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SUMMARY 

After a decade of moderate development, thin client computing has entered into an era of 

rapid growing as it offers a secure, cost-effective and easily managed computing model 

and facilitates mobility. Nevertheless, to deliver a satisfactory user experience, especially 

over the bandwidth-limited and slow network links, performance enhancement of 

existing thin client systems is still essential. Analysis shows that there is still a large 

amount redundancy in the screen updates generated by existing thin client systems, and 

improving the interactive performance of thin client computing by reducing the 

redundancy is still practicable. Towards this direction, we proposed a few optimization 

techniques for thin-client systems. These techniques include a static object cache 

technique, a long-distance redundancy reduction scheme, and a data spike reduction 

scheme. The static object cache technique is motivated by the observation that many 

graphical user interface objects cause similar screen updates when they are shown for 

multiple times. By caching the static parts of their presentation data on the clients, we can 

significantly reduce the data transferred cross network. We implemented this method on 

VNC, an open-sourced thin client system. Our experimental results show that this 

technique can reduce the network traffic and user operation latency of VNC by up to 60%. 

The long-distance redundancy reduction method provides a flexible and scalable way to 



 viii 

increase the history size in LZ compression algorithm, which is widely used in thin client 

systems. This scheme is intended to reduce the redundant data that are located far from 

each other in the screen update stream. Our experiments show that compared to the 

baseline compressor used in Microsoft Terminal Server, this scheme significantly reduces 

network traffic and user operation latency. The data spike reduction scheme provides a 

hybrid cache-compression scheme to reduce the screen update data that are generated in a 

short time (data spikes). Experimental results show that reducing data spikes can 

considerably reduce the long operation latencies over bandwidth-limited and slow links 

with reasonable cache memory and slightly more computing time.  
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

In the early 1990s, thin clients were thought to be an alternative to personal computers 

(PCs). Thin clients are scaled-down PCs without permanent data storage. They are 

designed to be used in a special client/server architecture where the majority of 

processing occurs on the server. Thin clients were supposed to save money for companies 

by providing a cheap thin client device rather than an expensive PC for each employee. 

But the idea was soon eclipsed by the fact that PCs got much cheaper and much faster 

than anyone had expected. As a result, throughout the 1990s, thin clients remained a 

niche market, and PCs dominated the desktops in most enterprises.  

 

While PC started out only as a simple computing tool, it has evolved into a powerful 

information processing system that can supports diverse, complex software applications. 

On the other hand, PCs have become so cheap that in many companies almost each 

employee has his own PC. Hence for a modern large- or medium-sized company, there 
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are a substantial amount of hardware and software to administrate. The maintenance and 

management cost for these facilities has become a significant portion of the total expense 

of today’s IT infrastructures. In response to this, thin client computing regained attentions 

of academia and industry by the end of 1990s [67-70, 102-104]. But different from the 

initial concept, thin client is now used more often to refer to a computing model (thin 

client computing) where users can interact with various applications running on remote 

servers with a single client even if the applications were not built in client/server 

architecture. The solutions making use of this model were no longer limited to thin client 

hardware. Some thin client solutions provide a simple software client that allows users to 

operate their applications on remote servers. Software based thin client solutions can be 

used by a company to configure their low-end PCs as thin clients while using their high-

end PCs or servers to host applications for multiple users.  

 

Compared to personal computing where most applications are installed and run on user 

PCs, thin client computing can reduce administration and maintenance cost in many 

enterprises [92, 93, 105, 106]. The reduction is mainly achieved by reducing the 

complexity of application deployment and security management. Firstly, with thin client 

solutions, application deployment becomes easier. A new application only needs to be 

installed and configured on a small number of servers that are usually located at one or a 

few places. Accordingly, compatibility only needs to be ensured between the new 

application and the software/hardware systems on servers. But for personal computing, 

installation, configuration, and compatibility tests need to be performed for thousands of 

or even more client machines which may have distinct machine architecture, hardware 



Chapter 1: Introduction 

 3 

configurations, operating systems and installed applications, and may be dispersed all 

over the world. Secondly, with thin client solutions an IT department can focus its 

resources on the servers, which reduces the chance of viruses and other malware breaking 

into the network. As security management becomes more and more complex and also 

more and more important in enterprises, this merit of thin client computing considerably 

improves IT staffs' productivity and cuts off administration and maintenance costs. Of 

course, thin client computing will require more management and maintenance job for the 

server side. However, the sum of resources is greatly reduced because these resources 

when deployed on servers can be more efficiently allocated and shared. Hence the 

increased maintenance and management complexity on the servers will be much lower 

than the reduction of that on the client side. And since the client management becomes 

trivial, thin client computing removes or at least reduces the need of IT staffs' travel to 

different business locations in client supporting.  

 

Besides the cost consideration, the growing demand of user mobility is another important 

reason for the revival of thin client computing. The user mobility trend is strong: More 

than 10% of users are working outside the LAN for more than 50% of their working time 

[87]. Thin client computing in nature supports user mobility as it allows users to access 

their applications from anywhere with a resource limited hardware or a simple software. 

If the enterprise adopts thin client infrastructure, when traveling a user can authenticate 

and login at any available network terminals, PCs or even mobile devices [88-90] and has 

immediate access to his unique computing environment. This improves his productivity 

as well as reduces risks of important data missing which is caused by the portable 
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computers damaged or stolen when traveling from one place to another. If the enterprise 

does not adopt thin client computing infrastructure, mobile users can still benefit from 

this technology. For example, to avoid data missing a mobile user can choose to leave the 

important data with his desktop PCs in his company providing a network connection is 

available in the guest location. When he needs the data, he can use thin client technology 

to access them. Not only can he access the data, but also the applications installed on his 

PCs or other PCs which he has right to access, even though the PCs may have different 

architecture and operating systems. This is very useful when he wants to use an 

application or software tool which is not available on his laptop or the provided PC in the 

guest location.  Or in some cases, some specific computation needs very long time to 

complete. So a mobile user can start the computation on PCs or servers. When traveling, 

the user uses mobile devices to monitor the status, control the process and view the final 

results.   

 

As a secure, cost-effective and easily managed computing model, thin client computing 

offers IT users a valuable choice, but it may not be the ideal choice for all situations. Like 

any network-based computing model, it requires a robust and reliable network connection. 

Its performance also relies on the network performance to a great extent. If this 

computing model is deployed in a low-bandwidth network, some applications with 

intensive GUI display requirements like AutoCAD and Photoshop may get unsatisfactory 

performance over it. Fortunately, the network bandwidth is improving rapidly and the 

reliability of networks is increasing at the same time. Thanks to the efforts in both 

industry and academic areas, thin client computing itself also made remarkable 
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enhancement and is continuing to enhance the performance. With the improvements of 

networks and thin client computing, we can anticipate thin client computing to be more 

widely used in the future.  

 

1.2. Motivations and Goals 

For most client/server systems, end-users generally have little concern about where 

processing occurs and where data are stored, as long as the interaction is fast, consistent, 

and seamless. Hence, interactive response time is the key performance of a thin client 

computing system. As shown in Figure 1.1, if the response time of an interactive 

application is less than a threshold value (tolerable threshold), then from a performance 

point of view, the application is fast enough. Above that point, the delays will be 

perceptible and lead to decreased performance. But until a second threshold (unusable 

threshold) the application is still tolerable for the users. Above the second threshold, the 

user feels the application unusable. The actual threshold values vary from person to 

person and are affected by the stimulus intensity [1, 75].  

 

 

Figure 1.1: Impact of interactive response time on user satisfaction (adapted from [12]) 
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After 40-year researching on the impact of interactive response times on user satisfaction 

and task productivity [2-7], the human-computer interaction (HCI) community reaches 

the consensus on acceptable response times for trivial interactions: when the latency is 

below 150 milliseconds user productivity is not impacted by the latency; when the 

latency is above 150 milliseconds users become increasingly aware of the delay; above 1 

second, users become unhappy [8].  

 

While various optimizations have been applied, the interactive performance of existent 

thin client systems is still unsatisfactory in many practical situations. The results in [8-10, 

52, 53, 94] show that when network latency increases and network bandwidth decreases 

the interactive performance of thin client system degrades; for some tested WAN 

configurations, the response time may increase to the tolerable threshold or even 

unusable threshold.  

 

To illustrate the cause of unsatisfactory interactive performance of thin client systems in 

these situations, we present a simple analysis here. Thin client computing splits an 

application into the user interface on clients and the application logic on servers, and uses 

network as the communication tie between them. In this architecture, the response time of 

an operation can be divided into two parts, computation time and network access time. 

On the client side, computation time is mainly the time to process thin client protocol, 

which is usually insignificant with today's PCs and thin client terminals. On the server 

side, computation time mainly includes application processing time and thin client 

processing time. Application processing time depends on the server's software/hardware 
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environment and the computation nature of the requested operation. Thin client 

processing time consists of the time to process user input and the time to process 

presentation data. It is determined by the server's hardware/software environment and the 

thin client protocol adopted. Processing user inputs mainly involves parsing thin client 

protocol packets to get user input information and generating system events as if the 

inputs had happened locally. This normally takes only a small amount of time as the input 

data is limited. Processing presentation data mainly involves capturing and representing 

the presentation data, encapsulating them into protocol packets and applying various 

optimization methods. This processing may take a long time when some operations 

produce lots of presentation data. Network access time mainly consists of the time of 

transferring user input data and presentation data. It is dependent on the inherent network 

latency, the available bandwidth and the amount of data to be transferred. Network 

latency is determined by the network path in use. The available bandwidth is associated 

with whether and how much data are being transferred across the links in the network 

path. User input data usually only incurs small network traffic while presentation data can 

be very large and is a main contributor to the network access time and the total latency.  

 

From the analysis we can find that using different thin client computing techniques 

affects two main parts of the total latency: thin client processing time to capture and 

process the presentation data, and network transmission time to transfer the presentation 

data.  Though desirable, it is very hard to optimize one of them without affecting the 

other. In many situations it would be more favorable to reduce the network transmission 

time at the cost of increasing some processing time. This is because compared with the 
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processing time, the presentation data transmission time usually contributes much more 

to the total latency especially in some non-ideal networks (high-latency and low 

bandwidth).  

 

Although network bandwidth has been greatly increased in recent years, available 

bandwidth in many networks may still not be able to meet the needs of transferring the 

presentation data of thin client computing adequately fast. This is either because there are 

other data on the network or because the network capacity is limited. When available 

bandwidth is not enough, some of the screen update data will be queued on the sending 

machine or some network nodes which will increase interactive latency. When too much 

data are queued up on the sending machine the machine's network output buffer may 

become full, and some packets may be discarded (packet loss). This will induce packet 

retransmission, further increasing the interactive latency.  

 

Different user operations result in screen update data of different sizes. The peak 

bandwidth requirement can be much higher than the average bandwidth requirement. For 

example, some GUI-intensive user operations such as opening a complex dialog or menu 

produce a large volume of presentation data in a short time. Usually delivering such an 

update to the clients within a user-perceptible latency needs a bandwidth that is much 

higher than the average bandwidth requirement. These GUI-intensive operations will 

induce long latencies in many non-ideal network environments [99-101].  
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In summary, the interactive performance of existing thin client systems could be 

potentially improved by reducing the network traffic, especially when the available 

network bandwidth is low and when the user operations generates a lot of screen updates. 

