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Abstract

Mobile computing devices are becoming indispensable in every aspect of human life, but

diverse hardware limits make current mobile devices far from ideal for satisfying the

performance requirements of modern mobile applications and being used anytime, anywhere.

Mobile Cloud Computing (MCC) could be a viable solution to bypass these limits which

enhances the mobile capacity through cooperative resource sharing, but is challenging due

to the heterogeneity of mobile devices in both hardware and software aspects. Traditional

schemes either restrict to share a specific type of hardware resource within individual

applications, which requires tremendous reprogramming efforts; or disregard the runtime

execution pattern and transmit too much unnecessary data, resulting in bandwidth and

energy waste.

To address the aforementioned challenges, we present three novel designs of resource

sharing frameworks which utilize the various system resources from a remote or personal

cloud to enhance the mobile capacity in a generic and efficient manner. First, we propose

a novel method-level offloading methodology to run the mobile computational workload

on the remote cloud CPU. Minimized data transmission is achieved during such offloading

by identifying and selectively migrating the memory contexts which are necessary to the

method execution. Second, we present a systematic framework to maximize the mobile

performance of graphics rendering with the remote cloud GPU, during which the redundant

pixels across consecutive frames are reused to reduce the transmitted frame data. Last, we

propose to exploit the unified mobile OS services and generically interconnect heterogeneous

mobile devices towards a personal mobile cloud, which complement and flexibly share mobile

peripherals (e.g., sensors, camera) with each other.
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Chapter 1

Introduction

1.1 Background

Mobile computing has been an indispensable part of modern life. Ideally, a mobile device

should have powerful capabilities in computation, communication and sensing, an everlasting

battery lifetime and a wearable form factor, so as to be used anytime and anywhere. However

in reality, various hardware limits make it infeasible to realize this ideal objective, and

tradeoffs must be made instead. For example, wearable devices have the small form factor

at the cost of system performance and battery capacity. Further, mobile devices nowadays are

designated to execute computationally expensive applications such as VR gaming, speech

recognition, and video playback. The increasing complexity in these applications quickly

exceeds the capability of any individual device and imposes a hard limit on the scalability

of mobile computing system.

Mobile Cloud Computing (MCC) [71] could be a viable solution to bridge the gap between

the limited capabilities of mobile devices and the increasing demands of user applications, by

performing tasks with the shared resources from a remote or personal cloud. For example,

smartphones can exploit the computational power of the cloud to improve their performance

and save local battery, by offloading the expensive algorithm execution and high-quality

graphics rendering to the cloud [22, 50, 75, 23, 52]. Meanwhile, they can provide their

sensory data to other devices to facilitate the context-aware applications [41, 82]. However,
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the heterogeneity of mobile hardware and software system components severely hinders the

generality and efficiency of such resource sharing in MCC.

Generality

The increasing variety of hardware components being mounted on today’s mobile devices

results in fundamental difference in the drivers, I/O stacks and data access interfaces

being used by these hardware. Access to the same type of hardware resource from a

remote system could fail if the hardware drivers are provided by different manufacturers

and incompatible with each other. Moreover, the complexity of todays mobile applications

has been dramatically increased with heterogeneous ways of accessing these resources. For

example, infrequent retrieval of location information from GPS can be accomplished simply

by method invocation; while access to the multimedia resources (e.g., speaker and camera)

has to employ system shared memory to avoid the overhead of moving large sizes of bulk

data.

Existing solutions, unfortunately, require manual efforts from application developers,

which explicitly define how and when to access a specific type of shared resource from

cloud [60, 86, 22, 50, 15]. Therefore, they will need a large amount of reprogramming

efforts to access the various system resources remotely for individual applications or mobile

devices, which severely impairs the usability of resource sharing in versatile environments.

Instead, access to remote system resources needs to be performed automatically by the mobile

Operating System (OS) without programmers’ intervention, so that the large population of

existing mobile applications can be supported without any modification or additional efforts

of software redevelopment. To address this challenge, the remote resource access must be

integrated within the OS level and directly interact with the intact application binaries.

Transmission Efficiency

Remote resource access entails frequent data exchanges between the mobile and cloud so

as to provide necessary contexts for hardware operations and receive resource data from

cloud. While in MCC, the mobile is usually connected with the cloud wirelessly through

cellular or WiFi, which suffers from low bandwidth and high energy consumption. Therefore,

2



the strategy of remote resource access needs to be adaptively adjusted according to the

heterogeneous runtime execution patterns of individual applications, so as to maximize the

profit of remote resource access with reduced transmission overhead. Existing solutions,

however, largely ignore such runtime patterns and transmit too much unnecessary data,

which results in bandwidth and energy waste. For instance, existing CPU offloading schemes

[19, 35] recklessly migrate all memory contexts reachable from the current thread even though

many of them will never be visited throughout the method execution. The GPU offloading

schemes [52, 15] separately render and transmit every video frame to the mobile without fully

exploiting the pixel redundancy across adjacent frames, resulting enormous transmission of

frame data.

1.2 Motivation

In this section, we first briefly introduce the necessary background of the Android system,

which is the most popular OS nowadays on various mobile platforms [30, 44] and our targeting

system platform throughout this work. Due to the limited resources on mobile devices, mobile

OSes usually adopt a hierarchical architecture as shown in Figure 1.1, so as to isolate user

applications from low-layer system implementations. Such isolation leads to more efficient

system resource management, and protects the mobile system from resource depletion due to

poorly designed applications or malicious attacks from mobile malware. Mobile applications

in such a hierarchical OS architecture do not access system resources directly. Instead,

resource access is provided by unified mobile OS components. For example, the utilization

of mobile CPU and GPU is achieved by executing the bytecode instructions in Dalvik VM and

graphics commands in OpenGL ES respectively. While the interaction to system peripherals

(e.g., GPS, speaker) is accomplished via individual system services (e.g., location service,

audioflinger). Then, these mobile OS components interact with hardware device drivers

through a hardware abstraction layer (HAL), whose interfaces are pre-defined by the OSes

and implemented as libraries by the manufacturers.

Intuitive solutions to remote resource access [12, 56] would operate over low-layer device

drivers directly, which however are ineffective due to the following reasons. First, the

3
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Mobile OS Components

CPU
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Graphics Driver Device Drivers

Figure 1.1: Layered architecture of Android mobile system

heterogeneity in device drivers creates discrepancy in the format and implementation details

between the mobile and cloud, which incurs reprogramming efforts to make their drivers

consistent for each type of hardware. Second, low-layer operations need to synchronize data

between the mobile and cloud whenever the hardware status changes. Such synchronization

scheme, however, is incapable of adapting to applications’ actual resource requests, leading to

large amounts of unnecessary data transmission. For example, each user application usually

specifies its own interval of requesting for location data, despite that the GPS device in

Android reports location information in every second.

Instead, we utilize the mobile OS components as the interface of remote resource access.

Such unified OS components mask the heterogeneity in hardware operations and hence enable

remote resource access in a generic manner. Therefore, mobile applications could speed up

the execution by running the intact bytecode instructions in the cloud’s Dalvik VM even

though the cloud CPU may have a different instruction set architecture with the mobile

CPU. Also, the mobile could improve its graphic quality and augment its ability of sensing

4



the environment with cloud GPU and peripherals in spite of the heterogeneous hardware

specifications.

On the other hand, we exploit the runtime characteristics of each hardware to reduce the

data transmission during remote resource access.

• CPU: In order to offload mobile computational workload to remote cloud, the memory

contexts in the stack and heap space have to be transmitted and restored in the

cloud’s Dalvik VM. However, the execution of an application method would only access

a fraction of such memory contexts, which are limited to its own input arguments

and global variables. Such application execution characteristics motivate us to reduce

communication overhead by transmitting only the relevant memory contexts.

• GPU: Rendering remotely with cloud GPU necessitates to stream large frame data to

the mobile. However, large amounts of redundant pixels are retained across adjacent

frames, which could reach more than 90% [65]. Reusing such redundant pixels on

mobile could effectively reduce the size of the frame being transmitted.

• Peripherals: In many cases, there is a gap between the production rate of the

resource data and the needed rate by the applications. For example, a pedometer

application samples the accelerometer in a much lower rate (10Hz [70]) than the

reporting rate in hardware (100Hz). Therefore, we are motivated to regulate resource

data transmission according to real-time application behaviors, which are specified

during their interaction to the mobile OS components.

1.3 Contribution

1.3.1 A mobile offloading framework to access CPU on remote

cloud

We present a novel design of offloading framework to exploit cloud CPU which performs

automated method-level workload offloading in Dalvik VM with least context migration. The

framework first identifies the memory contexts which may be accessed by a specific method

5



during its execution through offline parsing to application binaries. Then the thread stack

and heap contexts are screened at runtime to migrate only such relevant memory contexts

to the remote cloud. The proposed framework is implemented over practical Android OS,

and the experimental results over realistic smartphone applications show that the system

can migrate 70% less memory contexts compared to existing schemes, while maintaining the

same offloading effectiveness.

1.3.2 A mobile VR framework to access GPU on remote cloud

We present DeltaVR, a systematic mobile VR framework that utilizes the remote cloud GPU

to render high-quality graphics and maximize mobile VR performance. Being different from

traditional schemes which completely transmit every VR frame to the mobile, DeltaVR

utilizes the cloud’s computational power to explicitly decide the pixel redundancy across

adjacent frames. Such pixel redundancy is then eliminated from the VR frame data and

hence only the distinct portions of each frame would be transmitted to mobile devices.

DeltaVR has been implemented over the Android OS and Unity VR application engine as

a mobile middleware between VR applications and OS drivers, so as to ensure its generality

over different VR applications with heterogeneous dynamics and computation demands. The

experimental results over real-world VR applications show that DeltaVR can maximize the

VR performance with complicated scenes, while reducing more than 95% of the VR frame

data being wirelessly transmitted.

1.3.3 A framework to access mobile peripherals on personal cloud

We present a resource sharing framework that allows the mobile devices owned by a user to

complement each other with generic access to system peripherals. The framework generically

interconnects heterogeneous mobile devices towards a personal mobile cloud and shares

peripherals within the cloud via remote access and invocation of the unified system services.

The proposed framework is implemented as a middleware on Android OS over various mobile

platforms with diverse characteristics and resource limits. The evaluation results show that
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the design can efficiently support ubiquitous access to peripheral resources between remote

systems for arbitrary mobile applications, without incurring any significant system overhead.

1.4 Organization

The remainder of this proposal is organized as follows. Chapter 2 introduces a workload

offloading framework to access cloud CPU with minimized context migration. Chapter 3

describes DeltaVR as a GPU offloading framework to achieve high-performance mobile VR

with reduced frame data transmission. Chapter 4 presents a resource sharing framework to

allow generic access to remote peripherals. Chapter 5 concludes the dissertation.
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Chapter 2

Code Offload with Least Context

Migration in the Mobile Cloud

2.1 Introduction

Smartphones nowadays are designated to execute computationally expensive applications

such as gaming, speech recognition, and video playback. These applications increase the

requirements on smartphones’ capabilities in computation, communication, and storage,

and seriously reduce the smartphones’ battery lifetime. Mobile Cloud Computing (MCC)

[71] could be a viable solution to bridge the gap between limited capabilities of mobile

devices and the increasing users’ demand of mobile multimedia applications, by offloading

the computational workloads from local devices to the cloud.

Due to the expensive wireless communication between smartphones and the remote cloud

through cellular or WiFi networks, a mobile application needs to be adaptively partitioned

according to the computational complexity and size of operational datasets of different

application methods, so as to ensure that the amount of energy saved by remote execution

overwhelms the expense of wirelessly transmitting the relevant application datasets to the

remote cloud [51]. Intensive research has been conducted on how to appropriately decide such

application partitioning [33, 22, 50, 32], and support remote application execution through

techniques of code migration [22, 50] and Virtual Machine (VM) synthesis [19, 35, 40].

However, these traditional schemes either restrict the scope of workload offloading to a
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specific set of system frameworks and mobile applications [22, 50], or migrate a large amount

of application contexts to the remote cloud regardless of the specific execution patterns of

the application partition to be offloaded [19, 35]. These limitations seriously impair the

efficiency of workload offloading in practical mobile cloud scenarios, which is challenging to

be further improved due to the following reasons.

First, the computational workloads at local mobile devices need to be offloaded

automatically by the mobile Operating System (OS) without programmers’ intervention,

so that the large population of existing mobile application executables can be efficiently

partitioned and offloaded for remote execution without any modification or additional

efforts of software redevelopment. To address this challenge, the offloading engine must

be integrated with the OS kernel level and directly interacts with the intact application

binaries. Existing offloading schemes, in contrast, rely on the application developers’ offline

efforts to declare the sets of application methods to be offloaded [22, 50], and lack of the

capability of run-time application partitioning and profiling [19].

Second, only the memory contexts that are relevant to the current application methods

being offloaded should be migrated to the remote cloud. Some existing code migration

systems [19, 35] suggest to migrate only the thread reachable contexts to reduce the amount

of wireless data transmission from unconscious migration of the full application process.

However, many irrelevant contexts that reside in the application stack or memory heap of

the executing thread may still be migrated without discretion.

In this chapter, we present a novel design of workload offloading system which addresses

the aforementioned challenges and performs automated method-level workload offloading

with least context migration. Our basic idea of achieving the least context migration while

ensuring the offloading appropriateness is to identify the memory contexts that may be

accessed by a specific application method prior to its execution, through offline parsing

of the application executables. The parsing results will be stored as metadata along with

the application executables at local mobile devices, and will be utilized by the run-time

application execution to screen the thread stack and heap contexts to migrate only the

relevant memory contexts to the remote cloud. We have implemented the proposed system

design over practical Android systems, and the experimental results over realistic smartphone
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applications show that our system can migrate 70% less memory contexts compared to

existing schemes, while maintaining the same offloading effectiveness. To the best of our

knowledge, we are the first to exploit the inner characteristics of application binaries for

workload offloading in mobile clouds.

Our detailed contributions are as follows:

• We develop a systematic approach to identify the memory contexts which may be

accessed by each method during its execution through offline parsing to application

binaries. The parsing results can then be used as metadata for remote method

execution.

• We propose a novel way to reduce the wireless data traffic of workload offloading by

applying the metadata on the dynamic heap contexts at run-time. The subsequent

context migration hence minimizes the amount of irrelevant memory contexts being

involved.

The rest of this chapter is organized as follows. Section 2.2 reviews the existing work.

Section 2.3.1 introduces the Android system background related to our offloading system.

Section 2.3.2 describes the motivation for our work, and Section 2.3.3 presents our high-level

system design. Sections 2.4 and 2.5 present the technical details of our proposed techniques

of offline parsing and run-time migration. Section 2.6 evaluates the performance of our

system. Section 2.7 discusses and Section 2.8 concludes the chapter.

2.2 Related Work

Workload offloading in MCC focuses on addressing the problems of what to offload and

how to offload. A prerequisite to efficient workload offloading is to decide appropriate

application partitions. Such decisions are based on the profiling data about application

execution and system context, such as the CPU usage, energy consumption, and network

latency. Some schemes such as MAUI [22] and ThinkAir [50], which provide a system

framework to handle the internal logic of workload migration, rely on developers’ efforts to

annotate which methods should be offloaded. Other schemes [49, 35, 85] use online profiling
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techniques to monitor application executions. Based on these profiling data, empirical

heuristics with specific assumptions are used to partition user applications. For example,

Odessa [68] assumes linear speedup over consecutive frames in a face recognition application.

