the two-phase scheduler as a whole adapts to

MVRs with similar computing capacity but different ACC/TotalEnergy without compromising the

final performance.

5.3 Conclusions

Considering battery-related parameters for node ranking contributes to finalize more jobs than not con-

sidering them. Besides, from the observations made of battery-aware schedulers behavior in the first

phase, it follows that E-SEAS and JEC schedulers are those that achieved the highest performance since

they do not suffer from the cold start effect as FWC does. In all the scenarios exercised, E-SEAS out-

performs Round Robin by at least 4.9% and JEC by at least 6.6%. The analysis of jobs that each type of

SMD leaves unfinished reveals substantial differences on how E-SEAS and JEC achieve these gains. By

using E-SEAS, the majority of unfinished jobs remain in nodes with the highest FLOPS. However, when

JEC is used, the nodes with the greatest number of unfinished jobs are the ones with the lowest FLOPS

values.

Moreover, furnishing battery-aware scheduling decisions of the first phase with re-balancing mechanisms

improved the performance achieved of all schedulers. However, the magnitude of such improvement

achieved with a job stealing technique is constrained by the battery-aware scheduling decisions of the

first phase. The observations made on the second phase results reveal that the improvement of two-

phase E-SEAS-based scheduler is marginal even with all re-balancing mechanisms since overloaded

nodes, i.e., potential victims leave the MVR before stealers become idle so as to request for more jobs

to complete. This is not the behavior of JEC-based and FWC-based schedulers whose performance in

the first phase was considerably improved in the re-balancing phase. Nonetheless, despite FWC-based

schedulers were very competitive in the second phase, their performance in the first phase was not. This

outcome is particularly undesirable if the proxy has a downtime and the second phase cannot be initiated.

For this reason, JEC-based schedulers might be considered the best average schedulers because they are

competitive in the first phase and arise as the best in the second phase.

Aside from the performance achieved by JEC, from a qualitative perspective, its ranking formula includes

the JobEnergyConsumptionRate whose computation is flexible enough to consider the known aging

problem of Li-ion batteries Takeno et al. (2005); Choi and Lim (2002). Unlike FLOPS used in the E-

SEAS formula, the JobEnergyConsumptionRate score associated to an SMD varies in time due to
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battery decreasing lifetime. However, it would be interesting to investigate a way of computing of the

JobEnergyConsumptionRate score without requiring to profile a complete SMD discharge battery

cycle.

From the second phase evaluation, it is observed that the WRAS strategy for selecting a victim obtained

always better performance than the BRAS strategy. In respect to the job stealing policy, the Fixed

policy shows values of steal revenue very superior to those achieved by the Exponential policy. The

latter generates much more useless steals that should be avoided, e.g. as the size of job input increases,

because they incur in higher energy misuse.

A general conclusion of this two-phase scheduling approach is that a re-balancing phase performed with

the Job Stealing technique helps to increase the FJ/E achieved with a single phase scheduling, even when

considering the energy footprint due to network activity of nodes. However, the node ranking criteria

used for the first phase allocation influenced the performance boost that could be obtained or not with the

re-balancing phase. More explicitly, the most effective instantiation of the re-balancing phase occurred

when the first allocation phase left an active distributed pool of jobs. By active pool of jobs I mean

jobs queued in nodes whose time to leave from the MVR is as far in time as possible. This increases

the possibility to produce steals allowing the exploitation of underused periods of computing cycles to

finalize more jobs.
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Chapter 6
Conclusions

6.1 Concluding remarks

In this thesis, motivated by the continuous improvement of SMDs capabilities and the worldwide popu-

larity of such devices, I presented an approach for scavenging computing capabilities of a group of SMDs.

Related state-of-the-art RA mechanisms concentrate on addressing special features that characterize the

problem of computing resource provision with SMDs. These special features, represented by the so-

called singularities –user mobility, resource exhaustion and lack of ownership– pose new challenges

to existing resource allocation mechanisms designed for fixed hardware. They introduce uncertainty,

heterogeneity and fluctuating resource availability.

Many efforts to date have been focused on challenges associated to the user mobility singularity, e.g.,

for allocating tasks with hard execution time constraints, or tasks with data dependencies that heavily

rely on SMD data transferring capabilities, or in the context of delay tolerant ad-hoc networks where

tasks dissemination heavily depends on SMDs future contact and relative position. The negative effect

of the user mobility singularity on tasks completion, however, is likely to be less harmful for the case of

batch CPU-bound tasks, executed with the potential computing power of a stable number of SMDs coor-

dinated through infrastructure-based networking support, which is the resource exploitation opportunity

this thesis focuses on.

