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Abstract This paper presents a comprehensive statistical analysis of a variety of
workloads collected on production clusters and Grids. The applications are mostly
computational-intensive and each task requires single CPU for processing data, which
dominate the workloads on current production Grid systems. Trace data obtained on
a parallel supercomputer is also included for comparison studies. The statistical prop-
erties of workloads are investigated at different levels, including the Virtual Organi-
zation (VO) and user behavior. The aggregation procedure and scaling analysis are
applied to job arrivals, leading to the identifications of several basic patterns, namely
pseudo-periodicity, long range dependence (LRD), and multifractals. It is shown that
statistical measures based on interarrivals are of limited usefulness and count based
measures should be trusted when it comes to correlations. Other job characteristics
like run time and memory consumption are also studied. A “bag-of-tasks” behavior
is empirically evidenced, strongly indicating temporal locality. The nature of such
dynamics in the Grid workloads is discussed. This study has important implications
on workload modeling and performance predictions, and points out the need of com-
prehensive performance evaluation studies given the workload characteristics.

Keywords Workload characterization · Cluster and grid computings

H. Li (�)
Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1,
2333 CA Leiden, The Netherlands
e-mail: hui.li@computer.org

Present address:
H. Li
Department of Planning, Performance, and Quality, TNO ICT, 2612 CT Delft, The Netherlands

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81090684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hui.li@computer.org


2 H. Li

1 Introduction

Grid computing is rapidly evolving as the next-generation platform for system-level
sciences and beyond. Scheduling in a Grid environment can be carried out at different
levels, including local resource management systems on clusters, Grid-level broker-
ing services, and virtual organization based schedulers. Consequently, performance
evaluation of scheduling strategies require representative workload models at differ-
ent levels. The goal of this paper is to study comprehensively the statistical properties
of workloads on Grids at various levels, which serve as the basis for workload mod-
eling and performance predictions.

Closely-related workload studies have been carried out for parallel supercomput-
ers. On single parallel machines, a large amount of workload data has been collected,1

characterized [9, 18, 27], and modeled [7, 18, 26]. In [7], polynomials of degree 8 to
13 are used to fit the daily arrival rates. In [18], a combined model is proposed where
the interarrival times fit a hyper-Gamma distribution and the job arrival rates match
the daily cycle. Time series models such as ARIMA are studied in [27], which try
to capture the traffic trends and interdependencies. Other characteristics such as run
time and parallelism are also investigated and models are proposed based on distri-
bution fitting [18] or Markov chains [26]. It could be concluded that a majority of
previous research results on parallel supercomputers focus mainly on marginal distri-
butions and first order statistics while correlations and second order properties receive
far less attention. The reason could be that characteristics on parallel workloads are
inherently weakly autocorrelated or short range dependent (SRD). For instance, in
this paper, analysis of a representative parallel workload is conducted for compari-
son studies. It is shown that the interarrival time process of job arrivals as well as the
run time series are indeed short range dependent. Despite the fractal behavior at small
scales, the job count process is also weakly autocorrelated with quickly-vanishing au-
tocorrelation lags. Data-intensive workloads on clusters and Grids, on the other hand,
exhibit pseudo-periodicity and long range dependence which are not present in par-
allel workloads. Therefore, second order statistics is crucial and new methodologies
should be proposed for both analysis and modeling.

The contribution of this work is three-fold. First, point process is introduced to de-
scribe job arrivals and several representations are studied. It is shown that statistical
measures based on interarrivals are of limited usefulness when it comes to autocor-
relations and count based measures should be trusted instead. Secondly, the scaling
analysis on job count processes enable us to understand the autocorrelation structures
better. Together with the cross-correlations between characteristics, we obtain an im-
proved understanding toward workload dynamics. Thirdly, we identify several basic
patterns, such as pseudo-periodicity, long range dependence, and “bag-of-tasks” be-
havior. Further research on workload modeling on clusters and Grids should capture
these salient properties, which could have important implications on performance
evaluation studies.

The rest of this paper is organized as follows. Section 2 introduces the defini-
tion and methodology used in the analysis. Point process and its representations are

1Parallel Workload Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.
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defined. Statistical measures are presented, including marginal statistics, autocorre-
lation and spectrum, and cross-correlation. Topics regarding scaling, fractals, and
power law behavior are treated in depth, for which various defining properties and
analyzing tools are discussed. Section 3 describes workloads in a broader perspec-
tive. Related work on network traffic and cluster workloads are further reviewed and
discussed. Section 4 presents a comprehensive analysis on real-world workload data.
We study a variety of workloads from Grids, clusters, and a parallel supercomputer.
VO and user behavior are investigated extensively. In Sect. 5, the nature and origin of
workload dynamics are explained and implications on modeling and predictions are
discussed. Conclusions and future work are presented in Sect. 6.