ThinkAir [50] defines multiple static offloading policies, each of which focuses on a sole aspect

of system performance. Nevertheless, the major focus of this chapter is to develop systematic

techniques improving the energy efficiency of workload migration, and is hence orthogonal

to the decisions of application partitioning. In our system implementation, we use an online

profiler to monitor the methods’ execution times, based on which the decisions of workload

offloading are made.

Various systematic solutions, on the other hand, are developed to offload the designated

application partitions from local devices to the remote cloud or cloudlets [71, 38]. MAUI

[22] wraps the memory contexts of the offloading method into a wrapper, and then sends

these contexts through XML-based serialization. Our proposed work, in contrast, migrates

the memory contexts as raw data and hence avoids the cost of transmitting the XML tag

information. ThinkAir [50] focuses on the scalability of VM in the cloud, but does not focus

on the efficiency of VM migration between the local mobile devices and the remote cloud.

CloneCloud [19] and COMET [35], being similar to our proposed system, offload the

computational workloads through VM synthesis [20, 45]. CloneCloud [19] is only able

to offload one thread of an application process, and hence has limited applicability for

current multi-threaded mobile applications. In contrast, our proposed system supports

multi-threaded application execution by adopting the Distributed Shared Memory (DSM)

[46] technique. Similar technique is also used in COMET [35], which aims to mirror the

application VMs from the local devices to the remote cloud by migrating and synthesizing

all the reachable memory contexts within the executing threads, but significantly increases

the wireless data traffic of workload offloading. In contrast, we propose to only migrate

to the remote cloud the memory contexts that are relevant to the corresponding remote

method execution. Instead of running a complete duplicate of the local VM, the cloud is

only regarded as an execution container for the current method execution.
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1 class Sample extends Activity {

2 public void calculate() {

3 TestObject[] objs = new TestObject[5];

4 TestObject[] subobjs = new TestSubObject[4];

5 int result = bar(objs[0], subobjs[1]);

6 }

7 int bar(TestObject to1, TestObject to2) {

8 String val;

9 if(TestObject.si > 3)

10 val = to1.getS();

11 else val = to2.getS();

12 return TestObject.si++;

13 }}

14 class TestObject {

15 static int si = 5; String str = "str";

16 public String getS() { return str; }

17 }

18 class TestSubObject extends TestObject {

19 double num = 3.2; String substr = "substr";

20 public String getS() { return substr; }

21 }

1 aget-object v3, v0, v3

2 aget-object v4, v2, v4

3 sget v1, LTestObject;.si

4 invoke-virtual {v4}, LTestObject;.getS:()

5 invoke-virtual {v5}, LTestObject;.getS:()

6 return v0

7  iget-object v0, v1, LTestObject;.str

8 iget-object v0, v1, LTestSubObject;.substr

Program Counter

Method:calculate

Stack Frame

Reg: objs

Reg: this

Program Counter

Method:bar

Stack Frame

Reg: this

Reg: to2

Heap

Sample

subObj1

0 1 2 3

Reg = Local variables & 

Parameters

Reg: subObjs

Reg: to1

Reg: val

obj0

0 1 2 3 4

Thread

Operation on 
class static field

Invocation of 
Java methods

Access to 
instance fields

Figure 2.1: An example of the execution model of Android applications

2.3 Overview

2.3.1 Background of Android System

An Android-based mobile application, running as a Dalvik VM, is written in Java. The java

source files of an user application are compiled by the Java compiler into Java bytecodes as

class files, which are then compressed and translated into register-based Android bytecodes

by dexgen.

We demonstrate such model of Android system execution using an example of code

segment shown in Figure 2.1. This example will also be used throughout the rest of this

chapter to illustrate our ideas and system designs. As shown in Figure 2.1(b), there are

three major types of bytecodes that may be generated in an Android application. First,

Java method invocation will be converted into invoke-kind, such as invoke-interface - calling

to an interface method, and invoke-virtual - invoking a method that can be overridden by

subclasses (e.g., the to1.getS() method in Line 10 of Figure 2.1(a)). Second, operations on

class static fields (e.g., TestObject.si in Line 9 of Figure 2.1(a)) will be translated into the

bytecodes sget or sput. Third, access to an instance field will be transformed as iget or iput

(e.g., Lines 16 and 20 in Figure 2.1(a)).

When an application starts, its executable that contains the Android bytecodes, will

be loaded into the Dalvik VM which creates a number of application threads for method
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executions. During method executions, a method may invoke another method. To preserve

such method invocation chain, an invocation stack is maintained in each thread, and a stack

frame will be associated to each invoking method with a pointer to its invoker. All the

information relevant to the method execution, including current Program Counter (PC),

method reference and registers, will be stored in the stack frame. For example in Figure 2.1,

when the method bar() is being executed, the thread stack and memory heap space is shown

in Figure 2.1(c). The stack frame of bar() will point to its caller calculate(). The arguments

and local variables of a method are located in the stack frame as a list of registers. If a

variable is a primitive type, its actual value is stored in the frame register. If the variable is

a reference type, the value of the frame register will be its address in the memory heap.

2.3.2 Motivation

According to the above model of Android application execution, not all the stack information

or heap contexts are necessary for a specific application method to execute. Even for the

input arguments given to a method, the method may only access a portion of their fields.

This observation motivates us to exploit the application binary to find out which portion of

memory contexts are required to assure successful remote method execution, so as to only

migrate this portion of memory contexts for workload offloading.

We further illustrate such motivation of our proposed work using the example in Figure

2.1, when the method bar() is going to be offloaded for remote execution. In traditional

offloading schemes such as COMET [35], in order to offload the method bar(), it will not

only transmit the stack frame and heap objects of bar() to the remote cloud, but will also

transmit those of its caller, which is the stack frame of calculate(), the arrays objs[] and

subobjs[], although only one element in each array will be actually accessed by bar(). The

goal of our work, therefore, is to appropriately migrate only the first element of objs and

second element of subObjs. Furthermore, by parsing the application binary, our work can

successfully identify that the field num in the argument to2 has no way to be accessed

throughout the execution of bar(). Thus, during offloading, we will not migrate the num

field of to2, either.
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Figure 2.2: The system Architecture of the workload offloading system

2.3.3 Big Picture

In this section, we will describe our system architecture, as shown in Figure 2.2, to give a

high level overview of our proposed system design. There are two major components in our

system. One component is for Offline Parsing and the other is for Run-time Migration.

The purpose of the Offline Parsing component is to identify the relevant heap objects

that a method may operate. During the method execution, there are two possible sources

of objects it can access. One is the input arguments and the other is the class static fields.

For example, in the method bar() of class Sample in Figure 2.1(a), in addition to the input

arguments to1 and to2, the method bar() also has access to the static field si of TestObject.

As a result, we parse these two types of memory contexts using the Method Argument Parsing

Component and Class Static Field Parsing Component, respectively. Both components will

do an offline parsing to identify the migration contexts needed for the method. First, the

Method Argument Parsing Component is responsible for determining which fields in the

input arguments may be accessed during method execution. It goes through all the possible

execution paths in the method and tracks the changes of registers to see which field of an

object will be accessed in instruction. For example, with an if/else condition, this component

14



will parse if as a path and else as the other path, since the same variable may hold different

value after either path is executed, like the local variable val of bar() in Figure 2.1(a). Second,

the Class Static Field Parsing Component is responsible for finding out which class and its

static fields may be operated by a method. It does not consider the states of registers in the

stack frames, since they are not involved to determine the field of class on which the bytecode

instructions are operated. When both of these components are finished, the parsing results

will be maintained as metadata, which are sent to the local mobile device and encapsulated

along with the corresponding application executable.

When an application is launched at a mobile device, both of its application executable (the

.apk file) and method metadata generated by the Offline Parsing component will be loaded by

the Dalvik VM, which tracks and profiles all the method invocations during the application

execution. When a method is going to be offloaded, its invocation will be intercepted by the

Run-time Migration component, which then utilizes the corresponding metadata to search

for the dynamic heap contexts and determine the necessary contexts for the remote method

execution in the cloud. These data objects are migrated to cloud and used to build the

run-time environment for remote method execution, which requires loading the heap objects

into the memory space, reconstructing the stack frame, and creating an executing thread.

When the method execution finishes, the method stack frame and heap objects modified

during method execution will then be migrated back to the local mobile device.

2.4 Offline Parsing

In this section, we describe the technical details of the Offline Parsing component in our

proposed system design. The task of this component is to find out the appropriate part

of the input arguments and class static fields that may be operated during the invocation

of a specific application method, by parsing the application binaries offline. This task,

however, is challenging due to the following reasons. First, the polymorphism feature of the

object-oriented Java programming language makes it hard to determine the actual types

of memory objects and method invocations prior to the run-time application execution.

Our work addresses this challenge by parsing all the possible application cases raised by
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TestObject.si
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return return
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Figure 2.3: Possible code execution paths for bar(), orange one is the actual execution path

polymorphism. Second, the program semantics in an application method may significantly

vary due to the different combinations of bytecode instructions, and hence complicate the

parsing process. This challenge is addressed by analyzing the semantics of every bytecode

instruction and emulate its effect to the program registers.

We implement our Offline Parsing component as an independent module targeting for

x86 architectures, in Android source with CyanogenMod’s Jelly Bean version, and build this

module on Linux distribution Ubuntu 12.04. The implementation consists approximately

2,500 lines of C codes. The application executables being parsed are directly downloaded

from Google Play instead of being transmitted from the local mobile devices.

2.4.1 Method Argument Parsing Component

The major challenge of parsing the method arguments is the diversity of possible application

execution path at run-time. Such diversity is generally a result of code polymorphism in

Java, as well as the control flow statements in the application source code such as the

if/else or switch clauses and the for loops. The number of possible execution paths grows

exponentially with the number of program branches and the number of child classes. Take

the code segment shown in Figure 2.1(a) as an example, the if/else statement between Line

9 and Line 11 leads to two possible execution paths: one invokes to1.getS() while the other

invokes to2.getS(). Moreover, since the class TestObject is inherited by TestSubObject, the

invocation of the method getS() also has two possibilities and the run-time types of to1 and

to2 can be either TestObject or TestSubObject. In particular, when the method bar() is
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siTestObject:

Bytecode segment Line 3:

sget v1, LTestObject;.si

v1

put si to v1

(d) Static field operation

Figure 2.4: Handling the bytecode instructions with respect to Figure 2.1(b)

invoked, the actual code execution path corresponding to the code segment in Figure 2.1(a)

is shown in Figure 2.3.

To address such challenge, we will parse the bytecode instructions along each possible

code execution path in the application binary to find out the relevant memory contexts that

need to be migrated during workload offloading, and merge the parsing results of all these

paths afterwards. Since the Dalvik VM uses a register-based architecture, the execution of

bytecode instructions will affect the states of registers in the stack frame, and the method

arguments are usually located in the last several positions of the register list. As a result,

our parsing component emulates the effect of each bytecode instruction, tracks the register

state, and records which fields of these arguments are operated accordingly. In Android,

there are totally 217 types of bytecode instructions [Android Developers] that may appear

in the application binary, and we describe the details of how we handle the few most common

types of bytecode instructions as follows.

Object manipulation

Such instructions correspond to the bytecode iget and iput, and are the most commonly used

in Android applications. iget means to get the value of an object field to the destination

register. As shown in Figure 2.4(a), if the object (to1 ) operated by this bytecode instruction

is from the method input arguments or their fields, we mark the corresponding field (str) of

this object as to be migrated, and put this field into the destination register (v0), indicating

that the subsequent operation to v0 equals to the operation to str. On the other hand, iput

means to put the destination register into an object field, and further access of this field will

return the same content as the destination register.

17



Method invocation

A method can be invoked by the bytecode instructions invoke-kind, such as invoke-interface

and invoke-virtual. First, since a method may invoke some other methods, we need to

recursively parse each method being invoked. Second, since the invocation of an interface

method or a virtual method may be overridden by subclasses in Java, all the implementing

classes of that interface and all the subclasses of the class which defines the virtual method

need to be parsed, no matter whether they reside in the application binary or the OS kernel.

The parsing results over these implementing classes or subclasses are then merged to ensure

that all the possible application execution paths at run-time can be covered. For example

in Figure 2.4(b), the bytecode instruction will lead to parsing of both TestObject.getS()

and TestSubObject.getS(). As a result, both fields str and substr of to1 are marked as the

contexts to be migrated.

Branch instructions

Such instructions correspond to the bytecode switch and if-test, and generate new branches

of code execution paths. When these instructions are encountered, the parsing process will be

split for each possible code execution path. For example in Figure 2.4(c), the if instruction

will mark the operations on to1, while the else instruction will record how to2 is operated.

By combining the results, we end up with that the fields str and substr of both to1 and to2

may be accessed during method execution.

Array operation

Such instructions correspond to the bytecode aget and aput. Operation to array is a special

case since the element to be operated can be only determined by the register contents at

run-time. Therefore, our offline parsing has to mark all the elements in the array as to be

migrated.
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Parsing end

The instruction return indicates the end of the current method. If this method is not invoked

by any other method, the current parsing path terminates and the parsing result is merged

with that of other paths.

2.4.2 Class Static Field Parsing Component

This component aims to find out which classes and their static fields may be accessed during

the execution of an application method. Our basic approach of such parsing is also to screen

the application binary and parse the bytecode instructions. In particular, operations on class

static fields correspond to the instructions sget and sput, which indicate getting or setting

the value of a class static field to or from a register. Since writing a value to a field does

not require the original value of this field to be correct, the appearance of sput instruction

will be ignored. For the sget instruction, its operand indicates the class static field that it

operates on. As a result, our parsing component resolves the class static field and records

this static field as to be migrated during workload offloading. For example in Figure 2.4(d),

the bytecode instruction allows the parser to mark the static field si of class TestObject as

to be migrated.

Being different from the Method Argument Parsing Component, the parsing of class static

fields can be done without taking the diversity of code execution paths into consideration,

because the register status is not required for resolving the reading operations over static

fields. Instead, we only need to scan the instructions defined in the method being parsed

and all the recursive method invocations. Take the invocation of the method bar() in Figure

2.1(a) as an example, we only need to scan the binaries of bar(), TestObject.getS() and

TestSubObject.getS(). As a result, it is found out that the static field si of class TestObject

will be read when executing bar().

2.4.3 Metadata Maintenance

The parsing results need to be efficiently recorded and maintained so that they can be applied

for run-time migration and selectively migrating the relevant memory contexts for remote
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Table 2.1: Format of metadata

Result Comment
LSample; bar 1 Method key
1|101 str and substr of to1 need to be migrated,

while num will not be accessed at run-time
1|101 The memory context of to2, which is similar

to that of to1
LTestObject; Class whose static field may be read
1 Static si of TestObject which needs to be migrated

method execution. In practice, the memory contexts of a Java class object can be organized

as a tree-based structure, with the object itself as the root. All the instance fields and static

fields of a class object can be considered as the children of the root object. These fields

can have their own children if they are reference type. This tree structure may continue

recursively until a field is a primitive type or a reference type without any member fields.

Such a field then becomes a leaf of the tree. As a result, we are able to maintain the parsing

results based on breadth-first search of the object trees.