The scavenging of computing capabilities is always affected by the resource exhaustion singularity be-

cause the amount of work that can be completed is conditioned by the finite energy of SMDs batteries.

The resource exhaustion has been addressed by many RA works but through optimal or near-optimal ap-

proaches, where tasks energy consumption on every candidate SMD is assumed to be provided as input

or derived from SMDs and tasks characteristics. The last information, i.e., the time and/or computing

requirements of tasks is not always available and it is hard, if not impossible, to estimate. In addition,

the synthetic schemes that most of these works use to simulate the resource exhaustion singularity do not

faithfully reflect the energy consumption of real SMDs.

The least studied singularity that conditions the exploitation of computing capabilities of SMDs is lack

of ownership. This singularity reflects the shareable condition of computing resources by Grid tasks and

99
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SMD owner processes. The only work Ghosh and Das (2010) that address the singularity suffers from

the same applicability issues present in works which address resource exhaustion via optimal or sub-

optimal approaches Shi et al. (2016); Ghasemi-Falavarjani et al. (2015); Li et al. (2015); Chunlin and

Layuan (2014); Birje et al. (2014); Mtibaa et al. (2013); Wei et al. (2013); Shi et al. (2012); Furthmüller

and Waldhorst (2012); Vaithiya and Bhanu (2012); Comito et al. (2011); Jang and Lee (2011); Ilavarasan

and Manoharan (2010); Park et al. (2003), and the evaluation do not contemplate neither task execution

degradation nor energy depletion due to SMDs owner interaction.

This thesis consists in a practical online two-phase scheduling approach for exploiting computing ca-

pabilities of SMDs coordinated via infrastructure-based networking support. The first-phase distributes

arriving tasks to SMDs, where the computing capability of the latter is estimated using criteria that

consider energy-related parameters. Moreover, to avoid sub-exploited slots of computing cycles caused

by tasks heterogeneity, fluctuation of resource availability -due to owner interaction-, lack of up-to-date

information and/or battery level estimation errors, a re-balancing scheme is provided in a second phase.

This second or re-balancing phase is materialized with Job Stealing techniques, whose effectiveness have

been studied in many past works in the area and is also included in several middlewares for distributed

computing. The energy-aware criteria also plays a vital role in making these job stealing techniques

effective.

The criteria combine easy-to-obtain energy and computing related features of SMDs. E-SEAS, for ex-

ample, uses remaining battery charge data, available via the Android BatteryManager API, and FLOPS.

The latter is used to score computing capability of nodes in HPC systems and is measurable in SMDs

using benchmarks for Android (e.g. Linpack for Android in the Play Store). JEC is another energy-aware

criteria proposed for the first phase that, instead of FLOPS information, uses a custom score computed

based on benchmarking test results and battery capacity declared by the SMD manufacturer. The third

energy-aware criterion, FWC, does not rely on pre-computed values to rate the computing capability of

an SMD but infers it through execution time of finalized tasks.

One work hypothesis was whether ranking SMDs using criteria built upon energy-related parameters

helps to better estimate the computing potentials of a group of SMDs than using a non energy-aware

criterion. To validate the hypothesis, the number of finalized jobs was utilized as the metric for eval-

uating scheduling performance. The round robin scheduler was selected as a representative of existing

non-energy aware schedulers. Schedulers performance was compared based on identical simulated con-

ditions, i.e., scenarios. The scenarios design was driven by heterogeneity and include SMDs with differ-

ent energy/computing features which, in turn, vary during runtime due to owner interaction effects. In

addition to the heterogeneity supported on SMDs internal features, the scenarios include heterogeneity

at the MVR level -via combination of different SMDs-, different tasks sizes and varied tasks arrival rates.

Tasks scheduling with the energy-aware criteria proposed for the first scheduling phase outperformed to

the non-energy aware scheduler in number of finalized jobs.

A second work hypothesis was whether the re-balancing phase boosts the performance achieved in the

first scheduling phase. The results reveal that the number of finalized tasks scheduled in a first phase with

JEC or FWC can be incremented with a re-balancing phase. However, such increment is not observed

when the first scheduling phase is performed with E-SEAS. When investigating the E-SEAS behavior,
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it was observed that overloading high throughput SMDs in the first phase causes these nodes to deplete

their energy before mid and low throughput SMDs. The consequences of such behavior is detriment to

job stealing effectiveness and hence the load re-balancing phase.

