4,596 research outputs found

    Application acceleration for wireless and mobile data networks

    Get PDF
    This work studies application acceleration for wireless and mobile data networks. The problem of accelerating application can be addressed along multiple dimensions. The first dimension is advanced network protocol design, i.e., optimizing underlying network protocols, particulary transport layer protocol and link layer protocol. Despite advanced network protocol design, in this work we observe that certain application behaviors can fundamentally limit the performance achievable when operating over wireless and mobile data networks. The performance difference is caused by the complex application behaviors of these non-FTP applications. Explicitly dealing with application behaviors can improve application performance for new environments. Along this overcoming application behavior dimension, we accelerate applications by studying specific types of applications including Client-server, Peer-to-peer and Location-based applications. In exploring along this dimension, we identify a set of application behaviors that significantly affect application performance. To accommodate these application behaviors, we firstly extract general design principles that can apply to any applications whenever possible. These design principles can also be integrated into new application designs. We also consider specific applications by applying these design principles and build prototypes to demonstrate the effectiveness of the solutions. In the context of application acceleration, even though all the challenges belong to the two aforementioned dimensions of advanced network protocol design and overcoming application behavior are addressed, application performance can still be limited by the underlying network capability, particularly physical bandwidth. In this work, we study the possibility of speeding up data delivery by eliminating traffic redundancy present in application traffics. Specifically, we first study the traffic redundancy along multiple dimensions using traces obtained from multiple real wireless network deployments. Based on the insights obtained from the analysis, we propose Wireless Memory (WM), a two-ended AP-client solution to effectively exploit traffic redundancy in wireless and mobile environments. Application acceleration can be achieved along two other dimensions: network provision ing and quality of service (QoS). Network provisioning allocates network resources such as physical bandwidth or wireless spectrum, while QoS provides different priority to different applications, users, or data flows. These two dimensions have their respective limitations in the context of application acceleration. In this work, we focus on the two dimensions of overcoming application behavior and Eliminating traffic redundancy to improve application performance. The contribution of this work is as follows. First, we study the problem of application acceleration for wireless and mobile data networks, and we characterize the dimensions along which to address the problem. Second, we identify that application behaviors can significantly affect application performance, and we propose a set of design principles to deal with the behaviors. We also build prototypes to conduct system research. Third, we consider traffic redundancy elimination and propose a wireless memory approach.Ph.D.Committee Chair: Sivakumar, Raghupathy; Committee Member: Ammar, Mostafa; Committee Member: Fekri, Faramarz; Committee Member: Ji, Chuanyi; Committee Member: Ramachandran, Umakishor

    Enhancing Mobile Capacity through Generic and Efficient Resource Sharing

    Get PDF
    Mobile computing devices are becoming indispensable in every aspect of human life, but diverse hardware limits make current mobile devices far from ideal for satisfying the performance requirements of modern mobile applications and being used anytime, anywhere. Mobile Cloud Computing (MCC) could be a viable solution to bypass these limits which enhances the mobile capacity through cooperative resource sharing, but is challenging due to the heterogeneity of mobile devices in both hardware and software aspects. Traditional schemes either restrict to share a specific type of hardware resource within individual applications, which requires tremendous reprogramming efforts; or disregard the runtime execution pattern and transmit too much unnecessary data, resulting in bandwidth and energy waste.To address the aforementioned challenges, we present three novel designs of resource sharing frameworks which utilize the various system resources from a remote or personal cloud to enhance the mobile capacity in a generic and efficient manner. First, we propose a novel method-level offloading methodology to run the mobile computational workload on the remote cloud CPU. Minimized data transmission is achieved during such offloading by identifying and selectively migrating the memory contexts which are necessary to the method execution. Second, we present a systematic framework to maximize the mobile performance of graphics rendering with the remote cloud GPU, during which the redundant pixels across consecutive frames are reused to reduce the transmitted frame data. Last, we propose to exploit the unified mobile OS services and generically interconnect heterogeneous mobile devices towards a personal mobile cloud, which complement and flexibly share mobile peripherals (e.g., sensors, camera) with each other