The goal of this dissertation work is to investigate the optimization techniques that can 

achieve this.  Nevertheless, Figure 1.1 also implies that there is a performance threshold 

above which users will not be able to tell more improvements. As the thin clients perform 

well in high-bandwidth low-latency networks, the optimization techniques presented in 

this thesis do not target such networks.  

 

1.3. Major Contributions 

The major contributions of this research work are as follows: 

• We propose a static object caching scheme [99]. This scheme reduces the redundant 

presentation data sent across networks which is caused by recurrent display of GUI 

objects. We implemented this scheme on VNC [25], a popular thin client computing 

system. Our experiment results show that for bandwidth-limited networks this scheme 

reduces the network traffic and interactive latency by up to 60% with only a little 

more CPU usage. 

• We present a flexible and scalable method [101] to extend the history buffer of LZ 

algorithm [13] that is often used to compress screen update data. We empirically 

studied the effectiveness of our scheme on three different types of screen update 

traces of Microsoft Terminal Server [72]. The numerical results show that this 

scheme can reduce 15.0% - 33.5% network traffic for the tested traces with a history 
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buffer of 2M bytes. Moreover, it also can reduce 20.6% - 27.8% noticeable long 

latencies for different types of applications with 2M bytes history buffer. This scheme 

costs only a little additional computation time and the cache size can be negotiated 

between the client and server. 

• We present a hybrid cache-compression scheme, DSRS, to reduce the data spikes 

[100].  We empirically studied the effectiveness of DSRS using a number of screen 

update traces of Microsoft Terminal Server. The experimental results show that 

DSRS can reduce 26.7% - 42.2% data spike count and 9.9% - 21.2% network traffic 

for the tested data with a cache of 2M bytes. DSRS can reduce 25.8% - 38.5% 

noticeable long latencies for different types of applications with the same cache 

configuration. This scheme costs only a little additional computation time and the 

cache size can be negotiated between the client and server. 

 

Publications arising from this work 

• Y. Sun and T.T. Tay, "Analysis and Reduction of Data Spikes in Thin Client 

Computing", Journal of Parallel and Distributed Computing, in press, DOI: 

10.1016/j.jpdc.2008.05.007. 

• Y. Sun and T.T. Tay, "Improving Interactive Experience of Thin Client Computing by 

Reducing Data Spikes", ICIS2007, Melbourne, Jul. 2007. 

• Y. Sun and T.T. Tay, "Reducing Long Distance Redundancy of Thin Client Systems", 

IEEE-IWEA2007, Melbourne, Jul. 2007. 

• T.T. Tay and Y. Sun, "A Novel Performance Optimization Approach for Thin Client 

Computing", PDCS’05, Las Vegas, Sep. 2005. 
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1.4. Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 provides necessary background 

knowledge on thin client systems. It gives an insight into one important thin client 

architecture, distributed presentation architecture. A brief survey of the thin client 

systems taking this architecture will provide a good background for the performance 

optimization techniques discussed in the following sections. Chapter 3 presents a brief 

survey of the past and ongoing researches in thin client performance optimization 

followed by a summary that reveals the gap between the reality and the expectation in 

this area. Chapter 4 describes an application-specific optimization approach, static object 

cache scheme. The performance evaluation of this scheme is presented. Chapter 5 

presents an experimental framework to evaluate the performance of two optimization 

techniques proposed in Chapter 6 and Chapter 7. It describes the test traces, an interactive 

latency measurement methodology, the testbed configuration and a baseline MPPC 

encoder. Chapter 6 analyzes the long-distance redundancy in the screen updates of thin 

client systems and proposes a long-distance redundancy reduction scheme. Chapter 7 

introduces the concept of data spikes, followed by an analysis of their influence on 

interactive latency. An efficient data spike reduction scheme is then proposed in this 

chapter. Chapter 8 concludes this thesis and discusses possible research directions. 
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CHAPTER 2 

THIN CLIENT COMPUTING SYSTEMS 

2.1. Background 

A thin client system is a special form of client/server (C/S) system. In the early 1990s, 

Gartner Research proposed a famous application partitioning scheme to represent 

different designs of C/S systems [74]. According to this scheme, an application is divided 

into three logic layers: presentation layer, application layer and data access layer. A layer 

can be wholly or partially assigned to the client or the server. Different assignments of 

the layers result in five distinct models: distributed presentation, remote presentation, 

distributed logic, remote data management and distributed data management, as shown 

in Figure 2.1. Among these models distributed presentation and remote presentation 

model are used by existing thin client systems. While a few thin client systems such as 

Canoo's Ultra Light Client (ULC) [32, 33], Classic Blend [63], Remote JFC [66] and 

IBM's Thin Client Framework (TCF) [34] adopt a remote presentation model, the main 

stream of existing thin client systems adopt the distributed presentation model. A key 

advantage of distributed presentation model over remote presentation model is that the 
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latter requires applications to be specially developed for it and thus can not support 

legacy applications while the former has no such requirements. 

 

  

Figure 2.1: Gartner Group C/S application partition models 

 

In contrast to the remote presentation model which assigns the entire presentation layer to 

the client, the distributed presentation model assigns only the application-independent 

part of the presentation layer to the client. The remaining presentation layer parts as well 

as the application and data layers all run on the server. The client merely displays the 

graphical representation of the application's GUI on the client and forwards user inputs 

such as keystrokes and mouse clicks to the server. As a result, distributed presentation 

architecture only requires limited processing power from the client and is able to 
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manipulate existing legacy applications remotely. In the remaining of this dissertation, 

we only discuss the thin client systems with distributed presentation architecture. 

 

2.2. Display Updates Encoding 

A critical part of a thin client system is a thin client protocol. Thin client protocol defines 

the display primitives to be used to represent the screen updates sent from the server to 

the client. Different types of display primitives require intercepting the screen updates at 

the different layers of a display system, and require different encoding/decoding methods. 

Generally, the display primitives used in existing thin client systems can be classified into 

three types: high-level vector primitives, low-level vector primitives, and bitmap-based 

primitives. Accordingly, we classify the existing thin client systems into three categories: 

high-level vector thin client systems (HVTC), low-level vector thin client systems (LVTC) 

and bitmap-based thin client systems (BTC).  
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Figure 2.2: A desktop display subsystem 

 

In order to illustrate how different types of thin client systems work, here we briefly 

describe the key components of a display subsystem on a modern computer. As shown in 

Figure 2.2, display subsystems are usually organized in a layered structure, with three 

software layers over the displaying hardware: windowing system, graphics engine and 

display driver. Windowing system is a graphics user interface (GUI) based on windows. 

A window is a virtualized area of the display, typically rectangular in shape, containing 

some graphics elements that displays the output of a program and may allow keyboard 

and mouse input from the user. Windowing system provides a high-level abstraction of 

the graphics hardware. It manages windows from different programs, which enables the 
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computer user to work with multiple programs at the same time. Graphics engine 

interprets the sophisticated device-independent graphics operation requests from the 

windowing system. It translates these requests into some low-level drawing primitives 

which the underlying display driver can understand. Display driver then translates the 

primitives into commands for the video hardware to draw graphics on the screen. The 

video hardware inside a PC usually consists of a set of graphics chips and a dedicated 

memory to hold the contents of a single screen image. Such a video memory is called 

frame buffer. In some cases frame buffer shares the PC's main memory. The raster image 

held in frame buffer is sent to the user's display from the video hardware via a VGA or 

DVI connector.  

 

All three types of thin client systems are able to intercept the screen updates without 

modifying the legacy applications. BTC operates at the lowest layer by simply reading 

the actual pixel values in the frame buffer. LVTC intercepts the elementary display 

primitives that are sent from the graphics engine to the display driver. HVTC intercepts 

screen updates at the application layer, capturing the display commands issued by the 

application. In the following sections, we will separately introduce these three types of 

thin client systems in terms of architecture, features and representative examples.  

 

2.3. Bitmap-based Thin Client Systems (BTC) 

Generally, bitmap-based primitives are operations for drawing bitmaps. BTC treats 

screen updates as a sequence of bitmaps without differentiating between synthetic images 



Chapter 2: Thin Client Computing Systems 

 17 

and real images. The pixel values of the bitmaps are obtained from the lowest abstraction 

layer of the display subsystem, frame buffer. Figure 2.3 shows the typical architecture of 

BTC. As shown in the figure, the thin client server simply reads the screen updates from 

the frame buffer and forwards them to a protocol encoder. The encoded data are sent to 

the client and are decoded, and then updated to the client's frame buffer. The encoded 

data can be optionally compressed on the server side to further reduce the data size.  

 

N
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Figure 2.3: BTC architecture 

 

Synthetic images can be a mixture of images, vector graphics, texts, etc. This is often the 

case for an application's GUI. For vector graphics and texts, using the image-oriented 

encoding and compression methods usually is not very efficient. As a result, BTC is 

generally considered to be less bandwidth efficient than other types of thin client systems. 

Nevertheless, it requires a less complex client and is more platform-independent. For 
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example, AT&T VNC [25] employs a single graphics primitive for filling a screen region. 

Such a simple encoding results in its very thin client and its applicability cross various 

operating platforms.  

 

2.3.1. Virtual Network Computing (VNC) 

VNC [25] is a freeware developed at AT&T Laboratories in Cambridge, England aimed 

for remote operating of X windows and Microsoft Windows. The technology underlying 

VNC is a simple remote display protocol, named RFB for Remote Frame Buffer [26]. As 

the name implies, RFB protocol works at the frame buffer level. This protocol employs a 

single graphics primitive: "put a rectangle of pixel data at a given x, y position" [26]. 

RFB protocol can be implemented on various operating systems and hardware devices 

with some basic display capabilities and a communications link. This protocol can work 

over any reliable transport protocol such as TCP/IP. 

 

VNC supports various encoding schemes for screen updates: RAW, RRE, CoRRE, 

Hextile and COPYRECT. RAW encoding is the lowest common denominator supported 

by any client. With this encoding the update data for a rectangular region is simply sent 

in left-to-right scanline order. Other three encodings, RRE, CoRRE and Hextile, are all 

based on run length encoding. In run length encoding a sequence of data of the same 

value (runs) is represented with a single data value and a count. COPYRECT encoding 

can be used when the client already has the same update data elsewhere in its frame 

buffer. This encoding simply replaces the repeated rectangular region with an (x, y) 
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coordinate and the region's width and height. The coordinate gives a position in the frame 

buffer where the client can copy the update data of that rectangular region. 

 

The above encoding techniques can greatly reduce the original data size. Some derived 

variants of VNC provide additional optimization options. For example, UltraVNC [27] 

has an on-screen cache and a cache encoding mechanism which saves two latest updates 

for each pixel of the screen. The latest update of the pixel is saved in a remote frame 

buffer, and the second latest update is saved in a cache. The new updates will be check 

against the saved updates to pass only the different screen regions.  

 

2.3.2. Sun Ray 

Sun Microsystems in 1999 came out with Sun Ray [76, 77], which was introduced as a 

stateless thin client solution aimed at enterprise environment. Among all existing thin 

client systems Sun Ray is the only product tightly coupled to the hardware since the 

client software is stored in the firmware and loaded on start-up. Sun Ray server software 

runs on Sun servers with the Solaris or Linux operating system. Sun Ray clients are dumb 

terminals connected to the Sun Ray server software. Sun Ray client comprises a 

smartcard reader and often comes with a flat panel display. It allows users to log in or to 

reconnect just by plugging in their identification cards.  