The SCI/SCI-E journal publications directly related to this research produced so far are listed below.

One article not listed here has passed the second round of review in a SCI-indexed journal –Journal of

Simulation (Springer)–, and is under review.

• Hirsch, M., Rodriguez, J. M., Zunino, A., & Mateos, C. (2016). Battery-aware centralized sched-

ulers for CPU-bound jobs in mobile Grids. Pervasive and Mobile Computing, 29, 73-94. Indexed
SCI-E.

• Hirsch, M., Rodriguez, J. M., Mateos, C., & Zunino, A. (2017). A two-phase energy-aware

scheduling approach for CPU-intensive jobs in mobile Grids. Journal of Grid Computing, 15

(1), 55-80. Indexed SCI-E.

• Hirsch, M., Rodriguez, A., Rodriguez, J. M., Mateos, C., & Zunino, A. (2017). Spotting and

Removing WSDL Anti-pattern Root Causes in Code-first Web Services Using NLP Techniques:

A Thorough Validation of Impact on Service Discoverability. Computer Standards & Interfaces,

56, 116-133. Indexed SCI-E.

Likewise, two articles published in conferences are listed below:

• Hirsch, M., Mateos, C., Rodriguez, J. M., Zunino, A., Garí, Y. & Monge, D. A performance

comparison of data-aware heuristics for scheduling jobs in mobile Grids. XLIII CLEI (2017) -

SLIHS (Simposio Latinoamericano de Infraestructura, Hardware y Software). Córdoba, 2017.

• Hirsch, M., Rodriguez, A., Rodriguez, J. M., Mateos, C., Zunino, A., & Ordiales Coscia, J. A

tool for building retrievable code-first Web Services. 2014 IEEE Biennial Congress of Argentina

(ARGENCON). San Carlos de Bariloche, 2014. IEEE Computer Society.

6.2 Limitations

During the development of this thesis, some limitations worth to be discussed have been identified.

First, the two-phase scheduling approach has been evaluated under conditions of resources wide-view

knowledge and centralized single-hop communication with SMDs, which are features of infrastructure-

based networks. The behavior of the approach under the operation conditions of ad-hoc networks need

to be investigated. Cluster heads node selection Yang et al. (2010) can be applied to assign certain SMDs

with the proxy role. Then, these nodes would act as resource information sink, i.e., nodes to which

resource providers SMDs in the vicinity route resource update messages. In this way, resource providers

can also play the role of resource requesters and communicate with the cluster head to know the most

convenient SMD to ask for task execution service. In this scheme, with knowledge about available
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resources in the vicinity, a cluster head would apply the first-phase of the proposed scheduling approach.

The application of the second phase could be performed by the cluster head or delegated to nodes in the

vicinity.

Second, the energy-aware criteria proposed to instantiate the first phase of the scheduling approach,

which were also used for victim selection in the second phase, were designed with CPU cycles require-

ments of jobs in mind only. Despite that jobs were associated to input and output data requirements,

data sizes are assumed to be fixed for all jobs and SMDs energy consumed per transferring data unit is

also fixed for all SMDs. To add more realism concerning this aspect, data-aware heuristics have started

to be investigated for scheduling jobs with hybrid requirements Hirsch et al. (2017a). The performance

of several heuristics inspired in traditional ones, including max-min, min-min, Minimum Completion

Time (MCT), were studied to schedule jobs of varying input/output data and CPU cycles requirements.

The heuristics operate without assuming jobs information related to CPU requirements. Instead, they

just assume to know job data transfer information and SMDs connection quality parameters to schedule

jobs.

The performance of the two-phase approach has been evaluated under simulated conditions. Although

simulation is the most adopted evaluation methodology in the area, and the in-vitro simulation scheme en-

dows the evaluation with a distinctive quote of realism, an in-vivo performance evaluation to enforce the

obtained results is nevertheless desirable. Nonetheless, efforts in my research group towards implement-

ing the proxy-based architecture and the ranking-based scheduling criteria are underway Perez Campos

et al. (2017). In the aforementioned work, an empirical assessment of the SEAS against round robin and

random approaches was performed, and the results obtained confirm the simulated performance reported

in the original SEAS paper Rodriguez et al. (2010).