2 Definition and methodology

This section covers the statistical theories and methodologies used in workload char-
acterization. It starts with the definition of a point process and its representations
because it is the basis for analyzing job arrival processes. Statistical measures such as
distributions, autocorrelation function (ACF), and periodicity are described. A large
part of this section is dedicated to scaling, fractals, and power law behavior. Def-
initions and relationships among important notions such as long range dependence
(LRD), burstiness, scaling, and wavelets are elaborated. These are the theories for
understanding the temporal correlations and dynamics of the workloads presented
later in this paper.

2.1 Point processes

Job traffic can be described as a (stochastic) point process, which is defined as
a mathematical construct that represents individual events as random points at
times {tn}. There are different representations of a point process. An interarrival time
process {In} is a real-valued random sequence with In = tn − tn−1. The sequence
of counts, or the count process, is formed by dividing the time axis into equally
spaced contiguous intervals of T to produce a sequence of counts {Ck(T )}, where
Ck(T ) = N((k + 1)T ) − N(kT ) denotes the number of events in the kth interval.
This sequence forms a discrete-time random process of nonnegative integers and it is
another useful representation of a point process. A closely related measure is a nor-
malized version of the sequence of counts, called the rate process Rk(T ), where
Rk(T ) = Ck(T )/T .

In general, forming the sequence of counts loses information because the interar-
rival times between events within interval T are lost. Nevertheless, it preserves the
correspondence between its discrete time axis and the absolute “real” time axis of the
underlying point process. The correlation in the process {Ck(T )} can be readily asso-
ciated with that in the point process. The interarrival time process, on the other hand,
eliminates the direct correspondence between absolute time and the index number,
thus, it only allows rough comparisons with correlations in the point process [17]. As
is shown later, measures based on interarrival times are not able to reliably reveal the
fractal nature of the underlying process and count based measures should be trusted
instead. The different representations of a point process are illustrated in Fig. 1.
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Fig. 1 An example
of a point process and its two
representations: an interarrival
time process and a count process

2.2 Statistical measures

No single statistic is able to completely characterize a point process and each provides
a different view and highlights different properties. A comprehensive analysis toward
an improved understanding requires many such views. In this section, the statisti-
cal measures used throughout this paper are defined. These measures apply to both
interarrival time and count (rate) representations, although their usefulness depends
heavily on the analytic context.

The first set of measures focus on the marginal properties of a process, including
mean (μ), variance (σ 2), probability density function (PDF), and cumulative distrib-
ution function (CDF). In practice, the sample mean (X) and sample variance (S2) are
used to estimate mean and variance, respectively. The so-called complementary cu-
mulative distribution function (CCDF) is commonly used to show probability distri-
butions. Histogram, a graph that shows the frequency of data in successive equal-size
numerical intervals, is used to estimate the probability density function. The reader is
referred to [25] for a detailed treatment on these basic statistical measures.

2.2.1 Autocorrelation and spectrum

The autocorrelation function (ACF) of a process X describes the correlations between
different points in time. If X is second order stationary, i.e., mean μ and variance σ 2

do not change over time, the autocorrelation function depends only on lag k2 and it
can be defined as

R(k) = E[(Xi − μ)(Xi+k − μ)]
σ 2

, (1)

2For a discrete time series of length n, k is the difference in time and there is 0 ≤ k < n.
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where E is the expected value (mean) operator. It should be noted that in signal
processing the above definition is often used without normalization, namely, without
subtracting the mean and dividing by the variance.

For the interarrival time process, there is no direct relationship between the lag k

and time t , so the ACF RI (k) as well as other interarrival based measures have lim-
ited usefulness, especially in the scaling analysis. The count autocorrelation proves
to be a valuable measure as it provides information about the second-order proper-
ties. For distinction count ACF is denoted as RC(k,T ) for the inclusion of the count
interval T .

Fourier transforming the autocorrelation function (ACF) yields the power spectral
density (PSD, or power spectrum) S(f )

S(f ) =
∑

k

R(k)e−i2πkf , (2)

where f is the frequency. Autocorrelation and power spectrum are commonly-used
measures for studying the correlation structures and second-order properties of a sin-
gle process. Like the autocorrelation, the count-based (SC(f,T )) and rate-based spec-
trums (SR(f,T )) prove to be useful in the identification of fractal behavior. An esti-
mate of power spectrum can be derived via methods such as periodogram. Discrete
Fourier Transform (DFT) is used exchangeably to show the frequency components
of the signal.

2.2.2 Periodicity

From the theory of Fourier analysis, it is known that periodicity shows up as peaks in
the frequency domain. Real world data, however, seldom exhibits perfectly periodic
behavior. In most situations, pseudo-periodic signals are observed instead, potentially
arising from various sources of noises and the time-varying nature of the generation
scheme. From this perspective, it is necessary to use quantitative methods to measure
the degree of periodicity in the data. Periodicity in a process can be detected and
quantified using power-spectrum based methods. The first measure Pf is defined as
the normalized difference of the sum of the power spectrum values at the highest
amplitude frequency and its multiples, and the sum of the power spectrum values at
the halfway-between frequencies [21]. The total spectrum entropy (TSE) calculates
the entropy for the whole power spectrum while the saturated spectrum entropy (SSE)
excludes the first one or two “big” power spectrum values, which represent the total
energy of the signal. All measures have values between 0 and 1. Higher Pf and lower
entropy correspond to stronger periodicity in the signal. These measures are used to
study pseudo-periodic job arrivals.