 

The underlying display protocol for Sun Ray is a bitmap-based network protocol, 

Appliance Link Protocol (ALP), which is similar to the RFB protocol used in VNC. 
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Supporting audio output redirection makes ALP different from RFB. And, it also roams 

the audio streams from one Sun Ray terminal to the other when a session is disconnected 

and reconnected from somewhere else. With no outstanding compressions, the protocol is 

only usable on 10/100Mbps Ethernet networks. The protocol operates over a proprietary 

network protocol based on UDP/IP. ALP is a proprietary protocol and Sun Microsystems 

keeps away any in-detail information about the exact protocol. 

 

2.4. Low-level Vector Thin Client Systems (LVTC)  

Low-level vector primitives are simple display commands such as drawing lines, drawing 

rectangles, blitting bitmaps, etc. These low-level vector primitives are captured on the 

display driver layer. The typical architecture of a LVTC system is shown in Figure 2.4. 

On the server side, LVTC inserts a virtual display driver into the display system to 

intercept the low-level drawing primitives passed from the graphics engine. The captured 

drawing primitives are encoded by a protocol encoder and then usually processed by a 

compressor. On the client side, the received data are decompressed and decoded. The 

decoded drawing primitives are either passed directly to the client's display driver or 

indirectly to a graphics engine if the display driver cannot handle some of the drawing 

primitives defined by the protocol. In that case, the graphics engine will translate the 

primitives into display commands that the display driver supports. 
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Figure 2.4: LVTC architecture 

 

Compared to bitmap-based primitives, low-level vector primitives may lead to a more 

bandwidth efficient thin client system as using vector primitives can more efficiently 

represent most synthetic images than using bitmaps. However, as shown in the figure, 

such primitives require additional supports on both servers and clients and thus increase 

the complexity of the whole thin client system. In addition, the protocol encoder and 

decoder of a LVTC will also be more complex than that of a BTC as the vector drawing 

primitives are much more complex than merely bitmaps. A more complex client may 

prevent LVTC being used on some resource-limited computers. Below, we discuss three 

representatives of LVTC: Microsoft Terminal Server [72, 73, 78], Independent 

Computing Architecture (ICA) [71, 79] and Tarantella [30, 80, 81]. 
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2.4.1. Microsoft Terminal Server (RDP) 

In the early 1990s, Windows NT was designed for single-user workstations with no 

multi-user operation option. In 1995, Citrix promoted an independent version of NT 3.51 

called WinFrame to provide multi-user support. Later, Microsoft authorized Citrix to 

introduce the thin-client support into the NT code base. In 1998, Microsoft released 

Microsoft Windows NT server 4.0, Terminal Server Edition [72, 73, 78], the commercial 

version of its thin client solution.  

 

The default communication protocol between a Terminal Server and its clients is called 

Remote Desktop Protocol (RDP). RDP is based on T.128 protocol [28], a member of the 

International Telecommunications Union's (ITU's) T.120 [29] protocol family. Although 

RDP can be extended to run on various transport protocols including NetBEUI and 

IPX/SPX, the latest RDP version (RDP 5.0) only supports TCP/IP. 

 

MS Terminal Server employs various mechanisms to reduce the amount of data 

transferred over the network. Examples are glyph cache, string cache, bitmap cache, and 

compression. Glyphs and strings are respectively cached in memory buffers on the client. 

Images, icons and cursors etc. are cached in another 1.5M bytes buffer called bitmap 

cache. In RDP 5.0, Terminal Server is augmented with a 10M bytes persistent disk cache 

for bitmaps. If necessary, the bitmaps cached in memory can be saved to the persistent 

disk cache, which can be reused cross user sessions. Before being passed to the network 

interface, the update data are sent to a Microsoft-Point-to-Point-Compression (MPPC) 
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[43] encoder which implements the general Lempel-Ziv (LZ77) [13] compression 

algorithm to further reduce the data size. 

 

These optimization mechanisms are helpful to improve the overall performance, 

especially when running applications across low-bandwidth and high-latency network 

connections. They make the Terminal Server bandwidth efficient with an average data 

volume of about 30kbit/s [50].  

 

2.4.2. Independent Computing Architecture (ICA) 

In 1995, Citrix, one of the pioneers in the server-based computing, licensed the source 

code of Windows NT 3.51 and developed their proprietary Independent Computing 

Architecture (ICA) protocol [35]. The ICA reproduces the user interface of an application 

on separate terminals to support multiple remote users. The product was called 

WinFrame (later superseded by MetaFrame). MetaFrame offers clients for various 

platforms like Macintosh, OS/2, Linux and all kinds of UNIX, and even Java clients, 

Netscape plug-ins, and Active X for Microsoft Internet Explorer. 

 

MetaFrame is equivalent to Terminal Server in architecture except for several features 

which are not supported in Terminal Server. These features include application 

publishing, multiple servers load balancing, session shadowing, anonymous users, etc.  

Like RDP, ICA utilizes various compression and caching mechanisms such as object-

specific compression and bitmap cache. These mechanisms are shown to be efficient and 
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on average reduce 50% original network traffic [98]. MetaFrame is one of the most 

bandwidth-efficient thin client solutions and is usable over low-bandwidth connections 

like dial-ups for some applications. The average bandwidth usage of MetaFrame was said 

to be below 20kbit/s [98] but the test conducted by Tolly Research [31] argued that 

30kbit/s seems a more realistic figure. The dynamic configuration feature of ICA 

protocol stack makes it independent on the underlying transport protocol. So it can run on 

many common transport protocols, such as TCP/IP, NetBEUI, IPX/SPX, and PPP and on 

many popular network connections, such as dial-up, ISDN, Frame Relay and ATM.  

 

2.4.3. Tarantella (AIP) 

In late 1997, SCO released the Tarantella [30, 80, 81] (later superseded by Tarantella 

Enterprise) which "delivers any application, to any user, anywhere". Tarantella is a 

middleware that allows thin clients to connect to server-based applications via normal 

Java-enabled browsers. This makes Tarantella applicable to various platforms, including 

Windows, Web, UNIX, Mainframe and AS/400. 

 

Tarantella Enterprise is typically installed on one or more dedicated servers. It maintains 

the information about the users and their applications. To access their applications, users 

are authenticated by a Tarantella server through their web browsers. This is done by a 

downloaded Java applet. The Tarantella server determines if a user has the right to access 

an application. This set of applications accessible to a user is then presented in the form 

of a "webtop".  
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By introducing a Tarantella server between application servers and client devices, the 

servers and clients are completely shielded from each other. The Tarantella server 

handles the communications between application servers and client devices through the 

proprietary Adaptive Internet Protocol (AIP). AIP is a wrapper to a number of protocols 

such as RDP, ICA and X11. Its job is to deliver the best user experience that makes the 

user feel as if the application is running on the client device. This is achieved by using 

heuristic mechanisms to evaluate the current network conditions, and then accordingly 

adapting the way data is transferred between the client device and Tarantella server. AIP 

also provides a set of optimization means such as command-specific compression, 

interlaced images, graphical optimization and delayed updates for administrator to fine-

tune the AIP settings. 

 

2.5. High-level Vector Thin Client Systems(HVTC) 

High-level vector primitives provide drawing commands associated with a graphical 

context. One example is: "draw a line from (x1, y1) to (x2, y2) using the graphical context 

GC with dashed line mode set". Like LVTC systems, HVTC systems are usually more 

bandwidth-efficient than BTC systems as they often can represent some screen updates 

with simple parameterized drawing commands.  

 

However, HVTC systems are significantly different from LVTC systems. The former is 

based on high-level vector primitives whereas the latter is based on low-level vector 

primitives which have no semantic knowledge of the application's GUI objects such as 
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"the rectangle (x1, y1, x2, y2) is the boundary of the window w". The difference is induced 

by the different ways of representing a display command. LVTC represent a display 

command in a way that can be easily understood by a display driver or hardware, while 

HVTC express a display command in a way that is more convenient to the programmer. 

In the following we describe X Window, the most widely used HVTC system. 

 

2.5.1. X Window 

X Window system [14, 15, 16] was developed in the mid 1980s at MIT to provide 

distributed graphical computing in UNIX environments. The current protocol version, 

X11, appeared in September 1987. X client and X server communicate over a reliable 

duplex (8-bit) byte stream. Because the communication requires nothing more than a 

reliable duplex byte stream, X is usable over various transport protocols such as TCP [17], 

DECnet [18], and Chaos [19].  

 

X protocol [20] splits an application's presentation and application logic by introducing a 

layer of graphics directives called X Library (Xlib) [21]. Since the separation is within an 

application, applications have to be developed specifically for X protocol with the help of 

Xlib. On the top of Xlib is a set of toolkits which defines the actual look-and-feel widgets. 

The toolkits are helpful to accelerate the speed and efficiency of developing X 

applications.  
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In X Window system, X server runs on a machine physically connected to a display 

monitor and manages the monitor, keyboard and mouse. X clients are applications that 

send drawing requests to the X server. Client applications can run either remotely via 

network or on the local machine. An X server allows multiple simultaneous connections 

from different clients. To achieve this, an X server multiplexes requests from the clients 

to the display, and demultiplexes keyboard and mouse inputs back to the appropriate 

clients. On the other hand an X client can have connections with multiple servers at the 

same time, sending every server the same display requests. Figure 2.5 gives a schematic 

overview of the architecture of X Window.  

 

 

Figure 2.5: HVTC architecture: X Window 
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Apparently X window should have a higher performance than RDP as it employs high-

level vector primitives. But the original X window contains almost no sophisticated data 

compression or caching optimizations. This makes its performance evidently lower than 

that of RDP. Nevertheless, some extensions of X (e.g. Low-Bandwidth X [22, 23, 24], 

NoMachine NX [82]) adds optimization methods that can greatly boost X window's 

performance. A limitation of X Window system is that it only supports the applications 

aware of X protocol.  

 

2.6. Summary  

In this chapter we presented a background for subsequent chapters by looking into 

various thin client systems. We classified the existing thin client systems into three types 

according to the different display encoding mechanisms they used. In particular, we 

reviewed six popular thin client systems: AT&T VNC, Sun Ray, Microsoft Terminal 

Server, Citrix Metaframe, Tarantella Enterprise and X Window in this chapter. A 

summary of the characteristics of the six systems is given in Table 2.1. 

 

Bitmap-based primitives are the simplest display encoding method to implement a thin 

client system. Although it is considered to be less bandwidth efficient compared to the 

ones with higher-level primitives, its simplicity, platform-independence and small client 

footprint make it naturally suitable for mobile computing applications.  
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Among the six systems, Microsoft Terminal Server, Citrix Metaframe and Tarantella 

Enterprise which adopt low-level vector primitives as display encoding are the most 

bandwidth efficient. As commercial products, all of them deploy various optimization 

mechanisms like data compression, client caching to reduce as much network traffic as 

possible. However, this is not always the case. Some studies [9, 10] show that VNC and 

Sun Ray may surpass LVTC systems in some situations (e.g. for some wide-area network 

environments).  