Lastly, the two-phase approach lacks a mid-term scheduling component to avoid saturating an MVR

with jobs that have low chances to finalize. In other words, the load represented by all jobs received by

a proxy is re-distributed by the two-phase approach based on computing-energy related characteristics

of SMDs offering computing resources. However, until an SMD does not loose connection, e.g., due to

battery depletion, the jobs waiting for execution in the queue of that SMD will wait despite having no

chance -neither locally at the SMD, nor globally at the MVR- to start executing. Outfitting the current

short-term two-phase scheduling approach with a mid-term scheduling would be useful to automatically

regulate the acceptance of new jobs into the MVR. With such a mechanism the number of non-finalized

jobs and the turnaround time of jobs could be reduced since jobs which cannot be finalized in one MVR

could be redirected to a nearby MVR in a kind of inter-MVR offloading process.

6.3 Future works

This work is expected to further develop in several directions. Owner behavior is a concern intrinsi-

cally related to SMDs resource exploitation whose study and implications are detailed in Section 6.3.1.

Many RA works assume perfect task knowledge and up-to-date resource availability information as

pre-conditions to run batch scheduling logic. Given SMDs heterogeneity and volatility of resource avail-

ability, such conditions are hard to obtain and subject to frequent changes. Then, a question that arises is
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how valuable this information is for batch RA works to get advantage over online RA works providing

that the latter compute a task mapping solution with less complexity than the former. This line of fu-

ture work is detailed in Section 6.3.2. To accelerate the performance comparison of different RA works

and hence rapidly advance research in the area, standard software platforms and tools are needed. This

topic is discussed in Section 6.3.3. Issues about addressing incentives, security and privacy concerns

are discussed in Section 6.3.4. Finally, the potential convergence of SMDs and mobile Grids and recent

service-oriented computing paradigms is highlighted in Section 6.3.5.

6.3.1 Allocating resources being aware of SMD owner behavior

The map depicting the singularities which most RA works has been focused on, summarized in Table 2.3,

shows that much of the research has been conducted to address challenges posed by, in first place, ex-

haustible resources of SMDs and, in the second place, user mobility. More investigation is needed with

regard to the lack of ownership singularity. It involves not only the way it affects external task execution,

but the way external tasks execution is expected to alter SMD owner experience.

The work developed in the context of this thesis can be extended to outfit the two-phase scheduling ap-

proach with lack of ownership-aware capabilities. It means not only to consider the singularity within

experimental design, but to develop indicators, algorithms and techniques aligned with the goals summa-

rized in Table 2.6: to target a higher exploitation of available resources and achieve a balanced exploita-

tion of resources considering owner’s future needs. Outfitting schedulers with knowledge derived from

SMDs owner usage profile would therefore help in:

• Increase the efficiency of resource scavenging: the MVR productivity could benefit from indicators

that rate SMDs potential computing capabilities considering not only hardware specifications but

also owner behavior and future computing needs. Indicators might exploit, for example, context-

aware information Pejovic and Musolesi (2015); Makris et al. (2013), human battery charge be-

haviors Rahmati et al. (2007), applications interaction patterns Wagner et al. (2014), etc.

• Achieve seamless participation: a system whose execution capability relies on computing re-

sources of SMDs, depends on SMDs owner participation. In cooperative scenarios, e.g., transla-

tion at the museum Huerta-Canepa and Lee (2010), participation is given in a natural way, because

owners typically share common objectives, and benefit from the same results. In non-cooperative

scenarios, owners are encouraged to participate, i.e., offer their unused resources, in exchange of

monetary credits or some sort of revenue. Without awareness of future owner activities, the system

could tend to greedily use as much resources as available, causing an aggressive drain of SMDs

battery and making them unusable for satisfying near future owner’s personal needs. Irrespective

of the revenue that the system would pay for the usage of resources, device owner willingness to

participate as resource provider could be threaten by such kind of system behavior. The owner

could perceive that the participation is not as seamless he/she would expect.
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6.3.2 Studying the impact of accurate task information

The effectiveness of a high percentage of state-of-the-art RA proposals for MVR heavily depends on

accurate input of tasks characteristics and requirements. In general, such proposals expect the task orig-

inator to submit tasks indicating timing information referring to either the execution time of the task in

a particular SMD or the time before which the task result should be computed (task deadline). The time

is associated to the computing capabilities, i.e., CPU power, of SMDs and depending on tasks require-

ments, it may also include information related to data transferring time. Additionally, RA mechanisms

addressing the resource exhaustion singularity often rely on tasks energy consumption information which

is usually assumed or derived based on the time a task spends using resources.

Predicting task times is a complex task itself, when not impossible, for the general case Wilhelm et al.