To record the parsing results to the metadata file, we generate a unique key for each

method first. The string combination of the name of the class which defines the method,

the method name, and the method index generated by dexgen is used as the unique key

for indexing. For every method argument object, we use breadth-first search to traverse its

tree structure. If its child field will be accessed at run-time, “1” will be written into the

metadata file, otherwise “0” is written. An “|” delimiter is used to indicate the end of listing

the memory contexts of an object. The class field parsing result will be written into file after

all the arguments parsing results have been recorded. For each class which may be accessed

in the method, we will output its class name and the list of its static fields, with “1” or “0”

to indicate that this field will be accessed or not.

For example in Figure 2.1(a), the memory contexts for bar() after parsing is shown in Fig

2.5, and the format of the generated metadata from parsing the method bar() is described

in Table 2.1. All the metadata for one application will be stored into a single file, which

makes the file very large. Based on our observation, most spaces in the metadata file are

taken by the full names of classes which may be accessed in method, and these full names
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Figure 2.5: The memory context for bar() after parsing

usually share much in common with each other due to the Java package hierarchy. For

example, android.os is almost used as the prefix for any class related to basic operating

system services. Therefore, to reduce the metadata file sizes, we replace all the character

strings of class names to a unique numeric ID, and maintain an indexing dictionary to decode

the ID at run-time. To provide an time-efficient file indexing mechanism, instead of loading

the whole metadata file into the memory at run-time, we write another file to record the

offset of each method in the metadata file. Since it is only one line for a method, the size of

the offset file will be small enough to load into mobile memory during application starts. At

run-time, the loaded offsets will be used to look up the metadata in metadata file.

2.5 Run-time Migration

Our Run-time Migration component monitors the run-time execution of Android applica-

tions, and supports remote method executions by utilizing the offline parsing results and

migrating the relevant memory contexts to the remote cloud. Such migration process consists

of four major steps: i) method invocation tracking, ii) context migration to the cloud,

iii) context reload on the cloud, and iv) backward context migration to local device. Our

implementation of these steps is integrated with the Dalvik VM in Android and involves

about 2,000 lines of code in C.

2.5.1 Method Invocation Tracking

To support workload offloading at the level of different application methods, the invocation

of each application method in an executing thread must be identified and recorded so that

the application profiler can be launched and the offloading operations can be performed at

the entry and completion point of the method. In general, there are two ways of method
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Figure 2.6: VM synchronization during context migration

invocations in Android. One is invoked from a native method with the entry point of

dvmInterpret in code. The other is from the invocation by a Java method through bytecode

instructions invoke-kind. Both types of entry points are tracked by our system at run-time.

If a method is going to be offloaded, our system will intercept the method invocation and

migrate the relevant memory contexts to the cloud.

2.5.2 Context Migration to the Cloud

Our run-time migration component aims to collect and migrate the least but sufficient

memory contexts to ensure remote method execution on the cloud. First, we will only

migrate the stack frame of the corresponding method to be offloaded, rather than any other

stack frames in the executing thread. Second, there are only two types of memory contexts

that are accessible to a method, i.e., the method arguments and class static fields. Since the

method arguments are located in the last several positions of the register list in the stack

frame, we can collect all the arguments contexts by resolving the method stack frame. If

an argument is a primitive type, its value in register will be collected directly. If it is a

reference type, the metadata generated during the offline parsing will be applied to collect

the appropriate memory contexts in the memory heap. It will recursively traverse all the

fields of the argument and check if the field needs to be migrated.
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However, in practice we may find that the metadata records a larger number of fields

from the actual amount at run-time, because our metadata is generated by combining the

parsing results of all the possible application execution paths. For example in Figure 2.6

which corresponds to the invocation of method bar() in Figure 2.1(a), the run-time type

of the first argument to1 of bar() has only one instance field, while the metadata indicates

it has three fields because the metadata combines the application execution paths of both

TestObject and TestSubObject. In this case, we just omit the second and the third field

indicated in the metadata, and only migrate the field str to the remote cloud.

Meanwhile, we further reduce the amount of data traffic for context migration by applying

dirty flags on object fields. A dirty flag indicates that the value of the corresponding field

is modified since last migration of this field, and hence needs to be migrated to ensure that

cloud gets the latest value during operation. The field which is not flagged as dirty, on the

other hand, should be avoided to be migrated since the cloud already has the latest copy.

Thus for the to2 in the Figure 2.6, even though the metadata indicates the fields str and

substr of to2 needs migration, the applying of dirty bits makes the offloading migrate only

field substr of to2.

On the other hand, the migration of class static fields is similar to the migration of

method arguments. The metadata maintains a list of class names which may be read when

the method executes. We first test if a class on the list has been loaded into VM. If not,

we can skip the migration of this class because the cloud VM will load this class when the

method needs to use it. Otherwise, the contexts of the fields of this class will be collected

recursively with metadata and dirty flags. We adopt the same technique being used in

COMET [35] to solve the problem of reference addressing between two endpoints in the

executing thread, by assigning an ID to each object during migration.

2.5.3 Context Reload on the Cloud

In the remote cloud, a Dalvik VM instance complied for the x86 architecture is launched to

execute the offloading method. When there is an offloading event from a local mobile device,

the cloud VM will receive all the data transmitted from the local device and parse them into

its own run-time context. It’s a reversed process of the context migration performed on the
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local mobile device. The cloud VM will first deserialize the contexts and then merge these

contexts into its heap space. After that, a stack frame will be created for this offloading

method into the thread and the thread starts to run.

2.5.4 Context Migration Back to Local Device

To support such backward context migration, we develop a specialized scheme to collect the

memory contexts at the remote cloud after the completion of remote method execution, and

migrate these contexts back to the local mobile device. We track all the memory objects in

the executing thread of the cloud VM to be aware of all the objects being modified during the

remote method execution. When migrating the memory contexts back to the local device,

we migrate all the dirty fields of these objects to assure that the memory contexts in local

device’s memory heap are identical to that on the remote cloud. For example in Figure 2.6,

the remote execution of bar() modifies TestObject.si, which is marked as dirty and will be

migrated back to the local device.

We consider the following three types of scenarios, where a method being executed at

the remote cloud needs to be migrated back to the local device.

• Method return: When the method finishes its execution on cloud, it needs to be

migrated back to the local device. In this scenario, along with the dirty objects,

the return value of method execution is also required to be migrated back. However,

all the other local variables in the stack frame will not be used any more because

these variables are only valid within the scope of the method being executed remotely.

These contexts will not be migrated back and the corresponding data transmission cost

is saved.

• Exception throw : A method may throw an exception during its execution. We will

first try to see if this exception can be caught within method. If so, the method can

continue to run; otherwise, this exception needs to be propagated to its invoker. The

offloaded method being executed at the remote cloud, however, has no idea about

its caller, because only the stack frame of this method is migrated. In this case, the

handling of this exception must be done at the local device, and hence we are forced to
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migrate this method execution back to the local device. We will bypass the migration

of all the local variables and only migrate all the dirty objects.

• Native method : When the offloading method invokes a native method which cannot be

executed in the remote cloud due to the involvement of specialized hardware-related

instructions or local resource access, it needs to be migrated back to the local device to

ensure the smooth execution of the application. This migration, being different from

the two cases above, requires all the local variables of the remotely executed method to

be migrated back. In this case, we will go through all the memory contexts in the stack

frames of the executing thread at the remote cloud, and migrate them all together with

all the dirty objects.

2.6 Performance Evaluations

In this section, we evaluate the effectiveness of our workload offloading system on reducing

the local devices’ resource consumption over various realistic smartphone applications. The

following metrics are used in our evaluations:

• Method execution time: The average elapsed time of method executions over

multiple experiment runs.

• Energy consumption: The average amount of local energy consumption over

multiple experiment runs.

• Amount of data transmission: The average amount of data transmission during

offloading over multiple experiment runs.

2.6.1 Experiment setup

Our experiments are running on Samsung Nexus S smartphones with Android v4.1.2, and

a Dell OptiPlex 9010 PC with an Intel i5-3475s@2.9GHz CPU and 8GB RAM as the cloud

server. The smartphones are connected to the cloud server via 100Mbps campus WiFi. We

use a Monsoon power monitor to gather the real-time information about the smartphones’
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energy consumption. We evaluated our system with the following Android applications

that are available on the Google Play App Store. The binaries of each application is first

applied to our Offline Parsing Component, and then executed by our offloading system. Each

experiment on a mobile application is conducted 30 times with different input datasets for

statistical convergence.

• Metro: A trip planner which searches route between metro stations using Dijkstra’s

Algorithm1.

• Poker: A game assisting application which calculates the odds of winning a poker

game with Monte Carlo simulation2.

• Sudoku: A sudoku game which generates a game and finds a solution3.

As stated before, our major focus of this chapter is to develop systematic techniques

which improve the efficiency of context migration to the remote cloud. Therefore, we do

not focus on addressing the problem of what to offload and determining the appropriate

set of application methods to be offloaded. Instead, in our experiments, we follow the same

methodology being used in [35] and use the historic records of the method execution times as

the criteria for offloading an application method. More specifically, at the initial stage of each

experiment, we let a method run locally for 30 times and calculate its average execution time.

If such average execution time exceeds a given threshold, this method will be offloaded for

remote execution in the future. We dynamically update this threshold at run-time according

to the application executions.

As we discussed in Section 2.4.1, the variety of code execution paths grows exponentially

with the number of program branches and the frequency of class inheritance, and hence

may either deplete the parsing server’s local memory or increase the time of offline parsing.

Therefore, in our experiments we make a tradeoff between the completeness of offline parsing

results and the parsing overhead. More specifically, we empirically limit the parsing depth

over program branches to 10 and the parsing depth over class inheritance to 15. When

1https://play.google.com/store/apps/details?id=com.mechsoft.ru.metro
2https://play.google.com/store/apps/details?id=com.leslie.cjpokeroddscalculator
3https://play.google.com/store/apps/details?id=com.icenta.sudoku.ui
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Figure 2.7: Performance evaluation on execution time and energy consumption

either a program branch or class inheritance in practice exceeds such limit, we will mark

all the arguments of the corresponding method as to be migrated. We may further improve

our algorithm in the future to relax such limits and reduce the parsing overhead without

impairing its accuracy.

2.6.2 Effectiveness of Workload Offloading

We first compare the method execution time between local and remote executions. From the

experimental results shown in Figure 2.7a, we can see that we can achieve a remarkable

speedup in method execution by offloading the methods to remote execution. For the

Metro and Poker applications, we can reduce 90% of their execution time. For the Sudoku

application with a shorter execution time, we can still achieve roughly 5 times speedup.

In particular, the case of “First-time offload” in the figure means the first time when the

application methods are offloaded to the remote cloud. This is a special case since a large

set of class static fields that will never be changed in later execution needs to be migrated

and hence incurs additional execution time.

Meanwhile, the local energy consumption is significantly reduced as well by offloading.

As shown in Figure 2.7b, the intensive computations for the Metro and Poker application

will consume a lot of local battery energy. With workload offloading, we can reduce more

than 80% of local energy consumption. Comparatively, the energy saving for Sudoku is lower,
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Table 2.2: Amount of data transmission during workload offloading

Appli- First-time offload (KB) Upload (KB) Download (KB)
cation Ours COMET Ours COMET Ours COMET
Metro 5,175.6 7,623.3 99.4 937.3 9.8 31.4
Poker 3,223.8 5,674.4 17.2 64.2 1.2 13.7
Sudoku 4,925.4 6,644.3 61.5 201.9 45.9 16.4

Table 2.3: Offline parsing time and metadata file size

Appli- Parsing time (s) File size (KB)
cation Method argument Static field Metadata file Offset file
Metro 2 98 696.9 6.3
Poker 1 96 60.6 0.9
Sudoku 866 103 4,160.8 73.1

which is about 35% since its computational complexity is less than the other two applications.

Being similar with the cases of method execution times, the energy consumption for the

first-time offloading is also higher than further offloading operations, due to the one-time

migration of the class static fields.

We also evaluated the amount of data transmission during workload offloading, by

comparing our proposed offloading system with COMET [35]. The evaluation results are

listed in Table 2.2. In general, we can achieve notable data transmission reduction. For the

first-time offloading in each application, we can save the data traffic around 40% by screening

out the class static fields which will not be used in this offloaded method. In particular, for the

amount of upstream data transmission, we can reduce nearly 90% of the data transmission

in Metro. Even for the worst case in Sudoku, the decrease of data transmission in our system

can still reach up to 70%. The major reason for such advantage is that our scheme is able to

predict which contexts will be used during method execution and hence selectively migrates

them. For the downstream data transmission, our scheme normally transfers less data with

an exception in Sudoku. By analyzing the offloaded methods, we find that such additional

data transmission is incurred by the offloading decision criteria we adopted. Our decision

criteria leads to offloading the instantiation of the large Puzzle object, which is migrated back

to the local device afterwards. This case can be avoided by applying more online application

profiling information on offloading decisions.
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2.6.3 Parsing complexity

In this section, we evaluate the parsing time and size of metadata of our offline parsing

component proposed in Section 2.4. As shown in Table 2.3, we are able to generally

control the offline parsing time within two minutes, which ensures prompt response to the

subsequent user operations on mobile applications after installation. One exception is noticed

on the Sudoku application which may take up to 10 minutes to be parsed and lead to a

metadata file with a size larger than 4MB, because of its higher computational complexity

and involvements of complicated program logic.

We also investigated the impact of parsing depth on the completeness of method argument

parsing results on the Sudoku application. As shown in Figure 2.8, the larger threshold we

set for the depth limit of parsing the program branches, the longer time the offline parsing

will take and the more methods can be accurately parsed. With a branch depth limit as 10,

we can parse 98.9% of methods encountered during parsing, but the parsing process may take

up to 800 secs. When we reduce such limit down to 4, the percentage of application methods

being parsed is only slightly reduced to 91.8%, with significant reduction of the parsing

time down to 3 secs. We plan to further investigate the impact of such parsing depth on

the reliability of remote method execution, and to develop adaptively algorithms to flexibly

adjust such parsing depth at run-time according to the specific application characteristics.
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2.6.4 Offloading overhead

In this section, we evaluate the computational overhead imposed during the run-time context

migration, which is measured in the average amount of time spent on collecting the memory

contexts to be migrated over all the offloading events throughout the application execution.

We compare our offloading system with COMET [35]. By seeing the results shown in Fig

2.9, we can tell that the overhead in our system is 30% less than COMET [35] scheme during

first offloading in application. The reason is that our scheme transfers much less data in first

offloading. During further offloading, Metro can still get 35% less overhead, while the Poker

and Sudoku have slightly less overhead than COMET [35] even though we save a significant

amount of data transmission.

2.7 Discussion

2.7.1 Offline parsing

In our proposed offloading system, we adopt an offline approach for parsing the application

executables instead of an online approach, in order to reduce the run-time overhead of method

migration. Our major motivation is that the application behavior at run-time is completely

determined by its binary. As long as the application binary does not change, the possible

variety of code execution paths and the memory contexts required by each execution path will

remain the same as well. Therefore, each application method only needs to be parsed once
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offline. Another factor which drives us to use offline parsing is that we can take advantage of

the strong computational power and large memory space in the remote cloud, where offline

parsing is done. The limited computational resources at local mobile devices, on the other

hand, cannot handle the parsing task because of the huge set of complicated class repositories

in the OS kernel to be parsed.

2.7.2 Multi-thread offloading support

Our system supports multi-threads to be offloaded since every thread migrates enough

contexts for itself to be executed smoothly at the remote cloud. During the execution of a

method, the method may need to lock a memory object to synchronize with other threads.