 

X Window employs high-level vector primitives. X server is quite platform-dependent 

for it relies on the special Xlib to handle the display requests. Without using the extension 

[22-24, 82], X behaves the worst among the six in many network environments especially 

in wide-area network environments [9, 10].  

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Thin Client Computing Systems 

 30 

 VNC [25] Sun Ray [76] RDP [28] ICA [35] 
Tarantella 

[30] 

X Window 

[14] 

Encoding 
bitmap-based 

primitives 

bitmap-based 

primitives 

low-level 

vector 

primitives 

low-level 

vector 

primitives 

low-level 

vector 

primitives 

high-level 

vector 

primitives 

Server 

platform 

Windows, 

UNIX, Mac 

Solaris, 

Linux 
Windows 

Windows, 

UNIX 

Windows, 

UNIX 
UNIX 

Client 

platform 

Windows, 

UNIX, Mac, 

Java 

No OS 

(only a 

firmware) 

Windows, 

UNIX, Mac, 

Java 

Windows, 

UNIX, Linux, 

OS/2, Mac, 

Java 

Any platform 

supports 

Java-based 

browser 

Windows, 

UNIX, Mac, 

Java 

Transport 

protocol 
TCP/IP UDP/IP TCP/IP 

TCP/IP, 

NetBEUI, 

PPP, etc. 

TCP/IP 

TCP/IP, 

DECnet, 

Chaos, etc.  

Compression 

included in 

some 

encoding 

methods 

none MPPC LZ 

adaptively 

enabled 

( RLE and 

LZW at low 

bandwidths) 

supported by 

some 

extensions 

Client-side 

caching 

on-screen 

cache, local 

frame buffer 

local frame 

buffer 

glyph, 

bitmap, string 

cache 

(1.5 MB 

RAM, 10 MB 

disk) 

glyph, 

bitmap, string 

cache 

(3 MB RAM, 

1% of disk) 

depends on 

protocol 

tunneled 

application-

/toolkit-

specific, 

usually none 

Bandwidth 

efficiency 
low low Very high Very high Very high 

High (with 

extensions) 

Table 2.1: Thin client computing systems summary 
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CHAPTER 3 

THIN CLIENT OPTIMIZATION TECHNIQUES 

For most client/server systems, end-users generally have little concern about where 

processing takes place and where data are stored, as long as the interaction is fast, 

consistent, and seamless. The most critical performance criterion is the crispness of the 

user interaction [8, 9, 10]. Ideally, the response time of an operation should be short 

enough to let end-users feel that the applications are running on their local machines. It's 

hard to give users a pleasant experience if the dialog appears with perceptible delay after 

users press a button, or if the onscreen rubber band cannot track users' mouse movements 

in resizing windows.  

 

To satisfy the end-users' expectation on interactive performance, almost all existent thin 

client systems make use of some kinds of generic or proprietary optimization techniques. 

These techniques can be largely classified into three categories: data compression, client 

caching and client localization. In the following sections we will review these 

optimization techniques to detail.  
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3.1. Data Compression 

As mentioned in Chapter 1, reducing network traffic is an effective way to reduce user 

operation latency. To reduce network traffic, data compression is possibly the most direct 

choice. Various data compression methods have been used or proposed for thin client 

systems. These include generic compression algorithm such as LZ (Lempel-Ziw) [13] 

and specially designed compression algorithm such as Thin Client Compression (TCC) 

[36] and Differential X Protocol Compression (DXPC) [83], etc. We will discuss them in 

the following. 

 

3.1.1. LZ Compression 

Abraham Lempel and Jacob Ziv developed the lossless data compression algorithm LZ77 

[13] which is broadly used in various scenarios where data compression is needed. Both 

the encoder and the decoder of LZ77 keep track of an amount of recently processed data 

(history) in a structure called a sliding window. The encoder searches for matches 

between the data being compressed and the history data in the sliding window. It 

achieves compression by replacing matched strings with length and distance pairs. The 

decoder restores the matched strings from the length and distance pairs by referencing the 

history. 

 

LZ77 is a generic compression algorithm that can be applied to any data if only the data 

can be represented as a byte stream. LZ77 is therefore independent of the thin client 
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systems and the underlying operating systems. It is also applicable to the various 

application workloads of thin client systems. 

 

Many empirical results show that LZ77 is an efficient compression algorithm. For 

example, after using MPPC (a compression protocol based on LZ77), Microsoft Terminal 

Server on the average reduced data size to 40-50% of the original; after upsizing the 

sliding window of LZ77 from 8K bytes to 64K bytes on the average, a further 30% is 

reduced [95]. 

 

To maximize the compression performance, LZ77 searches for the longest matches 

between history data and the data being compressed. Searching for the longest matches is 

a classic computer science problem. The fastest exact searching algorithm proposed by 

Masek and Paterson takes O(n
2
log log n/ log n) time (n is the sliding window size) for 

unbounded alphabet size [44]. Such a speed is not acceptable for compressing the data on 

the fly. However, the searching speed can be greatly improved by using an approximate 

searching method, though at the cost of possibly missing the longest matches. For 

example, with the help of a hash table the searching time can be reduced to O(n) [45].  

 

3.1.2. Thin Client Compression (TCC) 

In 2000, B. Christiansen et al. proposed a new compression algorithm called Thin Client 

Compression (TCC) [36], aiming to exploit both local and global redundancy in synthetic 
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images. It consists of three phases: pattern matching, substitution of the matched patterns 

with references, and coding. 

 

To compress an image, TCC makes two passes. In the first pass, TCC scans the image 

from left to right, top to bottom and segments the image into marks and the residue image 

[49]. A mark is defined as "a set of connected pixels that is surrounded by a single-color 

4-connected [96] boundary, and no pixel in the set that is adjacent to this boundary is of 

the boundary's color" [36]. Once a mark is identified, TCC searches for an exact match of 

the mark in a codebook. If no match is found the new mark is added to the codebook. If a 

match is found, TCC replaces its bounding box with a reference into the codebook and 

fill the box with the surrounding color. In the second pass, the unique marks in the 

codebook and the residue image after extracting all marks are coded by three piecewise-

constant models [47, 48]. The pointers into the code book and the positions of all marks 

are coded by a multi-symbol QM coder [84]. 

 

TCC is designed for compression of synthetic images. In compression, it needs to scan 

the images to extract marks. Thus it can only be applied in bitmap-based thin client 

systems where screen updates are represented by bitmaps. In addition, TCC can hardly 

extract marks from smooth-toned images that are popular in multimedia applications. 

This makes TCC unsuitable for multimedia applications. 

 

Experiments showed that TCC has better compression performance than other four image 

compression algorithms, PWC [47, 48], GIF, FABD [85] and JBIG2 [86], especially for 
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the textual images [36]. On average, for individual image TCC outperforms PWC by a 

factor of 1.5 and GIF by 4.8; for a sequence of images, it outperforms PWC by a factor of 

2.6 and GIF by 8.2.  

 

Experiments also showed that when compressing individual screendump, TCC is about 

one order of magnitude slower than GIF (using LZW algorithm [97] ), a bit slower than 

PWC, but faster than FABD and JBIG2. When decompressing the statement keeps true 

with the only exception that TCC outperforms PWC in decompressing textual images.  

 

3.1.3. Streaming Thin Client Compression (STCC) 

In 2001, B. Christiansen et al. proposed a streaming version of TCC (STCC) [37], aiming 

to reduce the end-to-end latency by pipelining compression, transmission and 

decompression. The pipeline shields the long delays caused by large updates and thus 

improves the user experience. Compared to TCC, STCC uses a less strict definition of 

marks and, based on this definition, a streaming boundary trace. In addition, STCC 

introduces a tree-structured codebook that allows for incremental coding. As a result of 

these changes, STCC only need to make one pass over images while TCC makes two 

passes. 

 

As a streaming extension of TCC, STCC is inherently only suitable for thin client 

systems with bitmap-based encoding and applications involving no or not much smooth-

toned images. 
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STCC were compared with TCC and PWC in terms of compression performance [37]. 

The results are summarized as the following. In an individual-screendump test, STCC 

outperforms PWC for the textual images by a factor of about 1.7 but only a slightly better 

for graphical images. Despite of the row-by-row encoding, STCC performs very closely 

to TCC and is outperformed by 4.4% on average. In a sequence-of-screendumps test, 

STCC outperforms PWC by a factor of 2.6. Compared to TCC, STCC compresses some 

images more efficiently since it extracts more marks from the image than TCC and 

replaces them with only pointers. However, in most cases TCC averagely outperforms 

STCC by 4.7%. The authors also showed that STCC achieves shortest end-to-end latency 

among the three methods when testing on low bandwidth connections (64-512Kbit/s) like 

DSL and cable modem connections. 

 

Experiments showed that STCC has shorter end-to-end latency than TCC for the 

bandwidth above 64Kbit/s, and has shorter end-to-end latency than PWC for the 

bandwidth below 512Kbit/s [37]. This implies that like TCC, STCC is slower than PWC. 

 

3.1.4. 2-D Lossless Linear Interpolation Coding (2DLI) 

In 2002, Fei Li and Jason Nieh developed a new coding algorithm, called 2-D lossless 

linear interpolation algorithm (2DLI) [38], to improve the support for multimedia 

applications in thin client computing environments.  
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2DLI treats screen updates as linear pixel arrays by defining the x-coordinate of a pixel as 

the cardinal number of the pixel in the update rectangle and defining the y-coordinate as 

the R/G/B value of the pixel. The server selects and transmits only a small subset of 

pixels from the pixel array representing a screen update. The client recover the screen 

update from the received pixels using piecewise linear interpolation to achieve the best 

visual quality. The goal of 2DLI is to select an optimal set of pixels from the array to 

minimize the data size transferred from server to client while maintaining the same visual 

quality.  

 

Selecting an optimal set of pixels is an exponential computational problem. 2DLI is a 

greedy algorithm that achieves the linear computational complexity by searching a 

minimal isolated pixel set. An isolated pixel is a pixel that can not be horizontally or 

vertically interpolated by gradients with a constant δ through its neighboring pixels in the 

update region. The values of isolated pixels are delivered to clients to reshow the update 

region through 2-D linear interpolation.  

 

Since 2DLI only requires the positions and the R/G/B values of pixels to interpolate and 

compress, it can be applied on both synthetic images and smooth-toned images. 

Nevertheless, the values of all pixels are only available for bitmap-based encode. Hence 

2DLI can only be used for bitmap-based thin client systems such as VNC.  

 

The compression performance of 2DLI was compared to that of JPEG, LZ and Hextile 

(used by VNC) on four different workloads: smooth-toned images, web pages, 
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screendumps, and instructional videos [38]. 2DLI outperforms the other three for the last 

three workloads while it performs second to JPEG for the smooth-toned images.  

 

2DLI has a linear computational complexity O(n) for both encoding and decoding, where 

n is the number of pixels. On average the encoding is 2.41 times faster and decoding is 

1.75 times faster than JPEG. But 2DLI is slower than LZ and Hextile for both encoding 

and decoding. 