2.2.3 Cross-correlation

Besides studying how events of the same process are correlated with each other, it is
also important to reveal the correlations between events of distinct random processes.
The simplest way of investigation is to plot samples of both variables and visually
identify if any pattern exists. A common alternative is the scatter plot, which displays
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the sample values of X and Y jointly in a two-dimensional figure. Simply plotting the
data gives us lots of information of the underlying correlation structures.

Nevertheless, visual information cannot be used to give definite answers and quan-
titative measures are needed for identifying correlations in practice. In statistics, a
simple and common measure is called correlation coefficient, which indicates the
strength and direction of a linear relationship between two random variables. The
best known coefficient is the Pearson product-moment correlation coefficient and it
is obtained by dividing the covariance of the two variables by the product of their
standard deviations. It is formulated as

ρX,Y = cov(X,Y )

σXσY

= E((X − μX)(Y − μY ))

σXσY

. (3)

A more advanced version is referred as Spearman’s rank correlation coefficient,
which does not require any assumptions of linear relationship or the distributions
of variables.

2.3 Scaling and power law

Physical processes can be observed from a vast range of scales, in other words, multi-
resolution. For instance, in network traffic studies one can represent the traffic as
number of bytes or packets at the level of milliseconds, seconds, and even minutes.
On clusters and Grids, the number of job arrivals can be aggregated and averaged
every second, every minute or even every hour. Scaling or scale invariance means the
lack of any special characteristic scale, namely all scales have equal importance. Scal-
ing leads to power law dependencies in the scaled quantities as f (as) = g(a)f (s).
It is shown in [17] that the only nontrivial solution of this scaling function for real
functions and arbitrary a and s is f (s) = bsc , for some constants b and c. In some
contexts, c is referred as the scaling component. Self-similar and long range depen-
dent (LRD) processes are two most important classes of general scaling processes
and LRD is relevant in the context of this paper.

A process X(t) is said to be long range dependent (LRD) if either its autocorrela-
tion function or power spectrum satisfies the following conditions

R(k) ∼ crk
α−1, k → ∞, or S(f ) ∼ cf f −α, f → 0, (4)

where cr , cf are constants. The autocorrelation function R(k) decays so slowly that∑∞
k=−∞ R(k) = ∞ and S(0) = ∞. Frequency-domain characterization of LRD also

leads to a class of so-called 1/f -like processes (1/f noise) [31].
It is of crucial importance to recognize the usefulness of different representations

of processes. In network traffic, both interarrival and count based measures prove
to be useful in analyzing the scaling behavior [1, 24]. However, for job arrivals on
clusters and Grids, measures based on interarrivals fails to reveal the fractal behavior
of the underlying process and only count/rate based measures can be trusted. This
problem is discussed with greater detail in a more theoretical treatment [17].

The scaling behavior introduced so far has one single exponent, thus it can be
called monofractal. There are cases in which a range of fractal behaviors exist within
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one process, or the scaling exponent is time-dependent. The process is then called
multifractal. A complete presentation of multifractal formalism is referred to [22].
The later mentioned biscaling is a very simple form of multifractals.

2.3.1 Wavelets and scaling

Due to its inherent multi-scale/resolution properties, wavelets provide a natural
framework for analyzing the scaling behavior. Like the Fourier transform that ana-
lyzes signals with sinusoidal functions, the wavelet transform projects the signal onto
the so-called wavelets [8, 28]. A wavelet function ψ(t) is a bandpass function that
can be scaled and shifted

ψj,k(t) = 2−j/2ψ
(
2−j t − k

)
. (5)

There also exists a scaling function φ(t), which is a lowpass function that can be
scaled and shifted as well. A discrete wavelet transform (DWT) of a signal can be
executed by passing the signal recursively through a set of lowpass and bandpass
filters [28]. As a result, the signal is decomposed into a sum of weighted scaling
functions and wavelet functions

X(t) =
∑

k

c(j0, k)φj0,k +
∑

j≤j0

∑

k

d(j, k)ψj,k(t), (6)

where c(j0, k) are referred as scaling coefficients (or approximations) and d(j, k) as
wavelet coefficients (or details).

A very attractive feature of wavelet analysis lies in the fact that the long range de-
pendent, nonstationary original process turns into stationary, nearly uncorrelated, or
short range dependent wavelet coefficients d(j, k). In the case of scaling, the energy
of these coefficients is power law dependent of scale j , denoted by

1

nj

nj∑

k=1

∣∣d(j, k)
∣∣2 ∝ 2jα. (7)

This property leads to a wavelet-based scaling exponent estimation tool called the
logscale diagram [3]. Compared with other power law based estimators like aggre-
gated variance and periodogram, this technique is shown to have better statistical and
computational properties [4].