Since the memory contexts are shared between the local and cloud VMs via DSM, the

synchronizing process needs to communicate to the other endpoint of the thread execution

to make sure that only one thread can lock on the object at anytime, and it takes much

longer time than thread synchronization with only one VM. Thus, the performance of our

system will decrease in applications which involves frequent synchronization among threads.

In our future work, we will develop a better synchronization mechanism between thread

endpoints to better support the current multi-threaded mobile applications.

2.8 Conclusions

In this chapter, we presented a method-level offloading system which offloads the local

computational workloads to the cloud with least context migration. Our basic idea is to

use offline parsing to find the memory contexts which are necessary to method execution

in advance and selectively migrate these contexts at run-time. Based on experiments over

realistic mobile applications, we demonstrate that our offloading system can save a significant

amount of energy while maintaining the same effectiveness of offloading.
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Chapter 3

DeltaVR: Achieving

High-Performance VR Dynamics over

Mobile Devices through Pixel Reuse

3.1 Introduction

Virtual Reality (VR) stimulates users’ immersive senses of the virtual world, and improves

user experiences in many interactive scenarios such as gaming [16, 87], automobiles [67],

healthcare [24], and education [64]. Ideally, VR should be provided through untethered

mobile head-mounted displays (HMDs) that project rendered frames from the connected

smartphones, to be usable anytime and anywhere with low cost. However in practice,

smartphones have too limited computational capacity and battery lifetime to ensure high

rates (>60 FPS), low motion-to-photon latency (620ms) and wide field of views (∼120◦

or even 360◦ panoramic) when rendering high-resolution VR frames [47]. Their VR

performance, hence, are much lower than that of their counterparts being tethered to high-

performance workstations (e.g., Oculus Rift [26] and HTC Vive [25]).

A viable solution to this challenge is to offload the expensive VR frame rendering to the

nearby cloud, and then wirelessly transmit the rendered frame data back to the mobile HMD.

Current solutions to mobile workload offloading [19, 22, 50, 35, 34], when being applied to VR
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applications, fail to provide satisfactory VR performance because their amounts of VR frame

data being transmitted may far exceed the capacity of any existing wireless network. For

example, the cloud generates more than 2GB of frame data every second for a VR application

with 4K resolution and 60 FPS [87], but only a portion of such data can be timely transmitted

even through gigabit WiFi network. Video encoding techniques such as H.264 [84] can be

used to reduce the size of data transmission, but are too computationally expensive to ensure

timely frame decoding at the mobile HMD. Emerging mm-wave wireless could potentially

provide the required network bandwidth, but requires line-of-sight connectivity and hence

fails to be applied over mobile HMDs, which are mainly used indoor and may move among

complicated obstacles.

The fundamental reason of such failure is that the cloud separately renders and transmits

every VR frame to the mobile HMD, and the amount of wireless data transmission, hence,

is always proportional to the frame rate and resolution of VR applications. The majority of

such VR frame data being transmitted, however, could be redundant and wasted in practice.

We have experimentally observed that consecutive VR frames are highly correlated, because

of 1) perspective object projection that reduces the impact of user movement on the user

view and 2) image warping that correlates VR frames being projected to different camera

locations. Even in highly dynamic VR scenarios such as interactive games, our experiments

show that redundancy among consecutive VR frames could exceed 50%, i.e., more than half

of pixels in these frames are identical with each other.

Based on this observation, in this paper we present DeltaVR, a systematic mobile VR

framework that maximizes mobile VR performance by reusing the redundant pixels across

consecutive VR frames. Being different from traditional schemes which completely transmit

every VR frame to the mobile HMD, DeltaVR only transmits a small portion of VR frames in

full, referred to as reference frames. For every other frame being produced between reference

frames, DeltaVR utilizes the cloud’s computational power to explicitly decide its overlap with

the last reference frame, and only transmits its distinct portion (as a delta image) to the

mobile HMD afterwards. By doing this, DeltaVR completely eliminates the redundancy in

the VR frame data being transmitted, and has the following two unique features that ensure

high-performance mobile VR with highly dynamic application contents and user behaviors.
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First, DeltaVR is widely applicable to highly dynamic VR applications, especially

interactive VR games where the user character constantly moves and interacts with

foreground objects in the virtual world. DeltaVR, hence, fundamentally outperforms existing

mobile VR solutions, which are limited to reusing pixels of the panoramic background image

only when the user character remains stationary in the virtual world [23, 16, 52]. In such

dynamic VR scenarios with fluctuating user views, to ensure correct pixel mapping from a

reference frame when applying the delta image, we first transform the pixels of the reference

frame to the target user view via image warping, and then use the delta image to patch

the visual artifacts during the process of image warping. In this way, DeltaVR significantly

extends the scope of pixel reuse without impairing the VR image quality.

Second, DeltaVR maximizes the performance of highly dynamic VR applications without

predicting the user behavior in the virtual world or prefetching any VR frame data based

on such prediction. Instead, the mobile HMD in DeltaVR generates every VR frame based

on the corresponding delta image at run-time. As a result, being different from traditional

schemes whose performance could be easily impaired by sporadic events or user movements

in VR applications [54, 23, 53], the performance of mobile VR applications supported by

DeltaVR is only determined by their view resolution and wireless link condition that decides

the VR frame rate.

The major challenge of designing DeltaVR, on the other hand, lies in how to minimize

the communication and computation latency for the mobile HMD to receive and process the

delta images. First, a reference frame in VR applications is usually panoramic to provide

seamless 360◦ user views, and is much larger than any regular frame being displayed on the

smartphone screen. In this case, to reduce the amount of wireless data transmission, we

constrain the scope of calculating delta images within the specific user field of view (FOV)

in the virtual world. Second, to minimize the computational overhead of image warping over

panoramic reference frames, we also develop new techniques to partially warp the portion of

a reference frame within the user FOV.

We have implemented DeltaVR over the Android OS and Unity VR application engine1

as a mobile middleware between VR applications and OS drivers, so as to ensure its

1The Unity engine (https://unity3d.com/) is the most popular tool for commercial VR game creation.
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generality over different VR applications with heterogeneous dynamics and computation

demands. More specifically, DeltaVR is implemented in native language and we utilize

the unified OpenGL APIs for graphics operations such as VR frame rendering, so as to

tackle the heterogeneity of shading languages and scripting APIs used by different VR

applications. The implementation consists of ∼4,000 Lines of Codes (LoC) in total, and

our experimental results over real-world VR applications show that DeltaVR can maximize

the VR performance over highly dynamic VR scenarios with complicated scenes and intensive

user movement, while reducing more than 95% of the VR frame data being wirelessly

transmitted.

3.2 Motivation & Preliminaries

Our design of DeltaVR is motivated by the unique characteristics of frame rendering in VR

applications. First, the impact of slow user movement on the user view could be reduced by

perspective projection in VR applications. Such reduction results in very high redundancy

across consecutive VR frames, which minimizes the sizes of delta images and ensures timely

transmission of these images to the mobile HMD. Second, for fast user movement in the

virtual world, a significant portion of redundant pixels can still be retained by image warping,

which reprojects a rendered VR frame based on user movement during the rendering process.

Exploiting such redundancy in VR image warping could greatly expand the scope to which

DeltaVR is applied, by minimizing the amount of reference VR frames being produced and

sent.

3.2.1 3D Perspective Projection

As shown in Figure 3.1, VR applications construct the virtual world as a 3D space, where

game objects are modeled and placed at certain coordinates. In this 3D world, the user

character is represented by a 2D camera, and the application view being presented to the

user is rendered by projecting each 3D object to the camera surface. Specifically, most of

today’s VR applications adopt perspective projection [66, 27], which emulates how human

eyes see the real world. Such projection forms the 3D world as a truncated pyramid frustum,
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Figure 3.1: The virtual world in VR applications

with the camera sitting at the apex point and its range being defined as the camera’s FOV.

Any object within this frustum is projected to and visible in the user view.

The most significant characteristic of perspective projection is that distant objects in the

3D world appear smaller than objects close-by, and the impact of user movement on the 2D

user view will hence be reduced after object projection. In many cases, such impact could be

as small as few pixels and results in high volumes of redundant pixels across consecutive VR

frames. For example, when the VR user changes his/her head orientation, a neck model is

adopted to measure the camera location change, which usually ranges in [-0.1, 0.1] in virtual

units (∼10cm in reality) and results in negligible user view change as shown in Figure 3.1

(from camera location C1 to C2). Slow user movement at 1 m/s, on ther other hand, could

result in more than 90% redundant pixels across consecutive frames [65].

3.2.2 VR Image Warping

In highly dynamic VR applications, the user character may move to a different location

in the mean time when a new VR frame is being rendered. To ensure image quality and

avoid motion sickness, image warping is adopted by VR applications to reproject a rendered

frame to the new camera view before displaying. For example, the most commonly used
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Figure 3.3: Screenshots of VR games

technique, Image-based Rendering (IBR) [63, 69], is illustrated in Figure 3.2. For any pixel

(x, y) on the 2D user view plane, its coordinate in the 3D virtual world can be computed

as W = M−1
proj · (x, y, z), where z is the depth value of (x, y) and Mproj indicates the current

camera projection. Then, when the camera projection changes to M
′
proj, the new user view

can be produced by reprojecting W onto the 2D plane as (x′, y′, z′) = M
′
proj ·W for every

pixel, without re-rendering these pixels at new locations.

Such reprojection naturally correlates VR frames being projected to different camera

locations. To quantitatively study such correlation, we randomly pick 10 reference frames

from three open-sourced VR games (Viking Village [vik], Lite [lit] and Sci-Fi [sci]), and

utilize IBR to warp these frames to the target camera views from different distances away.

As shown in Figure 3.3, these games represent different VR scenarios with heterogeneous

scene complexity and character dynamics, and Figure 3.4 demonstrates that more than 50%

of pixels can be retained in the VR frames after image warping, even if the warping distance
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Figure 3.4: Frame correlation after image warping
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Figure 3.5: Illustration between motion estimation and image warping

increases to 5.0 (∼5m in reality). In other words, VR image warping retains a significant

portion of redundant frame pixels over long distance. Such redundancy is exploited in

DeltaVR to minimize the amount of reference VR frames being transmitted, by generating

multiple delta images at different camera locations over time from the same reference frame.

3.2.3 Failure of Traditional Video Encoding

One straightforward solution to eliminating such VR pixel redundancy is to adopt the

existing video encoding techniques for VR frame compression. Traditional video encoding

techniques, unfortunately, fail when being directly applied to VR frames, because they

are generally agnostic about the object projection structure of VR frames and are hence
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incapable of adapting to the heterogeneous VR dynamics. For example, as the most

commonly used technique, H.264 [84] compresses video frames based on their temporal and

spatial locality. More specifically, H.264 divides a frame into macro blocks (MBs), which

serve as the basic unit of encoding. For each MB, H.264 utilizes the previous encoded frames

as reference and estimates the user motion to find the region that most closely matches the

current MB. Afterwards, the difference to the matching MB would be compensated by their

residual, which is then quantified for different compression ratios and entropy encoded with

context-adaptive variable-length coding.

Since the user motion may not always displace the corresponding pixels at integer-pixel

level, computation intensive interpolation [21] has to be performed to search the matching

MB at fractional-pixel level. However, due to the finite computational capacity, such pixel

interpolation during motion estimation in H.264 is limited to quarter-pixel level at the finest

granularity. Such limitation correlates pixels between VR frames inaccurately and incurs

large overhead in computation and communication.

We use the video encoding of two frames in Figure 3.5 as an illustration. When a VR

frame T1 is utilized as the reference to encode the VR frame T2, the motion estimation would

find the best matching MB by interpolating the frame T1 for quarter-pixel values, which

takes about 8 arithmetic operations for each pixel [21]. The residual MB after subtraction,

nonetheless, fails to eliminate the frame redundancy and is still in high entropy, which takes

about 7 bits to be encoded in H.264. In contrast, the image warping could accurately

reproject the pixels of frame T1 to the new camera position and completely removes the

pixel redundancy between frames. Consequently, the resulting MB would consist of pixel

values of zero and can be processed more effectively by existing video encoding techniques

because the MB requires no interpolation during motion estimation.

3.3 Overview

Figure 3.6 illustrates how DeltaVR works: it exploits and removes the redundancy across

consecutive VR frames whenever possible, so as to only transmit the delta images with

minimium sizes to the mobile HMD for VR display. At the cloud, DeltaVR periodically
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renders a panoramic image that captures all the possible user orientations at the current

camera position in the virtual world. Such a panoramic image is then used as the reference

frame to synthesize delta images for other VR frames in the future. Every time when a new

VR frame is needed2 at time t1, DeltaVR first renders this frame in full at the cloud, and

then warps the most recent reference frame from its original camera view at t0 to the current

user view at t1. As a result, the delta image of this frame at t1 is synthesized via delta

encoding as the difference between the originally rendered frame and the warped image from

the reference frame.

How to minimize the amount of VR frame data being transmitted? As shown

in Section 3.2.2, a large amount of redundant pixels can be retained across consecutive VR

frames or even after image warping over long distance. Hence, delta images for multiple VR

frames can be synthesized from the same reference frame, and the size of each delta image is

always smaller than the corresponding full VR frame. In practice, the sizes of delta images

will grow when the user character keeps moving and results in longer warping distance. In

order to ensure timely transmission of each delta image within T , DeltaVR further reduces

the average size of delta images to <25 KB without impairing the VR image quality, through

image compression and clipping (see Section 3.4.1).

How to maximize mobile VR performance? At the mobile HMD, DeltaVR warps the

received reference frame in the same way to the user view at t1. When the corresponding

delta image is received, it applies the delta image to patch the visual artifacts being produced

by image warping, so as to restore the full VR frame for display without any image quality

loss. In this way, DeltaVR avoids the expensive rendering of any VR frame pixel at the

mobile HMD, and hence guarantees the VR frame rate regardless of the scene complexity

or level of graphics quality in VR applications. The major factor that may affect the mobile

VR performance, then, is the large size and high resolution of panoramic reference frames,

which incur higher computation overhead for image warping at the mobile HMD. To address

this problem, DeltaVR adaptively clips each panoramic reference frame and only warps its

portion within the current user view to the mobile HMD (see Section 3.4.2).

2The time interval (T ) between two consecutive VR frames is determined by the frame rate, which should
be at least 60 FPS for satisfiable VR performance.
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Besides, in practical VR scenarios, when the user character keeps moving during the

mean time when the delta image is being transmitted, the VR frame being displayed may

not precisely capture the user movement but falls behind. The consequent lag in VR display,

however, is minimum because of the prompt transmission of small-sized delta images, and

could be easily addressed by re-warping the patched VR frame to the current user view.

3.4 Delta Image Synthesis

Efficient synthesis of delta images is the core of DeltaVR to satisfy the performance

requirement of today’s VR applications. First, DeltaVR synthesizes delta images with the

minimum size at the cloud, so that each delta image could be timely transmitted to the

mobile HMD. Second, DeltaVR also minimizes the computation overhead of applying delta

images at the mobile HMD, to ensure that each VR frame can be timely restored and

displayed to the user.