(2008). Averaging historical execution times of a task can be, at first, a practical workaround for predict-

ing future task behavior. However, such strategy is not robust enough to embrace new tasks codes or even

legacy code considering that slight variations in data input can result in very different execution times.

To make things worse, the heterogeneity and dynamic nature of SMDs resource provision are important

sources of execution time variability. In presence of such volatile execution conditions, addressing the

problem of obtaining accurate task information is crucial.

This thesis can be extended to contribute in the aforementioned direction by targeting a comparison with

other RA approaches that share a minimum common set of assumptions. This encompasses, for instance,

RA proposals which despite depending on accurate task information to operate, include some logic for

detecting and reacting to changes in the resources availability Viswanathan et al. (2015), or approaches

focused on different singularities combination but assuming similar jobs characteristics. Such cross com-

parison require finding common metrics for measuring performance, adapting current scheduler criteria

for supporting other performance metrics –e.g., flowtime, makespan, or fairness in resource utilization–,

and reproducing experimental variables of other RA mechanisms –e.g., disconnection–. Moreover, due

to the disparity in the range of experimental variables considered and the quite often scarce provision

of details about all parameters needed to reproduce experimental conditions, it can be also necessary

to implement algorithms and/or indicators used by other RA mechanisms. In relation to the efforts of

reproducing experimental conditions of other works and/or compare the performance of other RA mech-

anisms, it is evident the need for a common experimentation platform. This point is further developed

below.

6.3.3 Unifying and enhancing the evaluation methodologies

The complex nature of SMDs clusters, given by their heterogeneity, dynamism and hard-to-reproduce

scenarios, has pushed simulation as the most accepted practice for evaluating RA performance in the

area. However, simulation software toolkits which are publicly available for use and modification, with

features for investigating RA related concerns associated to all singularities, different type of tasks and

communication supports, do not exist yet. Therefore, the community efforts for producing experimental

results go into multiple ways. For instance, there is software derived from isolated programming ef-

forts Birje et al. (2014) that target specific instances and parameters of the RA problem, instantiations of
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general simulation frameworks -e.g., JAVASim Chunlin and Layuan (2014), MATLAB Singh and Raza

(2017); Li et al. (2015), SIMGrid Lee et al. (2014); Vaithiya and Bhanu (2012)- and purpose-specific,

well-known software developed for other related research areas that provide support to only a subset

of features present in mobile Grid environments, e.g., NS-3, OMNet++. There are also several works

published in prestigious forums that do not specify the software nor the techniques employed for sim-

ulating the performance of RA mechanisms. Moreover, SMDs representation of internal relations, e.g.,

between tasks execution and battery consumption, are quite often oversimplified through the use of syn-

thetic functions and artificial (unrealistic) values. In addition, algorithms, techniques, models, and/or

parameters employed for simulating the effects of SMDs singularities are shallowly explained and/or not

referenced. An open source simulation platform that leverages up-to-date information derived from mo-

bile device datasets -e.g., Device Analyzer Wagner et al. (2014), CRAWDAD Kotz et al. (2009), Human

Activity Recognition using Smartphones Anguita et al. (2013)- for simulating a wide variety of resource

exploitation opportunities is necessary. Such a platform would help to:

• Promote cross-validation tests: by utilizing an unified simulation platform, i.e., a shared set of fea-

tures and input data for modeling devices behavior, the effectiveness of new RA mechanisms could

be easily compared against others previously proposed. This would promote a healthy competi-

tion among researchers -as in other mature computing research fields like Information Retrieval

or even traditional High-Performance Computing- looking for the most effective RA mechanism

depending on the exploitation context. In addition, the fact that an RA mechanism be included in

several studies would help to stress the evaluation of the algorithm and get insights on its behavior

under different resource exploitation scenarios and situations.

• Accelerate the production of results in the area: the research community could accelerate the devel-

opment of RA mechanisms by benchmarking their efforts via one (or few) common and massively

used simulation platform(s). Topics such as assistance for setting up simulation environments, au-

tomated configurations, extensions to the framework for supporting new functionality, creation of

software libraries and applications for filtering information from available data-sets and/or gener-

ating new data-sets, how to integrate modules from other simulators, amongst many others, could

be subject of fruitful discussions in special forums.

6.3.4 Addressing incentive, security and privacy concerns

There are other important orthogonal concerns –alongside the three singularities discussed– that should

be addressed to ensure that SMD cluster usage goes mainstream. Particularly, such concerns are how to

systematically lure users into offering their SMDs resources to external applications, how to deal with

potential security treats, and how to preserve privacy in the general sense.