As has been explained and formulated in [3], if α ∈ (0,1) and the range of scales
is from some initial scale j1 to the largest scale, then scaling could be related to LRD
with a scaling exponent of measured α. It is also highly possible that real world data
have more than one alignment region within a single logscale diagram, which is re-
ferred as biscaling. Biscaling can be regarded as different scaling exponents at small
and large scales, respectively. A natural generalization of logscale diagram beyond
second order can be denoted as μ

(q)
j = 1/nj

∑
k |d(j, k)|q , where q is of real value.

It is shown in [3] that E[μ(q)
j ] ∼ 2j (ζ(q)+q/2). For monofractals such as exact self-

similar processes, there is ζ(q) = qH , meaning that self-similarity can be identified
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by testing the linearity of ζ(q). If on the other hand ζ(q) is nonlinear, then multifrac-
tal scaling is detected. The so-called multiscale diagram is a realization of this result.
The qth order scaling exponent αq = ζ(q) + q/2 can be estimated in the qth order
logscale diagram for multiple q values. The multiscale diagram consists of the plot of
ζ(q) = αq − q/2 against q along with the confidence intervals. A lack of linearity in
the multiscale diagram suggests multifractal behavior, therefore, it becomes a useful
tool for identifying multifractal processes.

3 Workloads in a broader perspective

Studies on network traffic are reviewed because it includes a rich collection of ad-
vanced statistic tools for analyzing and modeling self-similar, long range dependent,
and fractal behavior. The self-similar nature of Ethernet traffic is discovered in [14],
and consequently, a set of exact self-similar models such as fractional Brownian mo-
tion and fractional Gaussian noise are proposed as traffic models [20, 29]. Network
traffic is also shown to be long range dependent, exhibiting strong temporal bursti-
ness [2, 23]. Both self-similar and LRD processes are most well-known examples of
general scaling processes, characterized by the scaling and power law behavior [3].
Due to its inherent multi-resolution nature, wavelet is proposed as an important tool
for analysis and synthesis of processes with scaling behavior [1, 3, 30]. Multifrac-
tal models and binomial cascades are proposed for those processes with rich fractal
behavior beyond second-order statistics [11, 24]. Recent advances include a more
general Infinitely Divisible Cascade (IDC) process [6]. These methodologies enable
the scaling analysis on job arrivals and the identification of important patterns.

Workload characterization on clusters with marginal statistics can be found
in [12, 16, 19]. In [19] an ON-OFF Markov model is proposed for modeling job
arrivals, which is essentially equivalent to a two-phase hyperexponential renewal
process. The major modeling drawback using renewal processes is that the autocor-
relation function (ACF) of the interarrival times vanishes for all nonzero lags so they
cannot capture the temporal dependencies in time series [13]. A more sophisticated
n-state Markov modulated Poisson process is applied for modeling job arrivals at the
Grid and VO level [15], making a step forward toward capturing autocorrelations.
Nevertheless, only limited success is obtained by MMPP because of the rich behav-
ior and patterns hidden in Grid workloads at different levels. This paper identifies and
characterizes those salient workload patterns on clusters and Grids.

4 Application to workload data

The workload data under study are collected from real production clusters and Grids.
Table 1 presents a summary of workload traces used in this paper. LCG1 and LCG2
are two traces from the LHC Computing Grid.3 The LCG production Grid consists

3LCG is a data storage and computing infrastructure for the high energy physics community that will use
the Large Hadron Collider (LHC) at CERN. http://lcg.web.cern.ch/LCG/.

http://lcg.web.cern.ch/LCG/


Workload dynamics on clusters and grids 9

Table 1 Summary of workload traces used in the experimental study (NIK–NIKHEF)

Trace Location Arch. Scheduler CPUs Period #Jobs

LCG1 Grid wide data Grid Grid Broker ∼30 k Nov. 2005 188,041

LCG2 Grid wide data Grid Grid Broker ∼30 k Dec. 2005 239,034

NIK05 NIK, NL PC cluster PBS/Maui 288 Sep.–Dec. 2005 63,449

RAL05 RAL, UK PC cluster PBS/Maui 1,000 Oct.–Nov. 2005 332,662

LPC05 LPC, FR PC cluster PBS/Maui 140 Feb.–Apr. 2005 71,271

SBH01 SDSC, US IBM SP LoadLeveler 1152 Jan.–Dec. 2001 88,694

of approximately 180 active sites with around 30,000 CPUs and 3 petabytes storage
(Dec. 2005), which is primarily used for high energy physics (HEP) data processing.
There are also jobs from biomedical sciences running on this Grid. Almost all the
jobs are independent, computationally-intensive tasks, requiring one CPU to process
a certain amount of data. The workloads are obtained via the LCG Real Time Moni-
tor4 for two periods: LCG1 consists of jobs of eleven consecutive days from Novem-
ber 20–30 in 2005, while LCG2 is from December 19–30 in the same year. These two
traces carry valuable information about the user behavior at the Grid level.