 

3.1.5. Differential X Protocol Encoding (DXPC) 

Differential X protocol compression (DXPC) [83] is an X protocol compressor designed 

by Brian Pane to improve the speed of X11 applications over low-bandwidth links like 

dialup or satellite connections. It compresses X protocol in six steps. In the first step, it 

strips unnecessary data fields like some padding data in an X message. In the second step, 

it shrinks fields with a limited value range. For example, DXPC transmits a one-byte long 

Boolean field in an X message as a single bit value. In the third step, it shrinks fields with 

typically small values but still handles the cases where the values are large. In the fourth 

step, DXPC caches different X message types on both sides of the link. With the help of 

the cache, instead of transmitting a full X message DXPC transmits a much shorter one 

with differential field values based on the previously sent message. In some cases, field 

values keep changing in some pattern. For example, the sequence numbers contained in 

messages generated by X server keep increasing until they reach 65536. In the fifth step 

DXPC caches the last six deltas so that it can do further encoding based on the pattern of 
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deltas. Lastly, DXPC caches large blocks of data that need to be repeatedly transmitted 

(e.g., X resources).  

 

DXPC requires semantic knowledge of the X message fields for its differential 

compression algorithm. Thus it can not be deployed in thin client systems without such 

semantic knowledge. DXPC is capable of compressing X messages by as much as 10 

times. However, for most X applications, DXPC achieves compression ratio ranging from 

3:1 to 6:1, while on the average a compression ratio of 4:1 is achieved [83]. 

 

3.2. Client Caching 

The idea of client caching is very simple. It caches some screen updates that may be used 

more than once on the client. Two representative examples of client caching are: graphics 

object cache used in Microsoft Terminal Server and Citrix MetaFrame, and Message 

Store used in NoMachine NX.  

 

3.2.1. Basic Graphics Object Cache  

Microsoft Terminal Server and Citrix MetaFrame cache basic graphics objects including 

bitmaps, glyphs, and strings to improve the encoding performance of their proprietary 

thin client protocols, RDP and ICA (a variant of RDP).  
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A glyph is made up of a character (such as a letter or number) and the font information 

that is required to calculate display of the character. In other word, a glyph is a bitmap 

representation of the character. The same character in different fonts is thus represented 

by different glyphs. A string is a sequence of characters. RDP saves bitmaps, glyphs and 

strings sent previously in memory caches on both client and server computer. A bitmap 

could be an icon, image, etc. A large bitmap is usually split into small bitmap blocks such 

as 64 pixels by 64 pixels. The server improves the protocol efficiency by replace the real 

presentation data of the cached items with cache references in the subsequent screen 

updates. The client recovers the cached presentation data and draws them onto the screen. 

 

In addition to memory caches, MS Terminal Server and Citrix MetaFrame added a 

persistent disk cache for bitmaps. The persistent cache size is 10M bytes in Terminal 

Server and 1% of the total disk in MetaFrame. The RAM cache is always the destination 

for the initial bitmap cache. Whether to use the persistent disk cache or not is negotiated 

during the session establishing stage. If it is turned on, the server may choose to 

permanently store some bitmaps to the client's disk. The server instructs the client to 

retrieve these bitmaps from the persistent cache when they are needed but have been 

evicted from the memory cache.  

 

The basic graphics object cache mechanism requires simple semantic knowledge of 

screen updates in order to distinguish these objects. It therefore cannot be applied to thin 

client technologies with bitmap-based encoding.  
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From the information published by Microsoft, the basic graphics object cache is very 

effective which together with compression make the average bandwidth requirements as 

low as 10kbit/s [95]. However, the Tolly research [50] showed that the 30kbit/s 

bandwidth requirement seems to be more reasonable. The information on the 

computational complexity of the basic graphics object caches used by RDP and ICA is 

not publicly available. However for RDP we can observe that LRU is used for the cache 

management.  Furthermore, an algorithm is needed to determine whether a bitmap has 

been cached or not, possibly by comparing bitmap pixels.  

 

3.2.2. NX Message Store 

NoMachine NX [82] stores the most recent X messages in a cache called Message Store. 

NX divides an X message into two parts: a fixed-size identity part and a variable-size 

data part. NX calculates a MD5 checksum of each X message covering its data part and 

some fields of identity part. The chosen fields of identity part are those that will not 

change across different instances of the same X message. NX uses this checksum as a key 

to search a message in Message Store. If a message is found, NX sends only the status 

information, together with the reference to the cached message and a differential 

encoding of all those identity fields that are not used in calculating the checksum.  

 

NX Message Store requires the semantic knowledge of the X message fields to partition 

the message into data part and identity part and to choose the non-changeable fields as 
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identity. Thus it can not be deployed in thin client systems without such semantic 

knowledge.  

 

The average cache hit ratio of Message Store is 60%-80%, but can be close to 100% for 

some messages such as fonts, images, etc. [82]. Overall, Message Store and other 

compression algorithms together can make X protocol usable over low-bandwidth links 

such as PPP (28.8 kbps), which is not possible with the original X protocol. As Message 

Store works closely with other compression algorithms in NoMachine, we can not know 

its computation complexity.  

 

3.3. Client Localization 

Client localization techniques localize parts of the application logic on the client. They 

directly reduce roundtrip times or reduce the total transfer time of a sequence of screen 

updates. Active Component Localization [39], Keyboard Activity Localization [40, 41] 

are examples of client localization. 

 

3.3.1. Active Component Localization (ACL) 

Researchers showed high interests in introducing thin client computing architecture into 

the mobile computing environment. However, the inherent characteristic of high latency 

in mobile communication has great ill effect on the end-to-end latency of thin clients. In 
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year 2000, Cumbur Aksoy and Sumi Helal proposed an active component localization 

(ACL) mechanism [39] to reduce this ill effect on active-media applications.  

 

Active components are parts of an application, presenting a recurring sequence of images, 

sound or data. Animated GIF is an example and is used by the authors to show how to 

localize active components. The basic idea of the localization is quite simple. The first 

step is to detect whether the application display keeps looping over several images. Once 

an n-state loop is detected, the server instructs the client to set aside a buffer for the n 

images in the loop. Then the client waits for n images, buffering them and also recording 

their arrival times. When the buffer is filled, the client goes into a zero communication 

mode. In this mode, the client displays the images in its buffer one after another 

according to the timing information recorded. At the same time, the server goes into a 

watch mode, where it watches the display behavior of the application to make sure that it 

obeys the loop. Once an image out of the loop occurs, the server passes it to the client and 

puts the client back into original thin client mode. 

 

While the active component extraction is platform-independent and application-

independent, it only optimizes the active components which do not appear quite often in 

normal applications except for GIF in browser and circularly played music.  

 

The authors did a series of case studies which include one animated GIF with different 

number of states, and a mixture of multiple GIFs. In all tested cases, ACL detected active 

components with low error rate and considerably reduced the roundtrips and traffic 

between the server and the client.  
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ACL uses an image comparison method to detect the states of the application's displays. 

The computation complexity of the detection increases with the number of states in an 

active component. Besides that, active component extraction relies on horizontal and 

vertical line scanning over images, which is computation intensive. In sum, the average 

processing time of the localization is around 350ms, 750ms and longer than 1.5 second 

when the application's display size is 351×286, 475×419 and 631×597 pixels respectively. 

Compared to a user-perceptible latency which is around 100ms [1], the processing time is 

too long.   

 

3.3.2. Keyboard Activity Localization (KB Pro) 

In 2001, Sivasundar Ramamurthy and Sumi Helal proposed a keyboard activity 

localization technique [40] to reduce the roundtrips between client and server when users 

are typing. The keyboard localization is triggered only for certain kinds of keyboard 

activities, such as a "KB Blitz". A KB Blitz is defined as the situation"when the thin 

client user types in such a speed that display of the characters is delayed for reasons such 

as a slow network or a slow server".  

 

A localization system, called KB Pro system, was developed for the Win32 ICA clients. 

It has three core components: a virtual channel driver VdHook, a client side localization 

process KBWin and a server side process KBServer. VdHook registers a keyboard hook 

when the latency is above a threshold (i.e. 200ms) and watches out for a KB Blitz on a 

typing application. Once such a keyboard blitz is detected, the keyboard events that can 
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be localized are handled and displayed by KBWin in the localized area. Once a refreshing 

event occurs (e.g. a caret moves beyond the localized area), KBWin performs a 

refreshing and exits. KBServer provides a few services for VdHook. These services 

include opening virtual channel, providing typing applications information for VdHook, 

refreshing the text when refreshing requests are received from VdHook, and inspecting 

the network latency together with VdHook.    

 

KB Pro is particularly useful for typing applications in which the majority of key presses 

actually get displayed and only a few of them involve other events like refreshing. In 

addition, keyboard localization requires the client to be able to hook the keyboard 

activities, to detect a KB Blitz, to monitor the network traffic and detect a high latency 

situation, and to display characters locally.  

 

It was shown by the authors that KB Pro works best on benchmarks without refreshing 

event. It can clearly decrease the latency, the packets exchanged, and the bytes exchanged. 

The performance decreases when refreshing events increase. It was also shown that KB 

Pro caused only a slightly increase to CPU usage on the client. 

 

3.4. Summary  

In this chapter we classified existent thin client optimizations into three categories: data 

compression, client caching and client localization. We examined several representative 

examples of them in terms of effectiveness, applicability and computation complexity.  
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Data compression methods are very effective in reducing the size of the screen update 

data. On the average we can expect the screen update data to be reduced to 50% or less of 

its original size with a general compression algorithm such as LZ. Specially designed 

compression algorithms TCC, STCC, 2DLI, and DXPC can achieve even higher 

compression ratio. Data compression methods make use of the data redundancy in 

different types and different scopes of screen updates, and use various encoding methods 

from information theory to minimize the data size.  LZ compression applies to any types 

of screen updates, but only exploits the recurrent byte strings within its sliding window 

(usually smaller than 64KBytes). TCC, STCC and 2DLI are designed for bitmap-based 

thin client systems. Among them, TCC and STCC exploit the data redundancy (identical 

marks, the same colors in background image) in a synthetic image or a number of 

synthetic images (by sharing its codebook). 2DLI exploits the data redundancy in a 

synthetic image or a smooth-toned image by not sending the pixels whose color values 

can be inferred from neighboring pixels following a linear interpolation algorithm. DXPC 

is designed for X Protocol. It efficiently encodes X messages by specializing on each 

field's value range, frequency and applying delta encoding. While complex compression 

algorithms can get additional reduction of the data size than a simple one, it requires 

more computation time and may not improve the end-to-end latency. Thus we can see 

that the compression algorithms used or proposed for thin client systems usually have a 

low computation complexity at the cost of optimal compression performance. The 

technique presented in Chapter 6 of this thesis aims to improve the compression 

performance of LZ compression algorithm for thin client computing, while at the same 

time maintaining a low computation complexity. 
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Client caching techniques are also very effective and important in reducing the size of 

screen update data. Some caches such as bitmap caches can on average reach a hit ratio 

above 80%. Like data compression, client caching techniques also make use of the data 

redundancy in different types and different scopes of screen updates. But client caching 

techniques are usually used for "objects", which can be distinguished from other types of 

screen updates. The objects are saved as cache items. When a cached item appears later 

in the screen updates, the reference to the item rather than the item itself is sent by the 

server. Unlike data compression methods, no complex encoding is needed for caching 

techniques. In addition, caching techniques usually search for redundant data in a larger 

range as a cache only stores the same type of objects and is usually larger than a sliding 

window or codebook. With simple object matching and encoding, and a simple cache 

management policy such as LRU, cache techniques usually cost less processing time than 

data compression. But generally cache techniques require more memory than data 

compression algorithms and can only benefit certain kinds of screen updates. While 

caching technique usually deal with simple object, in Chapter 4 of this thesis, we present 

a cache technique attempting to cache some complex objects in bitmap-based thin client 

computing systems to minimize network traffic. In Chapter 7 of this thesis, we present a 

hybrid compression-cache scheme which can benefit different kinds of screen updates. 