3.4.1 Minimizing the Delta Image Size

DeltaVR synthesizes a delta image through per-pixel subtraction between the full VR frame

and the warped image from the corresponding reference frame. Specifically, for VR frames

with 8-bit pixel channels3, the pixel value in each channel of the delta image is computed as

Delta =
Full −Warped

2
+ 127, (3.1)

which maps the positive and negative differences between the full VR frame and the warped

image to lighter and darker colors, respectively. Similarly, when restoring the full VR frame,

the mobile HMD patches the delta image to the warped image by inversing the subtraction

as

V iew = min[2 · (Delta− 127) +Warped, 255]. (3.2)

Based on such encoding, DeltaVR further reduces the size of delta image from the

following two aspects. First, the cloud compresses each delta image before sending it, and

3The pixel value in a 8-bit channel ranges from 0 to 255.
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uses the decompressed version of compressed reference frames at the cloud to ensure the

consistency of delta image synthesis with the mobile HMD. Second, the cloud clips each

delta image according to the current user camera orientation and FOV, In this way, it

avoids transmitting any VR frame data outside of the current user view, which is unlikely

to be noticeably changed during the short time period of transmitting a delta image. Our

experimental studies show that these techniques could reduce the size of a delta image to

< 25 KB without any VR image quality loss. Such reduction, on the other hand, also allows

a reference frame to be used for synthesizing more delta images and further minimizes the

total amount of VR frame data being transmitted.

Delta Image Compression

The most straightforward approach to reduce the size of a delta image is to compress the

image at the cloud before transmitting it to the mobile HMD. Since the size of a delta image

is much smaller than the full VR frame, each delta image, after being processed by existing

lossy compression techniques such as H.264 [42], could be efficiently decompressed by the

mobile HMD before the next delta image arrives. As shown in Figure 3.7, the average size of

delta images with H.264 compression continuously increases along with the warping distance,

which reduces the amount of redundant pixels in VR frames when it increases. Even when
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the warping distance is very long (∼0.5), such average size could be lower than 80 KB with

the default compression ratio (23)4.

However, applying such a lossy compression technique over delta images in DeltaVR is

challenging, because it may result in discrepancy in delta image synthesis between the cloud

and the mobile HMD, further impairing the VR image quality. More specifically, the cloud

synthesizes a delta image by warping from a uncompressed reference frame, but has to send

such a panoramic reference frame to the mobile HMD after compression. The warped image

from the decompressed reference frame at the mobile HMD, hence, will have more visual

artifacts due to lossy data compression and affect the correctness of delta patching.

To address this challenge, DeltaVR retains a decompressed version of each compressed

reference frame, and uses this version for image warping at the cloud to ensure consistency

of delta image synthesis. The correctness of delta patching at the mobile HMD, then, could

only be impacted by compression over the delta images themselves. In practice, such impact

can be controlled by adopting different H264 compression ratios that balance between the

VR image quality and delta image sizes. To evaluate such balance, we conducted preliminary

experimental studies by using the structural similarity (SSIM) metric [83] over the Viking

Village VR game [vik]. According to [23], SSIM is designed to model the human eye’s

perception to 3D images, and a SSIM score higher than 0.9 indicates good quality of VR

images. Our experiment results in Figure 3.8 show that any H264 compression ratio lower

than 27 would result in a satisfiable level of VR image quality, and could further reduce the

average size of delta images down to 25 KB.

Delta Image Clipping

The size of delta image could be further reduced by exploiting the limited FOV of today’s

mobile HMDs, which is usually smaller than 120◦ [fov]. As a result, instead of synthesizing

and transmitting a delta image over the 360◦ panoramic view, DeltaVR transmits to the

mobile HMD with a clipped delta image corresponding to the current user camera orientation

4H.264 allows different compression ratios by adjusting its Constant Rate Factor (CRF), which decides
the amount of data bits being used for each image frame.
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and FOV, which are reported from the mobile HMD to the cloud every time when a new

VR frame is needed.

The major challenge of such delta image clipping, however, is that the user view may

change during the process of delta image synthesis due to user head rotation, and such

change cannot be known by the cloud in advance. Our solution to this challenge, as shown

in Figure 3.9, is to further enlarge the FOV of image clipping by X◦ in both sides, to cover

the possible change of user view. In practice, since each delta image is promptly transmitted

to the mobile HMD within a very short amount of time, the possible change of user view

during this short time period is very limited. For example, even with the most vigorous

user head rotation where the angular velocity reaches to 780◦ per sec [37], the value of X is

merely 17.5 for a 22ms latency of delta image transmission.

As shown in Figure 3.10, after H.264 compression, such clipping further reduces the size

of delta images by up to 65%, when being applied to the three open-sourced VR games that

we described in Section 3.2.2. In particular, such size could be effectively controlled within

25 KB when the user FOV is smaller than 150◦, which could be considered as the optimal

FOV that well balances between VR frame rate and user experience in practice.
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3.4.2 Minimizing the Computation Overhead

After having received a reference frame and the successive delta images, the performance

of DeltaVR depends on the mobile HMD’s computational capability of image warping and

delta patching. While delta patching can be done via texture mapping with low complexity,

warping over reference frames with 360◦ panoramic view and ultra-high resolution could be

too expensive to be affordable at the mobile HMD5. According to our experimental studies,

it takes up to 3.35 ms for a LG G5 smartphone to warp a reference frame with 1024x1024

resolution over the warping distance of 0.5, hence restricting the maximum VR frame rate

to be lower than 30 FPS.

Intuitively, such computation overhead could be reduced by the same approach of image

clipping in Section 3.4.1, which warps only the portion of a panoramic reference frame that

is visible within the user view. The major challenge, however, is how to decide such portion

without impairing VR user experience or image quality. Since the user character in the

virtual world may move during the warping process, if we clip a reference frame only based

on the current FOV and camera orientation at the mobile HMD, certain visible regions in

the new target view may be missed. Instead, DeltaVR exploits the property of perspective

projection in VR applications, and determines the right FOV of clipping a reference frame

according to the real-time user movement in the virtual world.

5According to [48], the computational complexity of image warping is proportional to the size and
resolution of the reference image.
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According to perspective projection, the 2D user view plane in VR applications is

rendered with the VR objects between the near plane and the far plane in the truncated

pyramid frustum. As shown in Figure 3.11, when the user character moves from the current

camera position C to a new position C′ during the warping process (only showing the X-Z

plane for simplicity), the FOV for reference image clipping at C′ should make sure that the

frustum at C (defined as βx1 + βx2) is fully covered. According to the Pythagorean theorem

[61], the values of βx1 and βx2 can be determined as βx1 = arctan wx+mx

wz−mz
,

βx2 = arctan wx−mx

wz−mz
,

where wz is the distance of near plane, wx = wz ∗ tanαx, and αx is half of the FOV at C′.

Similarly, the FOV for reference image clipping in the Y-Z plane can be computed in the

same way.

3.5 Implementation

We implement DeltaVR over Google VR Unity SDK v1.20 and Unity VR application engine

v5.5.1, with minimum modification on either the Google VR SDK itself or the VR application

binaries. It consists approximately 3100 lines of C++ code as a plugin to the Unity engine,

47



and 850 lines of C# code as a Unity engine script. We use x264 [x26] as the encoder and

decoder of delta images.

3.5.1 Cloud Operations

DeltaVR runs a clone copy of each VR application at the cloud, and renders VR frames

according to the user inputs such as the controller operations received from the mobile HMD

as system events. To retrieve the rendered full VR frames from the application binary,

we exploit the hook of the application engine and attach a post-processing script to the

specialized VR camera. This script transforms the depth buffer into a greyscale image, and

then reads the raw pixels of the color and depth images into the main memory.

On the other hand, in order to render the panoramic reference frames at the cloud, we

create a specialized camera in the VR application binary, which utilizes the VR application

engine’s API to render the scene as a cubemap. Specifically, the camera renders the scene

onto the sides of a cube with six square textures, which represent the view along the directions

of the world axes (up, down, left, right, forward and back). Each face of the cubemap has

a FOV of 90◦ and a resolution of 1024x1024 so as to capture a 4K panoramic view of the

scene.

3.5.2 Mobile OS Integration

The major challenge of DeltaVR implementation at the mobile HMD is how to efficiently

support different VR applications in a generic manner. First, VR applications are

heterogeneous in their shading languages and scripting APIs being used. For example, the

Unity engine uses either JavaScript or C# as the script language, but the Unreal engine6

only supports C++. Supporting pixel reuse within the VR application binary, hence, leads

to repetitive efforts of re-programming. Second, operations of pixel reuse, if being done in

the user space, would be less effective due to frequent interaction with the system hardware.

To address these challenges and retain generality, we integrate DeltaVR into the OS

kernel of the mobile HMD, and implement it as a middleware between VR applications and

6https://www.unrealengine.com/
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OS drivers. As shown in Figure 3.12, the core of DeltaVR is implemented as an OS library in

native language to regulate the main DeltaVR functionality. The core library then interacts

with the graphics renderer, which manages frame buffers and invokes APIs directly from

OpenGL ES for delta patching and image warping. Since the OpenGL provides unified APIs

for 3D graphics rendering, the pixels in VR frames are generically reused without involving

the engine-specific shading languages such as the Microsoft’s HLSL [81] and Nvidia’s Cg [62].

On the other hand, the core library needs to interact with VR app binaries to retrieve

the necessary metadata for pixel reuse, such as the current camera position, orientation and

FOV. An intuitive solution is to invoke engine-specific APIs directly from the core library,

but lacks generality.

Instead, we introduce a middle layer with a suite of unified plugin APIs for data exchange

as shown in Figure 3.13. In particular, a plugin stub is implemented with engine-specific

scripts to fulfill behaviors of the predefined APIs. Such stub is dynamically linked with the

core library during development, so that any invocation to the plugin API will be directed

to the plugin stub at runtime. For example in Unity, to warp the reference frame to the

target view at runtime, the graphics renderer in the core library needs to find out the current
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camera position and hence will invoke the GetPosition() function in the plugin CameraAPI,

which is written in native C. This function marshals the request to the managed format in

C#7 and triggers the engine-specific script CameraStub to access the position property of

the camera object. Afterwards, the position values of the engine camera is marshaled to the

native format and returned to be processed by the graphics renderer.

3.5.3 Parallel and Pipeline Processing

DeltaVR is also implemented to be affordable at low-end mobile devices with severely

constrained computation capabilities, especially the older generations of smartphones being

used as the mobile HMD. In order to efficiently utilize the limited system resources and

reduce the response latency on these challenging systems, we divide the DeltaVR operations

into individual tasks and execute them in a pipeline manner for the two stereo eyes in each

frame. As shown in Figure 3.14, when the system is working to render and warp for the right

eye of frame 0 (denoted as R0), it is simultaneously encoding the delta image for the left

eye of frame 0 (L0). To avoid pipeline stalls or resource idleness due to the heterogeneous

computational complexity in different stages, we maintain a request queue for each stage,

which can then proceed to the next task immediately without waiting. In addition, we also

share the VR frame memory and allow the memory handle to be passed between stages, so

as to avoid copying the bulky VR frame data itself.

With the pipeline, the mobile VR performance is constrained by the most computation-

ally expensive stage in the pipeline, whose processing time is further reduced in DeltaVR

by exploiting the system parallelism. In particular, when the limited GPU resources on

7http://msdn.microsoft.com/en-us/library/ms235282.aspx
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low-end mobile HMDs are fully used by image warping and hence incapable of decoding the

compressed delta images timely, DeltaVR splits a delta image into multiple segments and

dedicates specialized CPU threads for faster software decoding.

3.6 Making VR Apps with DeltaVR

The generic design and implementation of DeltaVR significantly reduce the burden of

VR application development, with the Unity engine as the target VR software platform.

Typically, as shown in Figure 3.15, the Unity engine converts the application-specific 3D

objects and scripts of user interaction into native codes that are further compiled as

executable binaries, so as to render the VR scenes at run-time. Such procedure enables the

application developer to easily extend the application’s functionality from a basic prototype

by simply linking the new native libraries into the existing program binaries.

Our work exports the components implemented in Section 3.5.2 as easy-to-use modules,

based on which VR applications can be built for both the cloud and the mobile HMD. As

shown in Figure 3.15, the developers simply need to import the modules provided by DeltaVR

by copying the libraries to the application folder and create special prefab8 instances in the

Unity engine, and these prefabs will then be dynamically linked into the final executable at

compile time. Specifically, besides the core library, the modules of image warping and delta

encoding/decoding should also be included into the graphics renderer at both the cloud and

8A game object acts as a template with predefined scripts and properties.
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Figure 3.15: Making VR apps with DeltaVR

the mobile HMD, and a prefab of panoramic renderer should be created at the cloud to

render panoramic reference frames.

3.7 Evaluation

In this section, we evaluate the performance of DeltaVR, which is measured by the VR

frame rate, image quality and motion-to-photon latency. Our experiment results show

that DeltaVR can maximize the VR performance over highly dynamic VR scnearios with

complicated scenes and intensive user movement, and also demonstrate the effectiveness

of DeltaVR in resource-constrained scenarios with limited wireless network bandwidth and

device energy budget.

3.7.1 Experiment Setup

In our experiments, we use a LG G5 smartphone with Android v6.0.1 as the mobile HMD,

and a Dell OptiPlex 9010 Desktop PC with an Intel i5-3475s@2.9GHz CPU, Radeon HD 7470

GPU and 8GB RAM as the cloud server. We use a Google cardboard as the experimental

VR headset with a FOV of 90◦. The mobile HMD is connected to the cloud server via

campus WiFi, which has an average throughput of 40 Mbps and transmission latency of 3.5

ms. A Monsoon power monitor9 is used to measure the energy consumption of the mobile

HMD, and each experiment is conducted multiple times for statistical convergence.

9https://www.msoon.com/LabEquipment/PowerMonitor/

52



Table 3.1: Statistics of VR scene complexity

Game Draw Calls Triangles (K) Vertices (K)
Viking 400 2,400 1,600
Lite 212 65.7 52.4
Sci-Fi 227 32.7 36.7

Our experiments are conducted over the three open-sourced VR games listed in Section

3.2.2. As shown in Table 3.1, they present different levels of VR scene complexity. Unless

explicitly stated, each VR scene contains 4 animated foreground objects moving at 1m/s

towards a random direction, and the user character constantly moves at the same speed

in the virtual world. By default, DeltaVR transmits a new reference image to the mobile

HMD every 60 VR frames, resulting in a maximum warping distance of 1 in the virtual

world. Each panoramic delta image, before being transmitted, is clipped with a FOV of

135◦, which allows a 22.5◦ head rotation with Google cardboard and tolerates 28 ms delay

for transmission and decoding. X264 with default CRF=23 is being used for delta encoding

and decoding.

We compare DeltaVR with three existing VR schemes:

• Local: VR applications are solely running on the mobile HMD.

• Thin-client: Every VR frame is rendered by the cloud and transmitted in full to the

mobile HMD [wow].

• Furion: A VR frame is collaboratively rendered at the cloud and mobile HMD.

Panoramic VR backgrounds are rendered at the cloud and pre-fetched by the mobile

HMD for all possible directions of user movement. Foreground VR objects are all

rendered at the mobile HMD itself [52].

3.7.2 Improvement of VR Performance

Our experiment results show that, by avoiding expensive VR frame rendering at the mobile

HMD, DeltaVR always achieves the required 60 FPS with different levels of VR resolution

and scene complexity, while providing high image quality with SSIM > 0.92. It also
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minimizes the motion-to-photon latency within 16ms to ensure smooth VR experience and

avoids any possible motion sickness.