The Grid sites consists of computing clusters and storage systems. Each cluster
runs its local resource management system and defines its own sharing policies. It is
also important to analyze the workloads at the cluster level. Traces are obtained from
three data-intensive clusters, which are named NIK05, RAL05, and LPC05. They are
located at the HEP institutes in the Netherlands, UK, and France, respectively, and all
of them participate in LCG. The clusters are made of commodity components, and de-
ploys similar cluster software suite (e.g., PBS/Maui) and Grid middleware from LCG.
It should be noted that these clusters are involved in multiple collaborations simulta-
neously and have their own local user activities. Grid jobs from LCG only account
for a portion of the whole workloads, depending on the level of involvement and local
policies. The trace SBH01 is from a SDSC parallel supercomputer and it is included
for comparison studies.

Workloads typically have certain structures. Jobs come from different groups and
users. In Grids, Virtual Organization (VO) is an important concept and one can con-
sider a VO as a collection of entities (users, resources, etc.) that belong to multiple
organizations but have common goals or shared policies. In LCG, VOs are mostly
named after major HEP experiments and scientific disciplines, such as lhcb, atlas,
or biomed. It is observed that a small number of top VOs and users often dominate
the workload, as is shown in Fig. 2. These type of patterns can also be empirically
found in many social and physical phenomena, such as database transactions and
Unix file sizes [5, 9]. By analyzing the main VOs and users, a good understanding
of the whole workload can be obtained. Moreover, patterns emerge by simply using

4The Real Time Monitor is developed by Imperial College London and it monitors jobs from all major
Resource Brokers on the LCG Grid, therefore, the data it collects are representative at the Grid level.
A Resource Broker (RB) is a service to receive and schedule jobs from Grid users. http://gridportal.hep.
ph.ic.ac.uk/rtm/.

http://gridportal.hep.ph.ic.ac.uk/rtm/
http://gridportal.hep.ph.ic.ac.uk/rtm/
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Fig. 2 Distributions of number of jobs by VOs and users on clusters and Grids

Table 2 Different levels and characteristics under study for the Grid, the cluster, and the supercomputer
(SC) traces

Category Traces Levels Characteristics to study

Grid LCG1/LCG2 Grid/VO Arrival, Run time

Cluster NIK05/RAL05/LPC05 Site/VO/User Arrival, Run time, Memory

SC SBH01 Site/User Arrival, Run time, Parallelism

Table 3 Names for different VOs or users in experimental studies. lhcb, atlas, and cms are major HEP
experiments in the LCG Grid. dteam is a VO mostly consisting of software monitoring and testing jobs
in the Grid. hep1 is a HEP collaboration between institutes in UK and US, part of which is also involved
in LCG. biomed is the VO with biomedical applications and it contributes to ∼65% of LPC05 jobs. com1
is a company partner with NIKHEF, which runs medical-related data-intensive jobs. user45, user328, and
user272 are the top three users on SDSC Blue Horizon with most of the job submissions

Trace VO or user names under study

LCG1 lhcb, atlas, cms, dteam

LCG2 lhcb, atlas, cms, dteam

NIK05 lhcb, atlas, com1

RAL05 hep1, atlas

LPC05 biomed

SBH01 user45, user328, user272

the nominal VO names for categorization without applying sophisticated clustering
techniques. From a performance evaluation perspective, it is also desirable to include
VO or users in the models since most of the policy rules are based on their names.
Given these many motivations, the analysis in this paper focuses on the VO level.
User level experiments are carried out for SBH01 because the VO/group information
is not available. The levels and the different VO/user names under study are shown
in Tables 2 and 3, respectively.

Table 2 shows the job characteristics at different levels. Different characteristics
are investigated for each level based on their usage and availability. For data-intensive
Grids job, arrivals and run times are being analyzed. On clusters, job memory con-
sumption becomes available for study. In both cases, parallelism need not to be con-
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Fig. 3 The histogram plot, autocorrelation function (ACF), and discrete Fourier transform (DFT) for the
interarrival time process of lhcb, LCG1

sidered because of its equality to one. On the supercomputer, however, parallelism
becomes an important characteristics so it is included in the study.

The analysis is to apply the statistical measures discussed in Sects. 2.2 and 2.3 to
each level of workloads for different characteristics. This has generated a large num-
ber of data and figures. The interest point, however, is to discover some basic pattern
or patterns of the workload characteristics. Therefore, the presentation of results is
categorized by the discovered patterns and only representative figures of each pattern
are shown. In the following sections, the job arrival patterns is analyzed first, followed
by run time, memory, and parallelism. Cross-correlations between characteristics are
then examined.