 

Different from data compression and client caching, client localization techniques 

emulate parts of the presentation logic of an application on the client side. This reduces 

the number of round-trips needed for some user operations, which gives a better user 

experience for the network connections with long latencies. But as we mentioned for each 
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example, the presentation logic that can be emulated on the client side with reasonable 

resources (memory, CPU usage) is very limited.  So these techniques are only suited to a 

narrow range of scenarios. 

 

After reviewing previous optimization techniques we can identify a number of 

requirements on the optimization techniques of thin client computing. We summarized 

them as below. 

• As mentioned in Chapter 1, the main performance issue with existing thin client 

systems is that they cannot deliver satisfactory user response time in low-bandwidth 

and/or high-latency network environment. Hence a performance optimization 

technique must be able to effectively reduce user-perceptible latencies in such 

networks. In the following chapters, we present and discuss the performance of the 

techniques we proposed in such networks. 

• Reducing the data size of screen updates may not necessarily lead to a reduction of 

the end-to-end latency. The computation time of an optimization technique must be 

taken into account. As the optimization mechanisms must be able to process the 

screen updates online, it is important for an optimization mechanism to have low 

enough computation complexity to operate in real time.  In addition, as the thin client 

may only have limited memory and CPU power, the optimization technique must not 

consume too many resources. For each technique we proposed later, we will discuss 

the resources they consumed. 

• A thin client system may execute a wide range of applications. Therefore, it is 

desirable for an optimization mechanism to be applicable to a wide range of 



Chapter 3: Thin Client Optimization Techniques 

 

 49 

applications with different types of screen updates.  In Chapter 5, we will describe a 

few quite different application workloads which we used in evaluating the techniques 

presented in Chapter 6 and 7. 
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CHAPTER 4 

STATIC OBJECT CACHING SCHEME 

In Chapter 3, we reviewed various performance optimization methods used in existing 

thin client systems. While these methods proved to be effective, they only aim to reduce 

the data redundancy at relatively low level such as the redundancy between pixels, 

primitives or bitmaps. High-level data redundancy in screen updates was not adequately 

considered. High-level data redundancy is commonly seen in an application's screen 

updates. For example, a menu or a dialog is often displayed for many times during a 

remote user session without any change in its presentation. We call this kind of high-

level redundancy object-level redundancy, since the redundancy is between the screen 

updates of two graphical user interface (GUI) objects. Without any optimization, object-

level redundancy may produce a large amount of network traffic and cause long latencies 

in user operations. The previous optimization methods such as bitmap cache, string cache, 

etc., which remove low-level redundancy in screen updates, can only indirectly reduce 

object-level redundancy while leaving a large margin for improvement. In this chapter 

we present a static object cache technique aimed at directly reducing object-level 

redundancy.  
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4.1. Static Object Caching Technique 

We proposed a static object cache scheme to enhance a thin client server [99]. The 

modified architecture of the server is shown in the Figure 4.1. The core module of the 

architecture is called Object Filter (OF). It monitors the screen updates to be sent to the 

client, filtering out the presentation data of the static window objects based on the object 

information collected by offline profiling and instructing the client to use the previously 

cached presentation data of these objects. For example, in Figure 4.1, the presentation of 

the dialog 'logon' is static except for the areas occupied by the two edit boxes. In the 

original architecture, the whole presentation either encoded in bitmap-oriented drawing 

primitives, or vector-based draw primitives, is sent to the client. However with our static 

object cache technique, only the variable parts of the presentation are sent, as shown in 

the right cloud of Figure 4.1. Following, we will describe the terms used in this chapter 

and give the details of object filter. 
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Figure 4.1:  High-level overview of the proposed static object caching technique 

 

4.1.1. Definitions 

A GUI component is any graphical element that composes one application's GUI. It can 

be as basic as a picture, a button or a text label. It can also be a set of basic components 

clustering together to provide one specific function. The GUI components in an 

application are not isolated. They are linked to each other by some kinds of relationship 

and together form the GUI structure [51]. During run time, the GUI structure is 

incarnated as some instances of the GUI components and the relationship between them. 

We define an instance of a GUI component as a GUI object. The relationship between a 

GUI component and a GUI object is similar to the relationship between an application 

and a process. After a GUI object is created, it may be painted many times. One painting 

of an object is termed an update. Generally an update will only cause the visible region of 
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the object to be painted. By 'visible region' we mean the region of the GUI object that is 

not hidden by other GUI objects. 

 

Among the GUI components of an application, some have static presentation: all of their 

instances share the same presentation (or can be considered so without affecting the use 

of them) except some fixed areas that are non-overlapped. We refer to such components 

as static components. We refer to the areas of a static component's presentation that is 

invariable as static areas while referring to the areas of a static component's presentation 

that is variable as non-static areas.  

 

4.1.2. Object Filtering Algorithm 

Our OF technique consists of four elements. The first is a set of static GUI components of 

an application (denoted as S). For Java applications, S can be extracted from the .class 

files. For Win32 applications, S can be obtained from the applications' source codes or 

from profiling of the applications. The second is a mapping function, Get-Component. 

Given a GUI object o, this function determines whether there exists an s (∈S), of which o 

is an instance. The third is a server-side OF algorithm, Object-Filter. Given the static 

component set S and the mapping function Get-Component, the filtering algorithm is as 

shown in Figure 4.2. The fourth is a client-side static component caching and presenting 

module. Presently we assume that all presentation data are placed in memory ahead of 

running the program. With this assumption, the client side handling is straightforward. 

On receiving a static component update message, the client first retrieves the presentation 
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data locally and then clips them against the visible region and finally renders them at the 

right position. 

 

 

Figure 4.2:  Object filtering algorithm 

 

4.2. An Implementation on VNC 

As the implementation of our technique requires modification to both the server and the 

client, we choose VNC, a popular open sourced thin client system as our test bed.  

 

4.2.1. Acquiring The Static Component Set 

We developed a tool called GUI Extractor to discover static components. This is done in 

two stages. In the first stage, a background process monitors the target application and 
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extracts GUI information by hooking windows message. To determine if a window is an 

instance of a static component, its properties such as styles, size, caption, and the 

relationship with the known static components are inspected. Currently we only consider 

top-level windows that are created without WS_CHILD style. After identifying a static 

component, we link it to other static components according to the owner-owned window 

relationship among them. If the new static component has no owner, it will be linked to 

the root static component (i.e. the application’s main window, which is considered as a 

special static component). If the owner of the static component is not static, it will be 

linked up to its nearest ancestor owner which is static. At the second stage, the GUI data 

obtained are inspected and edited visually to ensure their correctness. Some components 

may be incorrectly considered as static components in the first stage. And it may also be 

wrong to consider the areas occupied by some controls as static areas based on the 

controls’ properties. At this stage users can select appropriate static components and 

adjust the static regions of static components to ensure they meet the run-time 

requirements. In the current implementation we require that at any time there is only one 

instance for each static component. 

 

Application Extracted SCs Static Ratio 

WordPad 18 44.17% 

Visual C++ 66 48.06% 

Internet Explorer 26 46.34% 

Outlook Express 36 48.45% 

Table 4.1:  Static components in some Windows applications 
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We run our tool on some MS Windows applications including Microsoft WordPad, 

Visual C++, Internet Explorer and Outlook Express. Table 4.1 summarized the tool’s 

output. The presentation data is calculated in pixels. Static ratio is the fraction of the 

static area on a GUI component. The results show that all identified components on 

average have more than 40% static areas. 

 

4.2.2. Mapping between The Static Components and The Objects 

To establish and maintain the link between static components and static objects at run 

time, we need to monitor the life cycle of a GUI object. This is done by the routine 

LifeCycle (shown in Figure 4.3). This routine is invoked at three important points within 

an object’s life cycle: create time, paint time and destroy time. In MS Windows, these 

three points respectively correspond to the time when a window receives a 

WM_CREATE, WM_PAINT and WM_DESTROY message. Add-To-Candidate-List 

is executed at create time. It checks the object’s relationship with other static objects to 

see if it is a static object candidate. We inserted the candidates into a candidate list. Bind-

Static-Component is called when a window is to be painted and it is in the candidate list. 

The function will further examine the window to see if it is a static object. Unbind-

Static-Component breaks a link between the static object and the static component when 

the object is to be destroyed. In an object's lifetime, these functions will only be called 

once. In function Bind-Static-Component and Unbind-Static-Component we need to 

compare the attributes of an object with those of static components. Nevertheless, as we 
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only target top-level windows, the number of the static components is not very large (see 

Table 4.1). As a result, the extra CPU usage is insignificant. 

 

 

Figure 4.3:  Maintaining the links between static components and objects 

 

4.2.3. Object Filtering Algorithm Implementation 

VNC handles an update in three steps. At the first step, the possible updates are collected 

using various mechanisms. At the second step, the possible updates are checked by 

comparing the local frame buffer with a mirror of the remote frame buffer. At the third 

step, the true updates that indicate differences between local frame buffer and remote 

frame buffer are sent to the client.  

 

We made the following modifications to this update handling process. When a static 

object is to be painted, a message will be sent to notify the VNC server of an update of 

this static object. On receiving this message, VNC server adds the static object into a 
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waiting list. Before checking the updates, for each static object in the waiting list, VNC 

server obtains its position and computes its visible static region. The information 

collected will be sent to the client to get these static object painted. The visible static 

regions will be excluded from the possible updates collected by VNC server. This 

prevents VNC server from checking the updates of static areas, which is CPU-intensive. 

At the same time, we copy the contents of the visible static regions from local frame 

buffer into the mirror frame buffer to ensure that the mirror frame buffer is synchronized 

with the remote frame buffer. The overhead caused by these modifications is very small. 

The LifeCycle routine described in Section 4.2.2 has established the mapping between 

static objects and static components. So we only need to search the mapping table to 

identify if an object is static or not. The position and visible region are the attributes of 

GUI objects which are always updated by MS Windows. 

 

4.3. Performance Evaluation & Results Analysis 

4.3.1. Evaluation Methodology 

In order to evaluate the bandwidth efficiency and interactive performance of our 

technique, we modified the VNC client to measure the network traffic and latency 

associated with GUI operations. We time-stamped a user input and the last screen update 

it induces. All the presentation data received between the two time stamps are attributed 

to the network traffic resulting from this operation. The difference between the two time 

stamps is used as a measure of the operation latency. To guarantee the accuracy of the 

measurement, we altered the input acceptance process of the client by introducing delays 
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between any two continuous inputs. This method is similar to the slow-motion versions 

of application benchmarks [52] employed by other thin-client performance analysis 

experiments [9, 53]. However, the measured latency in our experiments also includes the 

time between the client input is made and the input being sent, and the time between the 

client receives a screen update from the network and the actual image being drawn to the 

screen. 