    Cloud Computing: Architectural and Policy Implications

    Get PDF
    Cloud computing has emerged as perhaps the hottest development in information technology. Despite all of the attention that it has garnered, existing analyses focus almost exclusively on the issues that surround data privacy without exploring cloud computing’s architectural and policy implications. This article offers an initial exploratory analysis in that direction. It begins by introducing key cloud computing concepts, such as service-oriented architectures, thin clients, and virtualization, and discusses the leading delivery models and deployment strategies that are being pursued by cloud computing providers. It next analyzes the economics of cloud computing in terms of reducing costs, transforming capital expenditures into operating expenditures, aggregating demand, increasing reliability, and reducing latency. It then discusses the architectural implications of cloud computing for access networking (focusing on bandwidth, reliability, quality of service, and ubiquity) and data center interconnectivity (focusing on bandwidth, reliability, security and privacy, control over routing policies, standardization, and metering and payment). It closes by offering a few observations on the impact of cloud computing on the industry structure for data centers, server-related technologies, router-based technologies, and access networks, as well as its implications for regulation

    On the investigation of cloud-based mobile media environments with service-populating and QoS-aware mechanisms

    Get PDF
    Recent advances in mobile devices and network technologies have set new trends in the way we use computers and access networks. Cloud Computing, where processing and storage resources are residing on the network is one of these trends. The other is Mobile Computing, where mobile devices such as smartphones and tablets are believed to replace personal computers by combining network connectivity, mobility, and software functionality. In the future, these devices are expected to seamlessly switch between different network providers using vertical handover mechanisms in order to maintain network connectivity at all times. This will enable mobile devices to access Cloud Services without interruption as users move around. Using current service delivery models, mobile devices moving from one geographical location to another will keep accessing those services from the local Cloud of their previous network, which might lead to moving a large volume of data over the Internet backbone over long distances. This scenario highlights the fact that user mobility will result in more congestion on the Internet. This will degrade the Quality of Service and by extension, the Quality of Experience offered by the services in the Cloud and especially multimedia services that have very tight temporal constraints in terms of bandwidth and jitter. We believe that a different approach is required to manage resources more efficiently, while improving the Quality of Service and Media Service Delivery in which services run on localised public Clouds and are capable of populating other public Clouds in different geographical locations depending on service demands and network status. Using an analytical framework, this paper argues that as the demand for specific services increases in a location, it might be more efficient to move those services closer to that location. This will prevent the Internet backbone from experiencing high traffic loads due to multimedia streams and will offer service pr- viders an automated resource allocation and management mechanism for their services

    A systems thinking approach to business intelligence solutions based on cloud computing

    Get PDF
    Thesis (S.M. in System Design and Management)--Massachusetts Institute of Technology, Engineering Systems Division, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 73-74).Business intelligence is the set of tools, processes, practices and people that are used to take advantage of information to support decision making in the organizations. Cloud computing is a new paradigm for offering computing resources that work on demand, are scalable and are charged by the time they are used. Organizations can save large amounts of money and effort using this approach. This document identifies the main challenges companies encounter while working on business intelligence applications in the cloud, such as security, availability, performance, integration, regulatory issues, and constraints on network bandwidth. All these challenges are addressed with a systems thinking approach, and several solutions are offered that can be applied according to the organization's needs. An evaluations of the main vendors of cloud computing technology is presented, so that business intelligence developers identify the available tools and companies they can depend on to migrate or build applications in the cloud. It is demonstrated how business intelligence applications can increase their availability with a cloud computing approach, by decreasing the mean time to recovery (handled by the cloud service provider) and increasing the mean time to failure (achieved by the introduction of more redundancy on the hardware). Innovative mechanisms are discussed in order to improve cloud applications, such as private, public and hybrid clouds, column-oriented databases, in-memory databases and the Data Warehouse 2.0 architecture. Finally, it is shown how the project management for a business intelligence application can be facilitated with a cloud computing approach. Design structure matrices are dramatically simplified by avoiding unnecessary iterations while sizing, validating, and testing hardware and software resources.by Eumir P. Reyes.S.M.in System Design and Managemen
    corecore