Frame Rate

As shown in Figure 3.16, the frame rate provided by DeltaVR is constantly 60 FPS in

all settings of graphic quality, and greatly outperforms local VR frame rendering whose

performance significantly drops to < 15 FPS under high resolution. Similarly, Figure 3.17

shows that the frame rate in DeltaVR remains constant even when the VR scene becomes

highly complicated with 13 foreground objects. In contrast, the local VR frame rendering

experiences more than 50% performance degradation by rendering the additional foreground

objects at the mobile HMD. Note that, the maximum FPS that DeltaVR can achieve in our

experiment is limited by the screen refreshing rate at the mobile HMD that is being capped

at 60Hz, and could hence be further improved on future mobile devices which supports higher

screen refreshing rates (e.g., 90Hz).

One reason for such improved VR performance, as described in Section 3.4.2, is the

clipping process over panoramic reference frames that reduces the computation overhead of

image warping at the mobile HMD. As shown in Figure 3.18, compared with panoramic

image warping that reduces the VR frame rate down to ∼ 42 FPS, DeltaVR improves the

frame rate by more than 40% as long as the clipping FOV does not exceed 135◦, hence

allowing a maximum warping distance of 0.88 without any VR performance degradation.
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Table 3.2: VR image quality (SSIM)

Rendering Scheme Viking Lite Sci-Fi
Local Frame Rendering 0.8133 0.8766 0.8832
DeltaVR w/ Stationary User 0.9569 0.9599 0.9681
DeltaVR w/ Moving User 0.9241 0.9210 0.9557
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Image Quality

We evaluate the VR image quality provided by DeltaVR using the SSIM metric [83], which

quantifies the image quality degradation in DeltaVR from the pristine high-quality image

rendered at the cloud. The results in Table 3.2 show that DeltaVR ensures high image quality

(> 0.9) in all the VR applications with fast user movement, and significantly outperforms

that of local frame rendering. Such improvement on image quality allows many advanced

graphics options such as shadow casting and anti-aliasing at the mobile HMD, and greatly

enhances the user experience.

Besides, we also evaluate the effectiveness of delta patching in DeltaVR by comparing

with the traditional image warping technique that interpolates pixels in disoccluded regions

[63]. Figure 3.19 shows that delta patching in DeltaVR experiences much less image quality

degradation when the warping distance increases, and retains SSIM> 0.9 even when the

warping distance increases to 1.0. In comparison, the VR image quality in traditional image

warping quickly drops when the warping distance is larger than 0.2, because of the increased

disoccluded areas in VR frames with higher VR dynamics.
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Latency

Motion-to-photon latency is critical in VR to ensure user experience and avoid motion

sickness, and such latency depends on 1) the transmission delay of reference frames and

delta images, and 2) the computation delay of frame decoding, image warping and delta

patching at the mobile HMD. These delays over the Viking Village game are averaged over

all the VR frames, and Figure 3.20 shows that the total processing latency for each VR frame

is less than 16ms. More specifically, the transmission delay in DeltaVR is about 4.8 ms due

to the minimized size of delta images, and is less than 10% of that of Furion [52] which

pre-fetches the panoramic background images for all possible directions of user movement.

Similarly, the H.264 decoding delay in DeltaVR is also 66% lower than the existing schemes

because of the smaller amount of VR frame data being transmitted. At the mobile HMD,

DeltaVR takes about 5.1 ms for frame rendering, which is slightly higher than other schemes

due to the extra overhead of image warping and delta patching.

3.7.3 Impact of Wireless Connection

The condition of wireless connection between the cloud and the mobile HMD is critical

to DeltaVR. Being different from Furion [52] which requires gigabit WiFi connection to

transmit full VR frames, Figure 3.21 shows that DeltaVR requires at most 25 Mbps of

network bandwidth, which can be easily satisfied by any existing WiFi. In addition, the
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required network bandwidth also depends on the VR scene complexity, and Figure 3.22

shows that DeltaVR effectively restrains the required network bandwidth within 35 Mbps

over highly complicated VR scenes, which consist of more than 13 foreground objects.

3.8 Related Work

Mobile Offloading and Cloud Gaming: General-purpose mobile offloading reduces the

local computational burden of mobile devices, by adaptively partitioning the computing tasks

and offloads only the most appropriate portion to the cloud for remote execution [22, 35].

However, it is difficult to partition the process of rendering a VR frame, which is operated

by GPU hardware. The amount of frame data sent to the mobile HMD, hence, remains

unchanged.

Our proposed design of DeltaVR is related to prior work on cloud gaming [28, 74, 43].

Existing commercial systems such as PlayStation Now and NVidia Shield, consider frontend

mobile devices as a thin client, to which the game’s output is streamed as compressed video.

However, these designs cannot scale to mobile VR, because its requirements of high resolution

and low response latency make it impossible to stream game scenes at real-time. MoVR

[11, 10] enables multi-Gbps wireless communication to VR headsets via mmWave wireless

technology, but relies on specialized hardware support and line-of-sight connectivity. Instead,

DeltaVR significantly reduces the amount of VR frame data being transmitted, and hence

maximizes the mobile VR performance over conventional wireless networks.

Collaborative Rendering: Recently, researchers advocate the idea of collaborative

rendering, which splits the computing workload of rendering individual frames between

the cloud and local mobile devices. Flashback [16] pre-renders all the VR frames offline

and caches the rendered frames at the HMDs’ local storage, so as to alleviate the run-time

computation burden. However, the system performance deteriorates quickly with the number

of dynamic VR objects and the unavoidable cache miss. It also consumes a huge amount

of storage space at mobile devices (e.g., 50GB data for each VR application). Kahawai [23]

exploits the cloud GPU to render high quality images that enhance the visual quality of the

locally rendered images, but still leaves heavy rendering workloads on the mobile. Furion
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[52] separates the VR scenes into background and foreground layers, and streams only the

panoramic background images to mobile devices, but has to speculate future user movement

for prefetching and hence suffers from misprediction. Instead, DeltaVR does not involve any

pre-fetching of VR frames, and is hence resistant against sporadic VR application events or

user behaviors.

Graphic Processing: Image-based rendering [63] is widely used in today’s VR applications,

but incurs fast degradation of image quality with large warping distance due to the view

disocclusion. Asynchronous TimeWarp technique [tim] in mobile VR compensates and

displays the previous frame with the current head rotation when the mobile fails to render on

time, but leads to flickering edges with vigorous head motions. [69] aims to mask the network

latency by provisioning an extra view at deliberately selected location to fill the disoccluded

holes, but requires more computations to warp the extra image. Post-processing techniques

[80] interpolate or extrapolate the disoccluded view, but lead to blurry regions. In contrast,

DeltaVR captures all disoccluded views in advance as the delta image, and hence guarantees

high VR image quality regardless of the heterogeneous dynamics in VR applications.

Some other schemes [76, 77] propose to adapt the resolution for different parts of the

panoramic images according to the user view point, so as to reduce the amount of image

frame data being transmitted. These techniques, however, still transmit full VR frames and

are hence susceptible to vigorous user head rotation or movement in intensive VR scenarios.

In contrast, DeltaVR transmits only delta images with minimum sizes to the mobile HMD,

enabling fast response to any dynamic user behavior.

3.9 Discussions

3.9.1 Supporting Next-generation VR Systems

The VR industry is rapidly evolving towards wider FOV and higher pixel density. For

example, the FOV and resolution of Pimax 8K [pim] reach to 200◦ and 3840x2160 for each

eye. Such change of image resolution quadratically increases the image size, which aggravates

the insufficiency of wireless network bandwidth. However, DeltaVR is less impacted because
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the redundancy between VR frames persist, resulting in constantly small delta images. On

the other hand, the mobile VR performance will be impaired by the computational overhead

of image warping, which is proportional to the image resolution. To address this issue, we

plan to adaptively adjust the density of the mesh grid in mobile IBR, so as to reduce the

computational overhead of image warping.

3.9.2 User Sensitivity to VR Latency

The latency in a VR system can typically be divided into two categories. First, the motion-

to-photon latency represents the elapsed time for the user head motions to be reflected on

the user screen. As noted in [17], human sensory system is more sensitive to such latency,

which requires to be less than 20 ms to be imperceptible. Our work reduces such latency

by sampling the user pose right before mobile rendering so as to exclude the influence of

the networking and decoding delay. In contrary, the latency of user interaction to the

virtual environment, such as flipping the switch or pushing the controller button, is much

less important and users can tolerate up to 50 ms of such latency. Therefore, the high

performance in our work as shown in Figure 3.20 allows plenty of time for cloud processing

and ensures robustness to large system variance without compromising the user experience,

as long as each pipeline stage can finish in 16 ms.

3.9.3 Multi-user Support

Multiple VR users may execute VR applications at the same edge cloud server with finite

resources, which may exceed the cloud capacity. Our future work plans to share GPU

between individual VR users so as to reuse the results of cloud rendering and hence reduce

the computational overhead in the cloud. It is observed that temporal and spatial locality

widely exists in VR games [18] and hence the pixels in the rendered images across multiple

users should be redundant as well. By reusing the pixels from other users [88, 65, 14], the

cloud GPU can avoid the repetitive computations and reduce resource utilization.
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3.10 Conclusion

In this chapter, we present DeltaVR, which achieves high-performance mobile VR over

heterogeneous VR dynamics, by adaptively reusing the redundant VR pixels across

consecutive VR frames. DeltaVR utilizes the cloud to determine the pixel redundancy

between frames and transmits only the distinct portions as delta images to the mobile HMD,

so as to fundamentally reduce the amount of VR frame data being transmitted without

impairing VR image quality in anyway. Based on the implementation and evaluation over

Android OS and Unity engine, we demonstrate that DeltaVR maximizes the mobile VR

performance with 95% less amount of wireless data transmission.
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Chapter 4

Interconnecting Heterogeneous

Devices in the Personal Mobile Cloud

4.1 Introduction

Nowadays, a mobile user is usually equipped with multiple types of mobile computing devices,

ranging from traditional smartphones and tablets to emerging wearables, each of which

is designed for a specific application scenario. Such diversified designs satisfy the unique

requirements of different application scenarios, but also restrict the performance or usability

of these mobile devices in other aspects. For example, wearable devices enable body sensing

with a small form factor, at the cost of limited capacities in computation, communication

and battery life. A viable solution to eliminate such restriction is to construct a personal

mobile cloud [31], which incorporates and interconnects all the mobile devices owned by

a user via wireless links. These devices are then able to flexibly share system resources

with each other, augmenting the mobile computing capability provided to the user. For

example, wearables can save their local battery by exploiting the computational power of

nearby stronger devices [22, 50, 75], while providing their sensory data to these devices and

facilitate their context-aware applications [41, 82].

The major challenge of realizing such a personal mobile cloud is the heterogeneity of

mobile computing devices, which resides in both hardware and software aspects and prevents

these devices from being interconnected in a generic manner. First, the increasing variety

61



of hardware components being mounted on today’s mobile devices results in fundamental

difference in the drivers, I/O stacks and data access interfaces being used by these hardware.

Even for the same type of hardware, access to the hardware data from a remote system could

fail if the hardware drivers are provided by different manufacturers and incompatible with

each other. Such incompatibility is usually a result of customized SoC designs adopted by

different hardware manufacturers. For example, the accelerometer drivers for the Qualcomm

Snapdragon chipsets are definitely incompatible with the Samsung Exynos chipsets. Second,

the complexity of today’s mobile applications has been dramatically increased, leading to

heterogeneity in both their requested types of mobile system resources and their specific ways

of accessing these resources. Existing solutions, unfortunately, are limited to interconnecting

mobile devices with respect to an individual mobile application [60, 86] or a specific type of

shared hardware [15, 72]. Therefore, they will need a large amount of reprogramming efforts

to interconnect heterogeneous mobile devices, by rewinding the wheel for each individual

hardware or software component of these devices. Such reprogramming efforts do not only

impair the usability of mobile computing system in versatile environments, but also incur

additional overhead to the operation of mobile OS and hence reduce the mobile system

performance.

The key to generic interconnection across heterogeneous mobile devices is to develop

an efficient framework for the sharing of peripheral resources between these devices, which

appropriately masks the hardware and software heterogeneity in mobile systems from each

other. Development of such a peripheral sharing framework, however, is challenging due to

the close interaction between mobile hardware and software. A framework at the lower layer

of mobile OS hierarchy unifies the heterogeneous peripheral requests of mobile applications,

but has to tackle with individual hardware drivers which are operated in intrinsically different

ways [12] and hence incurs a tremendous amount of re-engineering efforts. Sharing system

peripherals at the application layer, on the other hand, is able to access mobile hardware

through a generic OS interface, but has to be associated with specific data transfer protocols

and hence has limited generality [29, 39].

In this chapter, we present a mobile system framework to address the above challenges

and generically interconnect heterogeneous mobile devices towards a personal mobile cloud.
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Our basic idea is to develop the resource sharing framework as a middleware in the mobile OS,

which exploits the existing mobile OS services to share peripherals between mobile devices.

These services hide the low-layer details of device driver operations while providing unified

data access APIs to user applications. Interconnection between mobile devices, then, could

be realized via remote access and invocation of these OS services. Since these services are

executed as a standalone system process by the OS kernel and are separated from application

processes, remote service invocation can be done via inter-process communication (IPC)

between mobile systems without involving complicated issues such as memory referencing

and synchronization. As a result, any new device can be incorporated into the mobile cloud

by inserting our framework into its OS, without modifying the OS kernel, our framework

itself, or the source code of any mobile application.

We have implemented our design on Android OS with less than 5,000 Lines of Codes

(LoC) over various mobile platforms including smartphones, tablets and smartwatches, and

demonstrated the efficiency of sharing various types of hardware (GPS, accelerometer, audio

speaker, camera) between remote mobile devices. The evaluation results show that our design

can efficiently support ubiquitous access to system peripherals between remote systems with

arbitrary mobile applications, without incurring any significant system overhead.

The rest of this chapter is organized as follows. In Section 4.2 we provide a high-level

overview about our motivation and designs. Section 4.3 and Section 4.4 present the details

of our peripheral sharing framework and application interface. Section 4.5 describes how

we support sharing multimedia peripherals between mobile devices. Section 4.6 presents

our implementations over various mobile platforms, and Section 4.7 presents our evaluation

results based on these implementations. Section 4.8 discusses the related work. Finally,

Section 4.9 discusses and Section 4.10 concludes the paper.

4.2 Overview

In this section, we start with a brief description about the layered architecture of mobile

OSes, which motivates our proposed design. Based on this motivation, we further provide a

high-level overview of our proposed framework.
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4.2.1 Motivation

Our design is motivated by the layered architecture of mobile OSes, as discussed in section

1.2. In such layered architecture, peripheral resource access is provided by system services

via a suite of generic and pre-defined APIs, which are invoked by user applications via IPC

with binder mechanism in Android and message passing in iOS, respectively. For example,

instead of directly accessing GPS or WiFi network interface, an application in both Android

and iOS retrieves the location information of the device via a location service provided by

the OS.

We support generic peripheral sharing between remote mobile devices based on the such

layered architecture of mobile OSes. First, since system services are the only interface for

user applications to access system peripherals, access to any type of peripherals on a remote

device could be provided by the same generic framework, as long as this framework can

intercept the requests of peripheral access from user applications and redirect these requests

to the remote system. Furthermore, different types of system services are invoked following

the same mechanism (e.g., binder in Android and message passing in iOS), and hence we will

not confront with the heterogeneity of service operations. Second, these system services hide

the details of hardware operations from user applications. Hence, peripheral sharing based

on these services addresses the heterogeneity of hardware driver implementations, and allows

devices with different hardware models and drivers to access each other. More importantly,

since system services are invoked through the pre-defined set of APIs, interception and

redirection of these invocations are transparent to user applications, which will access the

remote system peripherals in the same way as they access the local counterparts, without

any modification to their source codes.