From the reviewed works it follows that economic models for compensating SMDs resources usage and

incentive owner participation is a topic that deserves more attention by the research community. The price

that should be paid for the usage of resources is an open issue. Only few works, from those analyzed

in this survey, address this concern Ghasemi-Falavarjani et al. (2015); Birje et al. (2014); Chunlin and
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Layuan (2014). In Ghasemi-Falavarjani et al. (2015), the authors outfit the RA they propose with a

virtual credit mechanism to reward SMDs owners who contribute with resources. The price of resource

usage is calculated by measuring the execution time and energy consumed by a known device. A set of

experiments were designed to show the impact in energy consumption of SMDs owners with selfish and

altruist profiles. In Chatzopoulos et al. (2016) the authors present OPENRP, a reputation middleware

for opportunistic crowd computing where a similar analysis of SMDs owners participation profiles is

performed. In Birje et al. (2014); Chunlin and Layuan (2014) the price of resources is determined

through a non-cooperative bargaining game model that resource providers and resource consumers play,

intermediated by resource brokers. A limitation of those proposals is that resource contributors can

know how much credits will receive in exchange of their resources only if detailed tasks requirements

are known before tasks are assigned by the RA. As pointed out in Section 6.3.2, if an RA mechanism

strongly depends on the availability of such information, its application scope is reduced. In absence

of such information, there is no way to valuate a provider, i.e., new indicators need to be designed to

rate SMDs. The rating might involve weighting some SMD features more than others and that must

be in accordance with the system objectives and tasks characteristics. For instance, for a system whose

objective is to reduce makespan, nodes that complete tasks quickly can be more valuable than those

which complete tasks in an energy efficient way. By contrast, a distributed computing system which

prioritizes the availability over the speed of execution services could rate higher SMDs with long battery

life than those which provide high computing throughput.

In a similar line, security and privacy concerns are still not being addressed from the RA logic. Security

and privacy involve mechanisms that assure transparency in the usage of resources and prevent misusing

effects for both counterparts of the system, i.e., resource providers and resource consumers. In other

words, resource consumers should be assured that tasks input (data to be processed, execution code) and

results will not be altered neither by intruders in a network nor by the SMD owner who voluntarily offer

the resources. From the resource providers point of view, the system would need to assure that tasks

execution will not use or alter personal information and documents from the SMD owner and violate

his/her privacy. Although techniques such as data encryption Pasupuleti et al. (2016) and operating

system level virtualization Wessel et al. (2015) can help in achieving these objectives, the time and

energy consumption of applying such solutions has not been studied in the context of RA mechanisms,

e.g., as overhead costs.

6.3.5 The FaaS concept to leverage SMDs resources

Cloud Computing platforms deliver hardware and software resources to clients through services accord-

ing to three classical provision models named Infrastructure as a Service (IaaS), Platform as a Ser-

vice (PaaS) and Software as a Service (SaaS). These models also determine the abstraction level at

which resources are provided. Broadly, at the lowest layer, i.e., the IaaS layer, a combination of hosting,

hardware provisioning and basic services needed to run a Cloud are provided. The PaaS layer, which

sits on top of the IaaS layer, offers computing platform and software application deployment services

to enterprises. On top of the PaaS layer is the SaaS layer through which vendors host applications and

services to make them available to their customers.
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With the popularity of Cloud services, the spectrum of potential services has become richer and numerous

features started to be offered as services Varghese and Buyya (2017). An example of such features are

functions offered as a service (FaaS) from the PaaS layer. Functions are the building blocks of the

serverless computing model, which promotes event-based invocations of lightweight pieces of remote

codes, and represents a simplified way for non-expert users to benefit from distributed computing since

it eliminates the need to deal with the complexity of cluster management and configuration tools Jonas

et al. (2017); Spillner et al. (2017).

Functions lightweight characteristic, i.e., low overhead configuration and execution runtime, and state-

less codes make them perfect candidates for being deployed and executed with the limited resources of

SMDs. Under this scheme of code execution, SMDs willing to offer resources such as CPU cycles or

sensors could for example host associated functions and announce the function list they support. Such

announcements, which could take place at the time an SMD joins an MVR, might involve describing

through a service description artifact each function purpose, invocation parameters and return types. In

this context, functions might inherit the same discoverability and understandability issues of traditional

Web Services Hirsch et al. (2017b, 2014).
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