4.1 Job arrival process

There are three basic patterns identified for job arrivals on clusters and Grids: pseudo-
periodicity, long range dependence (LRD), and (multi)fractals, which are presented
subsequently in the following sections. Short range dependence is also observed for
cluster workloads. It is not included here in the characterization, but will be investi-
gated in the performance studies of workload correlations.

4.1.1 Pseudo-periodicity

There are a number of VOs at the Grid and the cluster level which exhibit pseudo-
periodic patterns and lhcb on LCG1 is used as the example here. Figure 3 shows
the first and second order statistics of job interarrival times of lhcb, LCG1. A strong
deterministic component of around 20 seconds is observed in the histogram plot. As
to the second-order properties, certain periodicity is detected in the ACF and DFT
plot. The decaying peaks in the ACF plot correspond to the two main spikes in the
low frequency domain of the DFT. Nevertheless, periodicity for interarrival times
does not hold for all processes belonging to this pattern. This is in accordance with
the fact that interarrival based measures eliminate the direct relation with the real time
axis and count based measures should be examined.

The next step naturally goes to the aggregation procedure which uses count based
measures. Figure 4 plots the count process together with its ACF and power spec-
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Fig. 4 The sequence plot, autocorrelation function (ACF), and power spectrum via periodogram for the
count process of lhcb, LCG1

Table 4 Periodicity measures.
TSE—total spectrum entropy,
SSE—saturated spectrum
entropy. Pf —the periodicity
measure as defined in Sect. 2.2.2

Trace TSE SSE Pf

lhcb, LCG1 (scale = 6) 0.40 0.74 0.84

lhcb, LCG2 (scale = 6) 0.18 0.72 0.78

dteam, LCG1 (scale = 6) 0.69 0.71 0.94

dteam, LCG2 (scale = 6) 0.68 0.70 0.95

com1, NIK05 (scale = 8) 0.79 0.80 0.89

all, NIK05 (scale = 8) 0.88 0.91 0.79

biomed, LPC05 (scale = 8) 0.63 – 0

trum for scale5 = 6. Periodicity is clearly detected by the equally-spaced peaks in
the ACF plot and the multiple harmonics in the power spectrum. The quantitative
measures for periodicity are shown in Table 4. SSE values should be used to examine
the strength of periodicity and its results are consistent with those of Pf : lower SSE
values correspond to higher Pf values, which indicate stronger periodic behavior. It
is observed that all listed processes except biomed, LPC05 show quite strong period-
icity. As a comparison biomed, LPC05 shows no periodicity at all and it is long range
dependent.

4.1.2 Long range dependence (LRD)

biomed, LPC05 is used as a representative example for illustrating long range de-
pendence. As is shown in Fig. 5, the interarrival time distribution is heavy-tailed and
amplitude burstiness is observed. The ACF of interarrival times, on the other hand,
has quickly decaying lags and shows short range dependence. This is in accordance
with the scaling exponent estimate α = 0.164 in the logscale diagram in Fig. 5. For
the logscale diagram of count based measures, the scaling region is from the octave 8
(corresponding to scale 10 in the variance plot) up to the largest scale with an esti-
mated scaling exponent α = 0.96. This type of scaling strongly suggests long range
dependence behavior [3]. Plotting the count processes from several scales and their
second order statistics further confirm LRD. It is shown in Fig. 5 that the ACF and

5A dyadic scale is used so scale j means T = 2j seconds in the count process. This applies to all the scales
in the count based measures used throughout this paper.
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Fig. 5 Plots of the first, second order statistics and scaling analysis for both interarrival and count
processes of biomed, LPC05. The dash line in the logscale diagram is the linear fit for estimating the
scaling exponent α

Fig. 6 The sequence plot, autocorrelation function (ACF), and power spectrum via periodogram for the
count process of atlas, LCG2

the spectrum of scale 8 decay very slowly. It should be noted that the scaling and
LRD behavior has a certain lower bound beyond which scaling is not obeyed.

Data from real production systems is highly complex and different patterns can
be observed within one process. Long range dependence, for instance, can be mixed
with periodic components. There are two types of periodic components added to a
LRD process. The first type is LRD plus high-frequency periodic components. Fig-
ure 6 shows the count process of atlas, LCG2. A slowly-decaying ACF lag indicates
the presence of long range dependence. There is also a high frequency periodic com-
ponent observed in the power spectrum. As is shown in the ACF plot, the periodic
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Fig. 7 The sequence plot, autocorrelation function (ACF), and discrete Fourier transform (DFT) for the
count process of LCG1

fluctuations are nicely aligned with the power law decaying lags. The high frequency
component can be related to some of the deterministic job submissions from this
virtual organization.