4.2.2 The Big Picture

As shown in Figure 4.1, our proposed middleware resides between user applications and OS

services, and consists of two major components: a) Application Interface and b) Peripheral

Sharing Framework.
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Figure 4.1: The big picture of interconnecting heterogeneous mobile devices
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Figure 4.2: Design of peripheral sharing framework

The Application Interface regulates how a user application accesses the shared peripherals

at the remote system through an application-specific metadata file that configures the usage

of remote resource. When a user application requests to access a system peripheral, the

Application Interface parses the configurations to return the appropriate handle to the

corresponding system service. Hence, no matter what system service is invoked and whether

the service is invoked at the local device or the remote device, the service is operated through

the same way.

The Peripheral Sharing Framework interacts with the local OS and communicates with

the remote OS services to provide remote peripheral access to user applications. As shown in

Figure 4.1, the details of low-layer device driver implementations and hardware operations in

the OS kernel are completely separated from the peripheral sharing framework, and different

OS services are invoked in a universal manner through the same set of pre-defined APIs.

4.3 Peripheral Sharing Framework

Our design of the peripheral sharing framework is shown in Figure 4.2. In general,

our framework intercepts the requests of peripheral access generated from local mobile

applications, and forwards these requests to another remote mobile device which acts as

the server and provides the shared resource. Every time when a peripheral access request is
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received, the server will invoke its local OS service corresponding to the requested peripheral

resource, and reply with the resource data.

This framework consists of two major components: Proxy Object module and Serial-

ization module. The responsibility of the Proxy Object module is to serve as a portal of

remote service invocation, and manage the proxy objects for peripheral sharing at both

endpoints of the peripheral sharing system. The Serialization module is responsible for data

serialization, which is the process of converting memory objects into a binary format that

can be transmitted through the network link. These binaries can be reconstructed back to

memory objects by deserialization at the other endpoint.

Our framework supports peripheral resource access between mobile devices in two ways:

proactive invocation and reactive callback. First, when a remote system service is available, a

service proxy object will be created by our framework to initiate the IPC between the client

and the server. In proactive invocation, every time when an application requests to remote

service access, the proxy object at the client triggers a remote invocation event, which is

captured at the server to invoke the corresponding service method. Second, applications can

also access system peripherals reactively by receiving data in system events, e.g., location

update. Peripheral resource access in this case is handled by reactive callbacks, which allow

applications to register and listen to a system event with a callback handle. This handle is

called via a callback proxy by the service at the server when the system event occurs, and

then used to transmit resource data back to the client. This invocation procedure is similar

to proactive invocation, but in a reverse direction.

4.3.1 Invocation of Remote OS Services

Our framework supports remote invocation of both Java-based and native OS services. As

we mentioned above, both types of services can be remotely invoked via both proactive

invocation and reactive callback.
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Figure 4.3: Resource sharing through callbacks

Java-based OS Services

In Android, part of system services are implemented in Java and running in a standalone

system process. On one hand, to devise a generic solution to the serialization module for

sharing these services, we utilize the Java reflection mechanism which enables developers

to inspect classes, interfaces, fields and methods at run-time without knowing the names of

classes and methods in advance. Specifically, we access all the field values of any memory

object by reflection and convert them into binaries. Similarly, this feature can be applied for

deserialization by creating the object instance and setting all the field values at run-time, so

as to reconstruct memory objects from the received binaries.

On the other hand, we develop the proxy object from the existing system service class,

by appending the bytecodes of remote invocation operations to the service class via dynamic

weaving. The dynamic weaving technique in Java allows us to instrument the bytecodes of

an existing Java class at run-time, generating a new class instance as the subclass of the

original class type. Since a system service class in Android is specified as a subclass of the

Binder class by itself, we dynamically weave a system service class at run-time whenever it

will be remotely accessed, with the extra bytecodes of remote invocation operations added

to service methods. Hence, this newly weaved class will be a subclass of the Android Binder

class and can be registered to binder kernel driver to receive and intercept the applications’

invocation to a service method.

Our framework also supports callback to user applications which register a system event

with any class object implementing the event listener interface. Then, as shown in Figure

4.3, user applications exploit the Android system library to wrap this listener into a binder

stub which communicates with the binder proxy for event listening in the corresponding

system service. To realize such callbacks across two mobile devices, as shown in Figure
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4.2, we allow an application to register and listen to an event in the remote system via a

callback proxy, and utilize the event listener binder proxy at the client as the callback handle.

Afterwards, when the system event happens at the server, the callback proxy will initiate a

remote invocation to the callback handle at the client.

Native OS Services

Another large body of system services in existing mobile OSes is implemented in native

C/C++ languages, e.g., sensor and graphic services in Android and all system services

in iOS. Since these services are executed as compiled binaries at run-time, proxy objects

for these services cannot be developed through run-time manipulation due to the following

reasons. First, it is hard to locate the entry and exit points of a native method at run-

time, and hence difficult to dynamically attach the weaving instructions to the service class.

Second, the machine instructions in these native service classes depend on the hardware

architecture and hence can only be operated and compiled statically.

To address this challenge, in our current design we modify the source codes of each system

service class to realize the functionality of serialization and deserialization, as well as the

remote invocation of service methods. Being different from existing schemes which share

system resources over the device drivers and have to reprogram the driver implementations

for each individual system, our modifications are applied to OS services and applicable to

all mobile systems with heterogeneous hardware components. This advantage enables our

work to be applied to a variety of different mobile platforms, and we will describe such

implementation details in Section 4.6.

4.3.2 Unix Domain Socket

Another IPC scheme supported in our framework is Unix domain socket. For example in

Android, sensor data is not delivered from the sensor service to applications as method

arguments of the binder method invocation. Instead, it is delivered by a Unix domain socket

between the sensor service and the application, in order to reduce the system overhead of

highly frequent data transmission.
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In our design, we build the reliable data exchange channel between mobile devices with

a network socket instead of the Unix domain socket used in existing IPC schemes. More

specifically, the system service process in the server will listen to the connection request

for building a distributed data channel. When an application requests a remote system

service, the proxy object in the client will establish a connection to the server and pass the

file descriptor of this connection back to application. Thereafter, the system service in the

server can exchange data reliably with the client application through TCP. Since the mobile

OSes operate these two types of sockets with the same APIs, the actual type of the data

channel socket can be hidden from the system which uses the data channel and the existing

IPC code for data exchange can be kept unchanged.

4.4 Application Interface

Our design of the Application Interface is shown in Figure 4.4. Whenever a user application

requests to access an OS service, the Application Interface intercepts this request and returns

a handle to the appropriate service, which could be located in either the local system or the

remote system. Since both handles provide the same programming interface to applications,

the process of peripheral resource sharing between mobile devices is completely transparent

to user applications.

Decisions on the service handle being returned are made based on the configurations

stored in an application-specific Metadata File in the application directory. More specifically,

when a user application requests to access a system service, the framework loads the

configurations from the metadata file. If the configurations indicate that a local system

peripheral will be accessed, the local service handle is returned to the user. Otherwise, our

framework will create a remote service proxy and build a TCP connection to the remote

system for peripheral access. In our design, this metadata file is operated by a special Proxy

Application which is embedded as part of the Application Interface. This proxy application

manages and overrides the peripheral access configurations for all user applications, and also

receives inputs from the mobile OS settings about the list of available system resources. All

70



Figure 4.4: Design of application interface

these information will be written by the proxy application into the metadata file, which are

then checked by our framework at run-time to ensure correct service invocations.

Through the development of this proxy application, our design allows a user application

to configure its access of system peripherals in three ways. First, we allow developers

to distribute their configurations along with the application binaries during installation,

and explicitly specify how the application will access system peripherals. For example,

the developers can decide the destination of the remote peripheral and the data rate at

which they want the remote peripheral to be accessed. Second, if the target for peripheral

resource sharing is unknown, developers can opt to adopt existing service discovery protocols

(e.g., [89, 73]) and explore for the available shared peripherals nearby, by specifying the

service discovery protocol being used in configurations. Third, we also allow mobile users to

manually modify the configurations of peripheral resource sharing via the proxy application.

For example, a mobile user can explicitly configure the application to project the screen

content to a nearby large LCD.

4.5 Supporting Multimedia Operations

Operations over multimedia peripherals usually involve large sizes of bulk data and need to

exploit shared memory for data exchange between applications, resulting in new challenges

when sharing these peripherals between remote mobile devices. In this section, we present

our design to support the access to such shared memory of multimedia services between
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Figure 4.5: Memory synchronization for content part

remote mobile devices. The major challenge, however, lies in how to ensure the remote IPC

reliability with the minimum intrusion to the original mobile OS structure and interface.

According to the way shared memory is operated, we categorize the shared memory

into two cases and handle them separately: the general buffer and the graphic buffer. The

general buffer is defined as shared memory that is portable and vendor-independent. It is

directly allocated and operated by system services. The graphic buffer, on the other hand,

stores image data such as camera preview and video frames, and is usually operated by

vendor-specific HAL.

4.5.1 The General Buffer

The general buffer can be divided into two parts. First, the content part stores the resource

data and is operated following the producer-consumer pattern, i.e., one operator always

writes data into the buffer and the other always reads the data. In this way, the two operating

parties are always synchronized without contentions on writing. Second, the control part

stores the control information that is necessary to operate the content part, such as the

reading and writing pointers. The control part, therefore, can be written by both applications

and system services which may conflict with each other when writing. In our design, we

develop different techniques for synchronizing the shared memory of these two parts.
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Content Part

To efficiently operate the content part, being different from traditional approaches of

Distributed Shared Memory (DSM) [46] which always shares memory in fixed-size units

and may result in large amounts of redundant data synchronization between mobile devices,

we flexibly synchronize the shared memory at arbitrary sizes based on the actual application

patterns of memory access. This flexibility is mainly due to the fact that there is no write

contention between the sharing client and server when they synchronize the content part,

ensuring any size of synchronized memory to be always coherent. As a result, our basic idea

is to establish a memory mapping between the client and the server, and synchronize the

memory contents based on the mapping. Whenever one endpoint allocates a block of shared

memory, a corresponding memory block with the same size is allocated correspondingly at

the other endpoint, and a mapping entry between their addresses is added into the mapping

table maintained at both endpoints. Whenever one endpoint finishes its write operation, we

use the mapping entry and the writing offset to calculate the destination writing address

and synchronize the data being written. For example in Figure 4.5, when the client allocates

12 bytes of memory, the server also allocates the same amount of memory accordingly, and

the addresses of both the client and server memory are stored in the mapping table in

both endpoints. Later, when the client writes 5 bytes into the buffer, the resource sharing

framework synchronizes and updates memory with the appropriate size, according to the

received target address and offset.
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Control Part

We also develop a flexible synchronization scheme for the control part, which can synchronize

either the whole control part or the individual fields of it. To ensure data consistency

with write contention, we establish a happened-before relation between two mobile devices

through an ownership flag, and only allow the owner of a memory field to write to the field.

The ownership transfers when the other endpoint tries to write the field. In this way, we

ensure that writes happen in sequential turns between the client and the server and hence

the memory at two endpoints will always be consistent. For example in Figure 4.6, the client

intends to write a control field but does not have the ownership to the field. Therefore,

the client sends a message to the server and requests for the ownership of the field. Having

received this message, the server transfers its ownership to the client.

4.5.2 Graphic Buffer

Graphic services in the mobile OS, which operate multimedia devices such as the camera

or LCD screen, usually utilize the GPU to accelerate the speed of image processing and

rendering. Hence, being different to the general buffer which is allocated and written by the

applications or system services themselves, the graphic buffer are allocated and operated by

the vendor-specific HAL. As a result, we cannot directly intercept the buffer operations from

our peripheral sharing framework and further establish memory mapping for synchronization

between remote systems. Instead, our approach is to integrate our peripheral sharing

framework with the APIs provided by the OS for user applications to manage and operate

the graphic buffer.

We use Android OS as a nominal example to present the details of our design. In Android,

the core of its graphic services is the BufferQueue class, which manages different graphic

buffers allocated by the vendor-specific gralloc module. The operation of graphic buffers also

follows the producer-consumer pattern: the producer (usually the hardware device driver)

dequeues an empty buffer handle from BufferQueue and queues the filled buffer back to

BufferQueue; the consumer (e.g., Surface Flinger) acquires a handle of filled buffer from

BufferQueue and releases the consumed buffer back.
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Figure 4.7: Operating the graphic buffer for remote camera access

As a result, our resource sharing framework acts as a consumer of BufferQueue to extract

the graphic buffer contents, and then pushes these contents to the remote device. For example

in Figure 4.7, after the camera driver in the server posts a preview image buffer into the

BufferQueue, our framework collects the graphic buffer contents as a consumer and sends

them to the client. Then, the framework in the client retrieves an empty buffer, fills the buffer

with the received image content and posts the buffer back into BufferQueue. Afterwards,

the Surface Flinger in the client renders the preview image.

4.6 Implementation

We implemented our design in Android v5.1.1 with CyanogenMod 12.1, and build the

peripheral sharing framework on Linux distribution Ubuntu 12.04. The dynamic weaving

technique is implemented with dexmaker1. Our implementation consists approximately

1,500 lines of Java code and 1,850 lines of C++ code to support Java-based and native

system services, respectively. It is deployed on multiple types of mobile devices, including

smartphones, tablets and smartwatches.

Based on this implementation, we are able to further implement the functionality of

sharing different types of resources between remote mobile devices, and the implementation

details are listed in Table 4.1. First, our framework supports remote access of the location

service, which involves operations of both GPS and WiFi, with less than 10 Lines of Java

1https://github.com/crittercism/dexmaker/
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Table 4.1: List of Supported Services

Service Type of code LoC Hardware
Location Java <10 GPS, WiFi network
Sensor C++ 283 All onboard sensors
Audio C++ 647 Speaker

Camera C++ 594 Camera

code. Comparatively, remote access of other system services involves operations over native

classes and requires more LoC on data serialization and deserialization.

4.6.1 Service-Specific Optimization

Sensor Service: We optimized the sharing of sensor service and allow mobile applications

to receive sensor data at their specified rates, no matter how fast such data is generated

by the hardware or OS, so as to minimize the data transmission cost of ubiquitous sensor

access. More specifically, we attached a specialized control module to the socket channel

for sensor data exchange between mobile devices, and customized the data transmission

rate between mobile systems without modifying the sensor service methods or the sharing

framework themselves. In practice, the sensor service in the server will receive the sensor

data rate from the client, and send sensor data to the client only if necessary.

Audio Service: In Android, the audio playback will not start until the audio buffer is fully

filled. However, the amount of audio data that an application writes in one operation may

not be enough to fill up the buffer. As a result, mobile users may experience a long latency of

initializing remote audio playback if the framework synchronizes as soon as a write operation

happens. In order to reduce such latency, our framework accumulates the buffer contents and

holds from synchronization until the local buffer is fully filled. Consequently, we eliminate

the multiple round trips for the initial buffer synchronization of audio playback.

Notification Service: Besides the system services operating the hardware resources, another

collection of system services also exists to let mobile applications utilize the system-wide

software resources. Since software system services interact with mobile applications in the

same way as hardware system services, our framework also supports sharing of software

system services between mobile systems. We have implemented the sharing of Android
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Figure 4.8: Porting sensor service libraries in Android wear

notification service between mobile systems with less than 15 lines of Java code, and allow

the user to show notifications on a remote mobile device. When a mobile user clicks the

notification icon, the action associated with this notification will be performed back to the

local mobile device through remote callback.