 

Each dialog was opened and closed (using an automated way) for many times and the 

average latency and network traffic of opening each dialog was used as the evaluation 

criteria. To eliminate the inconsistency due to human operations, we altered the client to 

record the mouse messages that lead to the events and play them back in our experiments. 

This is similar to the mechanism used in other capture/playback tools [54]. To model 

different network bandwidth, we employed a high-resolution timer to limit the data size 

that the client can receive during each timer interval. 

 

4.3.2. Numerical Results 

VNC provides various pixel encoding methods, allowing a large degree of flexibility in 

trading off various factors such as network traffic, client processing time and server 

processing time. The typical encoding method for LAN network environments is Hextile, 

which is supported by all VNC versions. The encoding method for low-bandwidth 

network environments varies from version to version. We chose ZRLE, an encoding 

method used by RealVNC [55], in our experiments. We compared the performances of 



Chapter 4: Static Object Caching Scheme 

 

 60 

our modified version to the original version for these two encoding methods. We chose 

from MS WordPad 6 dialogs (shown in Table 4.3), which have different static ratio 

(calculated in pixels) for our experiments. The configurations of the testbed machines in 

our experiments are shown in Table 4.2. 

 

Role Hardware OS 

Client 

1500MHz Intel PIV 

512M RAM 

10/100BaseT NIC 

MS Windows 

XP Professional 

Server 

1800MHz Intel PIV 

26M RAM 

10/100BaseT NIC 

MS Windows 

XP Professional 

Table 4.2: Testbed machine configuration 

 

Dialogs Static Ratio 

Open 39.0% 

Save As 41.2% 

Date & Time 60.6% 

Font 63.8% 

Page Setup 80.8% 

Paragraph 86.7% 

Table 4.3: Dialogs used in experiments 

 

Figure 4.4 through Figure 4.7 show the relative network traffic and interactive latency of 

VNC with OF technique compared to regular VNC. As shown in Figure 4.4 and 4.6, 
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VNC with OF generates 38%~85% and 30% ~88% of network traffic compared to VNC 

when using Hextile and ZRLE encoding respectively. This reduction in network traffic is 

because the presentation data of some static objects are not transferred when OF 

technique is used. The reduced traffic ratio is consistent with the static ratio when using 

Hextile encoding but not when using ZRLE encoding. The reason being we use pixel 

numbers to calculate the dialog’s static ratio. This may not reflect the true static ratio 

when a compression algorithm is used on the presentation data, which is ZRLE’s case. As 

shown in Figure 4.5 and 4.7, VNC with OF technique and VNC have very similar latency 

at 100 Mbps when using both Hextile and ZRLE encoding. However, as the bandwidth 

drops down below 1.5Mbs, the VNC with OF begins to outperform VNC. The 

performance difference between them becomes obvious when the network bandwidth is 

128Kbps. The reason is that computation time and network access time are two principal 

contributors to operation latency. At 100Mbps, the network access time is minimal 

compared to the computation time. So with OF technique the operation latency is even a 

bit larger because OF takes some computation time. When network bandwidth is low, the 

network access time becomes dominant with respect to operation latency. Consequently, 

VNC with OF technique has shorter operation latency than VNC.  
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Figure 4.4: Relative network traffic of VNC with OF technique compared to original 

VNC. Network bandwidth is 100Mbps. Hextile encoding is used. 
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Figure 4.5: Relative operation latency of VNC with OF technique compared to original 

VNC. Different network bandwidths and Hextile encoding are used. 
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Figure 4.6: Relative network traffic of VNC with OF technique compared to original 

VNC. Network bandwidth is 100Mbps. ZRLE encoding is used. 
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Figure 4.7: Relative operation latency of VNC with OF technique compared to original 

VNC. Different network bandwidths and ZRLE encoding are used. 

 

Figure 4.8 and 4.9 show the client and server CPU utilization of VNC and VNC with OF 

technique. These results were obtained by monitoring the CPU utilization when operating 

different dialogs continuously. In comparison, we can see that with ZRLE encoding, the 

CPU utilizations on both server and client are higher for ZRLE is more complex than 

Hextile. It can also be seen that the OF technique will only slightly increase VNC's CPU 
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utilization on the server when using either Hextile or ZRLE encoding. This is mainly due 

to the extra computation time spent by OF technique in object binding and object filtering. 

But on the contrary, on the client OF reduces a little on the CPU usage. Due to the static 

cache in OF technique, part of presentation data comes from the cache instead of the 

server. Processing the cached data is easier as it just retrieves data from memory and then 

displays the data.  The storage required by the OF technique is also not large. WordPad 

only need 200 kilobytes. With a cache of 1 megabyte, several applications can cache their 

static presentation data on the client side at the same time. For a modern desktop 

computer having hundreds of megabytes memory, this storage is trivial. For mobile 

devices, running several applications simultaneously is rare because of the display 

device's limitations. Using 200 or 300 kilobytes to achieve a fast interaction experience is 

acceptable, especially for some frequently used applications. 
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Figure 4.8: Average CPU utilization when using Hextile encoding 
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Figure 4.9: Average CPU utilization when using ZRLE encoding 

 

4.4. Summary 

Object-level redundancy may cause a large amount of network traffic and cause long 

latencies of user operations. To reduce object-level redundancy, we proposed a new 

optimization approach, static object cache. This application-specific approach works in 

two steps. In the first step it automatically analyzes and extracts static objects from the 

application's GUI. In the second step, the kernel module of the approach, Object Filtering, 

reduces the redundant presentation data sent across networks according to the extracted 

static object information. We empirically studied the efficacy of this static object cache 

technique on the open-sourced VNC. The experiment results show that for bandwidth-

limited networks this approach reduces the network traffic and interactive latency by up 

to 60% with only a little more CPU usage. 
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CHAPTER 5 

PERFORMANCE EVALUATION 

FRAMEWORK 

In this chapter, we describe an experimental framework that will be used later to evaluate 

the performances of two optimization techniques respectively presented in Chapter 6 and 

7. Network traffic and user operation latency (the delay between a user operation and the 

visible presentation changes incurred by it) are two key performance metrics of thin 

client systems. Measuring network traffic can be achieved by monitoring the network 

activities using software or hardware, while measuring the latency of user operations 

usually takes more efforts as the timing information of the user inputs and the screen 

updates they caused must be recorded in an accurate and timely manner. 

 

In Chapter 4, we modified the source code of VNC server to integrate our optimization 

techniques and added some instrumentation code to VNC client to measure user 

operation latency. This method cannot be used for Microsoft Terminal Server or other 

commercial products where the server's source codes are not publicly available. In this 
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chapter, we present another latency measurement method based on trace collection and 

simulation. This method is in light of the measurement method proposed in [9, 10, 52].  

 

In the rest of this chapter, we will respectively describe how traces are collected, a 

latency measurement methodology, the testbed we used, and a baseline Microsoft Point-

to-Point Compression (MPPC) encoder. In chapter 6 and 7 we will compare the 

performance of our optimization techniques to this baseline. 

 

5.1. Trace Collection 

We choose three representative interactive applications, Adobe Photoshop, Microsoft 

Visio, and Microsoft Word for our performance evaluation. The three applications 

produce different types of screen update data. Adobe Photoshop is a popular image 

processing application and induces a high percentage of bitmap data. Microsoft Visio is a 

vector drawing application that is widely used in computer aided design. Its main screen 

updates are vector graphics. Microsoft word is a commonly used word processing 

application which represents a wide range of office automation software. Its main screen 

updates are texts but also include graphics and bitmaps to some extent. For convenience, 

we call the three traces captured from them respectively image, vector and text. 

 

The image trace captured the screen updates when a user eliminated the noises of a 

photograph, separated a portrait from the photo, and fused it into another image using 

Adobe Photoshop. The vector trace captured the screen updates when a user edited a 
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large graph with Microsoft Visio. The user operations included opening documents, 

creating various block shapes, adjust the positions of block shapes, adding texts, and 

importing external images. The text trace captured the screen updates when a Microsoft 

Word user edited an existing document, inputting some new paragraphs, importing some 

external images, editing a few tables and adjusting the formats of the document. All of 

the three traces were about 10 minutes long.  

 

These traces are obtained when users carried out the above workloads on MSTS through 

an open-sourced RDP client, rdesktop [60] in a LAN environment with submillisecond 

round-trip time (RTT). These traces recorded information about user operations and 

screen updates. We obtained both compressed and decompressed screen update data. 

Compressed data are used only for comparison purpose. As MPPC is a lossless 

compression protocol, the decompressed data should be the same as the uncompressed 

data on the server side. Hence the decompressed data are used as the input of our study. 

We made the same assumption as in [8]: an operation begins at the time the client sends a 

user input and ends with the last screen update received from the server before a 

succeeding user operation. To separate update packet sequences for different user 

operations in the traces, we appended an end mark to the last packet of each operation. To 

model the application processing time, we also recorded the time interval between a user 

input and the first update packet of it as well as the intervals between two consecutive 

update packets of an operation. In this modeling we neglected the network transferring 

time which is very small in LAN environment. 
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5.2. Latency Measurement Methodology 

Figure 5.1 shows how a user operation is simulated and how its latency is measured. A 

small packet is sent from the client to the server to mimic a user input. On receiving this 

'user input', the server begins processing the update packet sequence for this 'user input'. 

The processing includes inserting the recorded time intervals between two consecutive 

packets in the sequence, compressing the packets using either MPPC or our optimization 

schemes, and sending the compressed data to the client. An end mark attached with a 

packet indicates the end of a user operation. During the simulation we recorded the 

sending time of a 'user input' and the receiving time of the last update packet triggered by 

this 'user input'.  The difference of them is used to measure operation latency.  

 

 

Figure 5.1: Latency measurement 
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5.3. Testbed Configuration 

Figure 5.2 shows our experimental testbed. In this tested, two workstations respectively 

simulate the server and the client of a thin client system. WAN is emulated by a WAN 

emulator, NistNet [62] which runs on a machine with two network interfaces. This 

machine is configured as the router of two subnets where the client and server sit 

respectively. The emulator is able to emulate a variety of wide area network 

environments by adjusting the available bandwidth, latency, packet loss rate and other 

network parameters. Table 5.1 and Table 5.2 respectively show the machine 

configurations and the network settings used in our experiments. We considered a 

number of typical bandwidths in contemporary network environments as well as the 

impacts of different network latencies. 