The second type of periodic behavior contains multiple components, mostly con-
centrated in the lower frequency domain. This type is usually found in the aggre-
gated whole trace with mixed deterministic and stochastic components. The Grid
level LCG1 and LCG2 are examples of this pattern and LCG1 is shown in Fig. 7. The
count process (scale = 6) is LRD along with multiple low frequency peaks. These
peaks can be related to the behavior of main VOs. By cross-referring the ACF plot
of lhcb, LCG1, it can be found that the 240-minute peak is contributed by lhcb. This
indicates that the count/rate processes at the Grid level are formed by aggregations of
the VO processes.

4.1.3 Multifractals

Figure 8 shows hep1, RAL05 as an example for multifractals. The interarrival time
process is short range dependent. The logscale diagram of the count process exhibits
biscaling (see Sect. 2.3.1). The scaling concentrated at the lower scales indicates the
fractal nature of the sample path. The alignment at higher scales, on the other hand,
resembles that of a stationary SRD process. This is further visualized for scale = 6
with quickly vanishing ACF lags and a white-noise like spectrum. For testing mul-
tifractality, the multiscale diagram of the count process is plotted (“blue circle”,
middle-right in Fig. 8). A simulated fractional Gaussian noise (fGn) with H = 0.8
is also shown as reference of monofractals (“red cross” in the figure). It is shown that
the ζq of fGn (star-dotted line) is linear to q while the hep1-RAL05 count process
(circle-dashed line) is nonlinear, indicating multifractal scaling. This corresponds to
the plot on the right: the hq of the count process departs heavily from the horizontal
line-like fGn. A multifractal model is needed to capture the scaling behavior of such
patterns [24].

Table 5 shows that different levels of traces as categorized by the arrival patterns.
It is concluded that most of the data-intensive traces are either pseudo-periodic, long
range dependent or the combination of the two, whether it is at the cluster, the Grid,
or the VO level. Certain VOs and clusters exhibit multifractal behavior (e.g., RAL05)
and at larger scales their count processes turn to be short range dependent (SRD). For
the supercomputer trace, multifractal or SRD patterns are observed, excluding long
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Fig. 8 Plots of the first, second order statistics and scaling analysis for both interarrival and count
processes of hep1, RAL05. The right figure in the middle row is the multiscale diagram as explained in
Sect. 2.3

Table 5 Different levels of workload traces are categorized according to job arrival patterns

Arrival Patterns Level names

Pseudo-periodic lhcb-LCG1, lhcb-LCG2, dteam-LCG1, dteam-LCG2, NIK05,

com1-NIK05, lhcb-NIK05

LRD atlas-LCG1, cms-LCG1, biomed-LPC05, atlas-NIK05, atlas-RAL05

LRD + Periodic LCG1, LCG2, atlas-LCG2, cms-LCG2

Multifractals RAL05, hep1-RAL05, SBH01, user45-SBH01

SRD user328-SBH01, user272-SBH01

range dependence. The nature and origin of different arrival patterns are discussed in
depth in Sect. 5.

4.2 Run time, memory, and parallelism

This section focuses on the workload characteristics such as run time and memory.
The data is ordered ascendantly by the job arrival times and the autocorrelation func-
tion is used to examine temporal correlations in the sequence of data.
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Fig. 9 The sequence plot, complementary cumulative distribution function (CCDF), and autocorrelation
function (ACF) for run time and memory of lhcb, NIK05

Fig. 10 Scatter plots of interarrivals, run time, and memory of lhcb, NIK05

4.2.1 Clusters and grids

Figure 9 plots the marginal distributions and autocorrelations for job run time and
memory of lhcb, NIK05. The distributions of run times are highly multimodal, mean-
ing that applications within one VO are more similar to each other with specific values
of run times. Similar results are observed for memory consumption. Run times and
memories with similar values also turn to appear subsequently in time, which is evi-
denced by the fluctuating horizontal lineups in the sequence plot. It is not surprising
to see the strong autocorrelations in the sequences of run times or memories. One ex-
planation of these observations is that the computing environment at the cluster level
is more homogeneous compared to the Grid so less variations are expected on job
run times and memories. The “bag-of-tasks” behavior and similarity resulted by VO
categorization lead to a strong degree of temporal locality [10].

It is also interesting to see how the interarrival times are jointly distributed with
the sequences of job attributes. This helps to correlate arrivals and run times (mem-
ories) and identify the “bag-of-tasks” phenomenon on data-intensive environments.
Figure 10 shows the scatter plots of run times and memories against interarrival times
of lhcb, NIK05. It is observed that job run times and memories are heavily clustered
in the range of small interarrival times. This suggests that not only similar values
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Table 6 Results of Pearson’s and Spearman’s rank correlation coefficients (CC, defined in Sect. 2.2.3) for
run times vs. memories on clusters, and for run times vs. parallelism on the supercomputer