4.6.2 Deployment over Different Mobile Platforms

Our proposed framework allows generic peripheral sharing among heterogeneous types

of mobile devices, which are equipped with hardware from different manufacturers or

running different versions of device drivers. Being different from traditional DSM-based

schemes which have to manually port and reprogram the driver implementations from one

device to another, our framework utilizes the OS service interfaces to hide the hardware

heterogeneity from user applications and realizes automated migration between mobile

platforms without manual modification. In our implementation, we share system peripherals

among smartphones, tablets and smartwatches, even if their implementations of hardware

drivers are not open-sourced and not accessible in CyanogenMod. Instead, we exploit the

source code of the Android framework service layer, which is publicly available in the Android

Open Source Project (AOSP) and remains the same for different platforms.

Deployment of our framework on smartphones and tablets is trivial since they are directly

supported by Android CyanogenMod OS. Their deployments can be simply done by building

and flashing their full OS installation packages. Deployment over smartwatches, however,

is more complicated because the open-sourced OS codes for Android wear is incomplete.

We deploy our framework over smartwatches by porting and replacing the existing library

files in the rooted smartwatch. Since these libraries are dynamically loaded and linked with
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interface symbol names in Android, such library replacement will not affect OS execution as

long as the new libraries keep the same programming interfaces as the old ones.

For example, for the Android sensor service shown in Figure 4.8, we build individual

modified modules as library files. More specifically, the Java libraries serve as the entry for

user applications to interact with the native sensor service, and hence are modified to return

the remote service handle to applications. The native libraries receive the service invocation

from Java libraries and request the local or shared peripherals. These individual library files

are then used to replace the files with the same names in the directories on a rooted device.

Note that, this porting technique is generic and applicable to all other system services such

as location service and multimedia services, because the source code of these system services

are also available in AOSP and the service libraries are dynamically linked and loaded.

4.7 Performance Evaluation

In this section, we evaluate the performance of our proposed designs on sharing peripherals

between remote mobile devices. More specifically, we first evaluate the general performance

of peripheral sharing between remote systems by adopting resource-specific performance

metrics, and show that our design reaches satisfiable sharing performance with little

computational overhead. Afterwards, we evaluate the power consumption of peripheral

sharing between remote mobile devices, and demonstrate that peripherals at remote mobile

devices can be accessed without consuming significant amounts of energy. Last, we measure

the network throughput of sharing different types of peripherals, and report the amount

of wireless network bandwidth required to support resource sharing. Our experiments

are performed by sharing GPS, accelerometer sensor, speaker and camera between mobile

devices. Note that our evaluations are directly performed over individual hardware

components, which are accessed by the mobile OS itself. On the other hand, since our

proposed peripheral sharing framework keeps the method of user applications’ peripheral

access as intact, it is able to seamlessly support any off-the-shelf mobile application with the

corresponding modification of the resource metadata file.
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Figure 4.9: FPS for real-time camera preview

4.7.1 Experiment Setup

We perform our experiments over different types of mobile platforms including Samsung

Galaxy S4 smartphone, LG Nexus 4 smartphone, Samsung Nexus 10 tablet and LG Watch

Urbane, all of which are running Android v5.1.1. The generality of our peripheral sharing

framework then ensures its reliable execution over these mobile platforms and seamless

interaction between different mobile devices. These devices are interconnected via 40Mbps

campus WiFi unless explicitly stated in the paper. Our devices are placed close to each

other and the network latency is about 3.5 ms. We use a Monsoon power monitor2 to gather

the real-time information about the devices’ power consumption. Note that, although in our

experiments only one client device is connected to the sharing server, our framework allows

multiple clients to be connected to a server simultaneously.

In each experiment, we adjust the parameters of system peripherals to evaluate the

peripheral sharing performance in different application scenarios. More specifically, we vary

the data rates from GPS and accelerometer to emulate the requirements from different mobile

applications. We play music with different audio rates which determine the amount of data

being transmitted. We also share camera previews with different image resolutions, which

significantly impact the data size of the preview image.

2https://www.msoon.com/LabEquipment/PowerMonitor/
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Figure 4.10: Latency of initial audio buffer filling

4.7.2 Performance of Peripheral Sharing

We first evaluate the access latency of sharing different types of system peripherals, which is

measured by the average elapsed time from the time when the framework starts to process

data to the time when the resource data is returned back to the local device. Such latency,

hence, consists of the network transmission latency, the execution time of system service

methods, and the overhead incurred by our sharing framework. Our experiments use GPS

data report interval as 1 second, accelerometer data report interval as 20 ms, audio rate of

44.1 KHz and camera preview resolution of 176×144. Each experiment runs 3000 times,

based on which the average data access latency is measured.

The experimental results when sharing peripheral resources between two Nexus 4 phones

are shown in Figure 4.11. We can see that remote peripheral access only incurs negligible

latency, which is mainly dominated by the network latency in most cases. Specifically, the

network latency for GPS and accelerometer is small because of the small size of resource data

being transmitted, and sharing the camera between mobile devices experiences larger network

latency due to the large data size of multimedia content. On the other hand, execution of

our peripheral sharing framework only incurs negligible computational overhead to mobile

systems at both endpoints.

Furthermore, as we mentioned in Section 4.6.1, when we share the audio between mobile

systems, the audio playback will not start until its buffer is all filled with audio data.

Therefore, the latency of initial buffer filling is a key factor of users’ conceived delay of using
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the remote speaker. Our experiments evaluate such latency by measuring the average time

it takes to fill the audio buffer since the client starts to write audio data. The experiments

set the buffer size as the length of audio segments with respect to the audio rate. Each

experiment plays 20 audio tracks. The experimental results are shown in Figure 4.10. We

can see that the initial latency of buffer filling increases along with the buffer size, but is

efficiently controlled within 40ms in all cases.

We evaluate the performance of sharing the camera between mobile devices using the

average frames per second (FPS) for the camera preview. Our experiments are performed

with Galaxy S4 smartphones with different resolutions of camera preview over 2000 frames.

From the experimental results in Figure 4.9, we can see that our framework can reach the

same FPS of remote camera preview as that of the local camera, when a low resolution

of 176×144 is used. Even if we increase the resolution to 480×320, our framework can

still provide a FPS of 18, which is more than sufficient to support smooth camera preview

(minimum FPS of 15). When the resolution further increases, the FPS will drop due to the

increasing amount of data being transmitted. For example, one 720×480 preview frame has

the size of 518 KB with the NV21 pixel format, hence requiring 62 Mbps of wireless network

bandwidth to reach 15 FPS at the remote system.
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4.7.3 Power Consumption

In this section, we evaluate the energy efficiency of our work, by measuring the average power

consumption at both the sharing server and the sharing client, and compare such power

consumption to the power consumption of using local peripherals. To remove the dynamic

power consumed by the smartphone screen, we disable the functionality of automatic

brightness adjustment during our experiments and keep the display dimmest. In each

experiment, we use the device for three minutes and measure its average power consumption.

Each experiment runs three times over Galaxy S4 phones that are interconnected via

Bluetooth links.

The experimental results for sharing the GPS and camera are shown in Figure 4.12 and

Figure 4.13 respectively. In contrast to Rio [12] which consumes a tremendous amount of

additional energy for resource sharing between mobile system, our framework reduces the

power consumption by 13% and 29% respectively, when accessing the remote peripherals

instead of the local counterparts. On the other hand, the server consumes extra energy

to provide the shared peripherals, and the majority of such extra energy is consumed by

sending the resource data to the client. Considering that the server is usually the device

with stronger capabilities, such additional cost could be acceptable in most cases.

The experimental results for sharing the accelerometer and audio speaker are shown

in Figure 4.14. From the figure we can see that the client consumes a small amount of

extra power (7% and 4% for accelerometer and speaker, respectively) to access the remote
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Figure 4.14: Power consumption for sharing the accelerometer and speaker
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Figure 4.15: Wireless transmission throughput with remote resource sharing

peripheral. The basic reason for such additional power consumption is that both of these two

resource modules are power efficient but require highly frequent synchronization of resource

data, leading to additional energy consumed by wireless data transmission. In particular,

adopting a higher audio rate does not noticeably increase the power consumption, because

it only leads to moderate change on the size of audio data.

4.7.4 Wireless Transmission Throughput

In this section, we evaluate the amount of wireless transmission throughput being produced

by the remote peripheral sharing in our framework, by measuring the average amount of

data being transmitted between the client and the server. In each experiment, we use the

device for three minutes to synchronize accelerometer data, play audio tracks and transmit

camera previews between two mobile devices.
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The experimental results for accelerometer, speaker and camera are shown in Figure

4.15a, Figure 4.15b and Figure 4.15c, respectively. We can see from the figures that sharing

sensors, audio devices and camera devices incur small, moderate and large amount of wireless

transmission throughput, respectively. In specific, both sensors and audio devices require

only less than 1 Mbps to fully support remote resource access. Therefore, any high-speed

wireless network can easily meet such throughput requirement [59]. However, remote access

to the camera requires much higher wireless network bandwidth due to the large size of

preview images. Therefore, the bandwidth becomes the performance bottleneck of the

remote camera access, especially when a high-resolution preview is applied. Efficient network

scheduling protocols are a viable solution to this bottleneck [58].

4.8 Related Work

Initial research efforts on resource sharing between systems focus on thin client, which allows

clients to render graphical interfaces from and send user inputs to the server [15]. However,

these systems are limited to solely sharing the graphical interface. Later on, applications have

been developed to share different types of system hardware resources such as the microphone,

webcam, GPS and computation [55, 78]. However, each application can only share a specific

type of pre-designated hardware. Sharing any other type of resource requires a significant

amount of engineering work. In contrast, our proposed framework can share heterogeneous

types of system resources without incurring any reprogramming efforts.

Traditional work has been focusing on resource sharing in distributed systems. ErdOS

[79] exploits opportunistic access to resources in nearby devices to efficiently save local energy

consumption. In addition, resource sharing enables a device to utilize its missing resource

features so as to be more powerful. Resource sharing among distributed clients has also been

supported at the OS layer. Mobile grid computing [57] allows mobile devices to join the grid

and share their hardware resources to other devices in the grid. However, these shared

resources can only be accessed through grid-specific API. Ubiquitous computing [36, 41]

enhances the performance of a system task by sharing and utilizing the resources available in

the network. However, these schemes lack generality and are limited to specific applications.
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Rio [12] is the first systematic solution to share multiple types of hardware among

mobile systems without modifying user applications. However, its implementation over a

mobile system has to closely bind with the system hardware drivers, and hence has to be

reprogrammed to support different models of hardware. Furthermore, it can only provide

remote resource access following pre-designated configurations, and is hence incapable of

adapting to the actual resource needs of mobile applications. In contrast, our scheme,

which is implemented in a higher layer in the OS architecture, is able to take the run-time

application behaviors into account and leave the inconsistency of hardware drivers being

dealt by the OS kernel.

4.9 Discussions

4.9.1 Pixel Format for Remote Camera Sharing

A particular issue in sharing graphic devices, such as camera or LCD display, is the

consistency and compatibility of the pixel format between mobile devices. In specific, device

vendors may define their own pixel format of graphic contents, and hence the graphic data

may not be renderable by another device. For example, the preview data generated by the

Samsung Galaxy S4 smartphone cannot be directly rendered by a LG Nexus 4 smartphone.

The fundamental solution to this issue is to apply a graphic format that is compatible at all

types of mobile devices, so that heterogeneous formats of the graphic pixels can be handled

in a generic way. For example, the H.264 standard is used as the intermediate data format

for memory synchronization by Miracast [Mir]. Instead of sending the raw graphic contents,

the mobile OS first encodes these contents with H.264 codecs. Then, the H.264 data is

decoded in the client and rendered to display the graphics on the screen. We will explore the

possibility of incorporating such graphic data encoding into our framework in the future.

4.9.2 Access Control

An authentication or access control scheme is necessary among mobile systems to protect

them against malicious parties which may send mobile malware along with the data sharing
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traffic or steal private information from users. Such access control can be supported in

our framework by adding a new authentication layer before serialization. Various user or

device identities, which are not limited to user passwords but can also be biomarkers, system

patterns or user gestures, could be used for such authentication. On the other hand, since

reactive callbacks need to be registered at the sharing server beforehand with proactive

invocation, they can be authenticated in the similar way.

4.10 Conclusions

In this chapter, we present a mobile system framework which efficiently interconnects

heterogeneous mobile devices towards a personal mobile cloud and supports cooperative

resource sharing among these devices. Our basic idea is to allow a mobile application to access

remote system resources at another mobile device through remote invocation of existing OS

services. Based on the implementation and evaluation over Android OS, we demonstrate

that our framework can efficiently support generic resource access between remote mobile

devices without incurring any significant system overhead.
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Chapter 5

Conclusions

This dissertation explores the methodologies to enhance the capacity of mobile devices

through resource sharing in a generic and efficient way. More specifically, mobile devices

have limited resource capacity due to the manufacture obstacles, which inhibits the high

performance and cannot satisfy the increasing complexity of user applications. Mobile cloud

computing is proposed to overcome such limitation in this dissertation that utilizes the

remote shared resources to complement and enhance the mobile capacity. On one hand,

being integrated into the mobile OS, the proposed frameworks in the dissertation exploit the

OS layered architecture to isolate the heterogeneity in mobile hardware and software, which

enables generic access to remote resources. On the other hand, the proposed frameworks

adapt to the runtime execution patterns to minimize the network transmission of resource

data, which hence ensures the efficiency of remote resource access.

In detail, the dissertation presents the solution as three specialized frameworks which

tackle the resource sharing of CPU, GPU, and system peripherals respectively.

• A mobile offloading framework to access CPU on remote cloud: This novel

framework exploits the cloud CPU to accelerate the program executions of mobile

applications by offloading computation-intensive methods in Dalvik VM with least

context migration. The framework first runs offline parsing to application binaries so

as to identify the relevant memory contexts for a specific method. Such parsing results

are loaded at runtime to screen the thread stack and heap contexts, which enables the
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framework to migrate only such relevant memory contexts to the remote cloud. The

proposed framework is implemented over practical Android OS, and the experimental

results over realistic smartphone applications show that the system reduces 70% of

memory context migration than existing schemes, without compromising the offloading

effectiveness.

• A mobile VR framework to access GPU on remote cloud: DeltaVR is a

systematic mobile VR framework that maximizes mobile VR performance by utilizing

the remote cloud GPU to render high-quality graphics. The framework utilizes the

cloud’s computational power to explicitly decide the pixel redundancy across adjacent

frames and eliminate such redundant pixels during frame transmission, which hence

transmits only the distinct portions of each frame to mobile devices. The framework

is implemented as a mobile middleware over the Android OS and Unity game engine.

The experimental results over real-world VR applications show that DeltaVR reduces

more than 95% of the VR frame data transmission, while providing satisfactory VR

experience.

• A framework to access mobile peripherals on personal cloud: This sharing

framework allows the mobile devices owned by a user to be interconnected as a personal

mobile cloud so that these devices can complement each other with seamless remote

peripheral access. Such interconnection is achieved through the remote invocation

of unified system services being defined in mobile OS. The proposed framework is

implemented as a middleware on Android OS over various mobile platforms with diverse

characteristics and resource limits. The evaluation results show that the design can

efficiently support ubiquitous access to peripheral resources between remote systems

for arbitrary mobile applications, without incurring any significant system overhead.
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