Trace Characteristics Pearson’s CC Spearman’s Rank CC

biomed-LPC05 Run time, Memory 0.173 0.695

lhcb-NIK05 Run time, Memory 0.756 0.826

hep1-RAL05 Run time, Memory 0.013 0.456

SBH01 Run time, Parallelism 0.100 0.430

Fig. 11 Plots of run time and parallelism for a parallel supercomputer trace SBH01

appear in a sequence, but also times between arrivals in a sequence are relatively
small. Figure 10 also contains a scatter plot of run time against memory indicating
strong correlations. Correlation coefficients calculated by Pearson’s as well as by
Spearman’ rank are given in Table 6. Among the three VOs lhcb, NIK05 shows the
strongest correlation between run time and memory. For the other two VOs, weak to
moderate correlation coefficients are obtained, however, correlation coefficients are
used only in combination with other measures due to their inherent limitations (espe-
cially Pearson’s). It can concluded that temporal locality and “bag-of-tasks” behavior
are clearly evidenced for workloads on clusters and Grids.

4.2.2 Parallel supercomputers

Figure 11 shows the statistical properties of run times and parallelism for the parallel
supercomputer SBH01. No multimodality is detected and there is moderate to weak
autocorrelations in the sequence of run times. For parallelism, a power-of-two phe-
nomenon is clearly observed as reported in the parallel workloads literature. In this
case, a power-of-eight pattern is prominent, mostly because the IBM SP has nodes
with eight processors. The cross-correlation between run time and parallelism has
shown diverse results [16, 18], and there is no correlations for the parallel workload
under study.

5 The nature of grid workload dynamics

The focus of this paper is on production Grid environments whose workloads con-
sist of flows of independent, computationally-intensive tasks. By looking at the cur-
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rent workload structure, together with the booming factor of computing-based solu-
tions to system-level sciences such as physics and biology, it can be envisioned that
computationally-intensive applications contribute to a main part of workloads run-
ning on current and future Grids. This type of applications are also well suited to run
on a heterogeneous Grid environment because of its loosely-coupled and data-parallel
nature. Real parallel applications such as those on traditional supercomputers, on
the other hand, are more tightly-coupled with heavy inter-process communications.
Based on the different properties of applications and architectures, it is expected that
cluster and Grid workloads possess structures and patterns that are different from
those on parallel supercomputers. The quest starts with the origin of job arrival dy-
namics.

There are three patterns that are identified for data-intensive job arrivals. The first
one exhibits strong periodicity, which suggests certain deterministic job submission
mechanisms. lhcb is a large HEP experiment in the LCG Grid with the largest portion
of jobs. By taking into account that close to 90% of lhcb jobs (around 60,000) are
from a single “user” during eleven consecutive days in LCG1, it can be assumed that
scripts are made to submit those jobs, which are deterministic in nature. It can also
be interpreted that automated tasks need to be implemented to process such a huge
amount of scientific data. Periodicity can also comes from testing and monitoring jobs
in the Grid such as those from dteam. dteam stands for “deployment team” and it is
dedicated for a continuously functioning and operating Grid. Mostly testing and mon-
itoring jobs are initiated automatically by software in a periodic fashion. The periodic
pattern is also observed for VOs at the cluster level. It is considered as a basic pattern
that originates from automated submission schemes. The second pattern is long range
dependent (LRD) and it applies to many production VOs. It can be partially explained
by the repetitive executions of multiple specific applications. A typical user would
submit sequences of tasks with a heavy-tailed inter-submission time. This behavior
shows temporal burstiness, which is argued in [5] that it essentially originates from
a priority selection mechanism between tasks and nontasks waiting for execution.
LRD forms the second basic pattern that characterizes job arrivals on clusters and
Grids. By combining periodicity and LRD, some interesting patterns emerge. The
process can be long range dependent with high frequency oscillations, rooting from
the short-period repetitions of job arrival rates at small time scales. The process can
also be LRD with multiple lower frequency components, which is mainly due to the
addictive nature of aggregation at the Grid level.

When more characteristics such as run time and memory are taken into account,
“bags-of-tasks” behavior is empirically evident for data-intensive workloads. The
marginal distributions for run time and memory are highly multimodal. Certain nu-
meric values not only occur subsequently, but also turn to appear within certain bursty
periods. This is because of the nature of data-intensive applications. On conventional
parallel supercomputers, on the other hand, such behavior is not present in the work-
loads [7, 16, 18].
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6 Conclusions and future work

In this paper, a comprehensive statistical study was carried out for workloads on
clusters and Grids, with an emphasis on the correlation structures and the scaling
behavior. It was shown that statistical measures based on interarrivals are of limited
usefulness and count based measures should be trusted instead when it comes to
correlations. Pseudo-periodicity, long range dependence, and “bag-of-tasks” behavior
with strong temporal locality are important characteristic properties of workloads
on clusters and Grids, which is not present in traditional parallel workloads. Future
work naturally extends to workload modeling that tries to capture the correlation
structures and patterns obtained in this paper. Experimental performance evaluation
studies using simulations are needed to investigate the impact on scheduling and how
to improve it under such workload patterns.
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