 

`
`

LAN/

Nistnet emulated 

WAN

Thin Server Thin Client

 

Figure 5.2: Experimental testbed 
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Role Hardware OS 

Server 

500MHz Intel Pentium III 

256M RAM 

10/100 BaseT NIC 

MS Windows 

XP professional 

Client 

500MHz Intel Pentium III 

256M RAM 

10/100 BaseT NIC 

Redhat Linux 9.0 

WAN 

emulator 

1.5GHz Intel Pentium IV 

512M RAM 

10/100 BaseT NIC (2) 

Redhat Linux 9.0 

Table 5.1: Machine configurations 

 

Network 

configuration 
Bandwidth RTT 

Packet loss 

rate 

LAN 100Mbps 1ms ≈ 0 

WAN1 1.5Mbps (T1) 20ms 0.5% 

WAN2 768Kbps(DSL) 20ms 0.5% 

WAN3 256Kbps(ISDN) 20ms 0.5% 

WAN4 1.5Mbps 60ms 0.5% 

WAN5 768Kbps 60ms 0.5% 

WAN6 256Kbps 60ms 0.5% 

Table 5.2: LAN & WAN scenario descriptions 
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5.4. Baseline 

Our baseline is a MPPC encoder modified from the open-sourced MPPE/MPPC kernel 

module for Linux [46]. By studying the compressed and the decompressed stream 

obtained from rdesktop, we made our encoder as similar to the MSTS's MPPC encoder as 

possible. The correctness of our encoder was verified using a decoder taken from 

rdesktop [60]. We tested the performance of our MPPC implementation on a Pentium III 

500 MHz machine using the decompressed streams obtained.  From the results shown in 

Table 5.3, we can see that our implementation has a comparable compression ratio as the 

MPPC implementation in MSTS. The difference in compression ratios may be caused by 

the different hash functions used. Table 5.3 also gives the compression speed of our 

implementation. Though we cannot compare it with MSTS as MSTS is not open-sourced, 

our experimental results showed that the compression time has only insignificant impact 

on interactive latency. 

 

Compression ratio (%) 

(
compressed size

original size
) Display 

update traces 
MPPC 

(MSTS impl.) 

MPPC 

(our impl.) 

Compression speed 

of our impl. 

(µs/KB) 

image 33.72 33.77 61.53 

vector 26.28 26.35 55.38 

word 30.13 30.13 48.72 

Table 5.3: Baseline performance 
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CHAPTER 6 

REDUCING LONG-DISTANCE REDUNDANCY 

In Chapter 4, we presented a static object cache technique to reduce the object-level 

redundancy in the screen updates of thin client systems. In this chapter we focus on 

another kind of redundancy, which is caused by the same screen updates repeated after a 

long trace of other screen updates. We call this kind of redundancy long-distance 

redundancy. In a thin client session, long-distance redundancy is generally induced by 

repeating some operations after a series of other operations. This scenario is very 

common in graphics-based user interaction. For example, a user may use the 'Open' 

dialog in Acrobat 6.0 to open a file. After some editing operations, the user may use the 

same dialog to open another file. When the 'Open' dialog is shown for the second time, 

the screen updates of it have only a trivial change. The same situations may occur when 

users repeat menu operations, switch between some frame windows, and so on. In this 

chapter, we present an analysis of long-distance redundancy and a flexible and scalable 

extension of LZ algorithm to it. 
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6.1. Introduction 

Some cache techniques deployed in the existing thin client computing systems can reduce 

long distance redundancies to some extent. Bitmap cache in MSTS caches bitmap data on 

client and reuses them when the same bitmap data need to be redisplayed. As MSTS 

bitmap cache uses up to 1.5M bytes for memory cache and 10M bytes for persistent 

cache, some bitmap data redundancies with distance much larger than 64K can be 

reduced. String cache and glyph cache in MSTS can mitigate long distance redundancies 

of non-bitmap data. Cache-based optimization techniques require the reoccurring items to 

be the same as saved items. Any change even only one byte in the reoccurring item will 

be considered as a new item.  

 

In comparison, dictionary-based compression techniques such as LZ algorithm can 

tolerate such minimal changes by matching reoccurring data in a finer granularity. LZ 

algorithm is very effective to reduce the redundant data in screen updates while at the 

same time is fast enough for online processing [9, 95, 91]. So it's widely used in thin 

client systems. Microsoft Point-to-Point Compression (MPPC) scheme [43] used by MS 

Terminal Sever, is based on LZ algorithm. AT&T VNC uses Zlib [45], which is also 

based on a variant of LZ algorithm.  However, a small history buffer (or sliding window) 

that is popular in the implementations of LZ algorithm and its variants can not reduce the 

redundancies that occur at a long distance. A straightforward solution for the long-

distance redundancies is a flat extension of the LZ algorithm. In this extension, the 

history buffer of LZ algorithm, which is organized as a bounded continuous memory area, 

is simply enlarged. However, this solution is not flexible. History buffer size is limited by 
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the available memory resources that vary from system to system. To adapt to different 

situations, the extension should be able to resize the history buffer easily. But in the flat 

extension, the encoding/decoding logic changes as history buffer size (offset range) 

changes. Moreover, a flat extension has scalability issue. Most existing implementations 

use a history buffer below 64K bytes. When the history buffer size is above 64K bytes, 

the offset needs a 32-bit representation rather than a 16-bit representation. This will cause 

the auxiliary data structures (hash tables, suffix trees, etc.) to expand significantly. 

Expanding history buffer flatly may also excessively increase computational time as the 

LZ algorithm has to search for matches in an auxiliary data structure with more items. 

Additionally, a larger offset range requests more bits to encode an offset, and thus will 

counter some gains from increasing history buffer.  

 

We proposed another way to extend the history buffer of LZ algorithm, which is a 

vertical extension where history buffer is organized as a number of separate memory 

blocks [101]. This extension is more flexible and has no such scalability issue. We named 

this optimization scheme long-distance redundancy reduction scheme (LDRS) for its 

objective is to reduce the long-distance redundancy. 

 

6.2. Analysis of Discrete History 

If all the data packets arriving at the compressor are saved in a single history buffer in the 

order of arriving, we call the history contained in the history buffer a continuous history. 

If only a subset of the data packets is saved, we called the history a discrete history. 
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Formal definitions of continuous history and discrete history will be given later (Section 

6.2.2). In this section we present an empirical analysis of the possibility of replacing a 

continuous history with a short, discrete history when compressing each packet. Before 

presenting the analysis, we define some terms used in it. 

 

6.2.1. Edit Distance between Byte Strings  

In a thin client system, screen update data are usually encapsulated into packets 

proprietary to a thin client protocol such as T.128 [28] and Remote Frame Buffer 

Protocol (RFB) [26]. A packet usually contains the screen update data to paint some 

graphical objects and some additional information that describe the screen update data 

contained. A history usually contains a sequence of packets. Either an individual packet 

or a sequence of packets can be treated as a byte string (a sequence of bytes). If a byte 

string B in a byte string sequence is similar to a previous byte string A in the same 

sequence and A has been stored on the client, instead of transferring B to the client, we 

can pass to the client a small edit script to build B based on A.  

 

Two kinds of edit scripts can be used for this purpose. The first kind consists of 

predefined reversible operations to modify one string into another, which has been used 

in text comparison [56]. The second kind consists of two predefined operations to build a 

new string B based on an existing string A: insert a substring of A into B or insert a 

symbol not in A into B.  The first kind of edit script allows bidirectional conversion. The 

second kind of edit script only allows unidirectional conversion but can be more easily 
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constructed and integrated with a dictionary-based compressor (a class of lossless data 

compressors which search matches between the data to be compressed and a dictionary of 

strings and replace the matched data with the index of the string in the dictionary). As we 

only need to build a byte string based on a previous byte string, we adopt the second kind 

of edit script. Next we will define a partition that is equivalent to it. 

 

DEFINITION 6.1. A match partition of string B about string A, denoted as ( | )MP B A , 

is a sequence of B's substrings each of which is either a substring of A (termed a match) 

or a symbol that cannot be found in A (termed a literal), and concatenation of which 

equals to B.   

 

From each match partition of string B about string A we can construct an equivalent edit 

script to build string B based on string A, using the following two operations: insert a 

substring of string A into string B and insert a literal into string B. So we will not 

distinguish a match partition and its equivalent edit script in the rest of this text. Different 

match partitions of string B about string A must have the same number of literals but may 

have different number of matches and different sizes. For example, suppose A = 

abcicdejdef and B = abcdefgh, one match partition (ab, cd, ef, g, h ) has 3 matches and a 

size of 5 while another (abc, def, g, h) has 2 matches and a size of 4. 

 

DEFINITION 6.2. A minimal match partition of string B about string A, denoted 

as ( | )MMP B A , is a ( | )MP B A of minimal size. 
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Given string A and B, ( | )MMP B A is not necessarily unique. For example, suppose A = 

abcbde and B = abde, both {ab, de} and {a, bde} are minimal match partitions of B about 

A. Inspired by the LZ algorithm [13], we define a special minimal match partition.  

 

DEFINITION 6.3. A LZ partition of string B about string A, denoted as ( | )LZ B A , is 

a ( | )MP B A that is built from the following procedure. We use B(i, j) to denote a substring 

of B which starts at position i and ends at position j. 

1. Find a longest substring B(0, j) that is also a substring of A. If not found, add the 

symbol at position 0 of B to ( | )MP B A . Otherwise add B(0, j) to ( | )MP B A . 

2. If ( ! | | - ) j B= 1  then ( ,| | - )B B j B= 1  and go to 1. 

 

The above procedure is very similar to the parsing phase of LZ compression algorithm 

[13]. A key problem in the above procedure is to search the longest match substring B(0, 

j). Various solutions [57, 58, 59] are available for it. 

 

LEMMA 6.1. ( | )LZ B A is a ( | )MMP B A . 

 

Proof. Assume that ( | )LZ B A  is not a ( | )MMP B A . Hence in ( | )LZ B A some consecutive 

matches can be repartitioned into fewer matches. Obviously 2 matches cannot be 

repartitioned into 1 match; else it should be found in the above procedure. Assuming 3 

matches can be repartitioned into 2 matches, the first match after repartitioning must 

contain itself and part of the second match; else the remaining 2 matches should be 

combined into 1 match. This contradicts with step1 in Definition 6.3, which searches for 
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a longest match each time. Iteratively, we can infer that any N matches (N>3) in 

( | )LZ B A cannot be repartitioned into N-1 matches.                       ■           

                                                                      

DEFINITION 6.4.  The match edit distance from string A to B, denoted as ( | )D B A , 

is defined as the size of ( | )MMP B A . 

  

( | )D B A  reflects the relevance of string B to string A . It equals to the total cost of 

operations in the equivalent edit script of a minimal match partition with each operation 

given a unit cost.  Hence, ( | )D B A  indicates the potential compression performance that 

can be obtained from a LZ algorithm or its variants.     

 

6.2.2. Discrete History vs. Continuous History  

Suppose P0 …Pi … Pn is a packet sequence. For each packet Pi, the subsequence 

... ,  (0 )i k iH P P k i
−

= ≤ <
1

is called a continuous history of packet Pi. The 

subsequence '
... (0 ... )

ki j j j kH P P P j j j i= ≤ < < < <
1 2

1 2
 is called a discrete history of packet Pi. 

If the packets in Hi' have the k smallest match edit distances to Pi, Hi' is called a k-best 

discrete history of packet Pi. 
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Figure 6.1: Continuous history vs. k-best discrete history 

 

We empirically analyzed the effect of using continuous history and discrete history in 

compression for some long packet sequences obtained from an open source MSTS client 

(rdesktop[60]). In our experiment, we calculate two match edit distances for each packet 

Pi. One is the match edit distance from Hi to Pi, where Hi is a continuous history of Pi and 

the size of Hi is no more than 1M bytes. The other is the match edit distance from a k-best 

discrete history Hi' to Pi. Hi' is a subset of Hi. The analysis program calculates continuous 

and discrete edit distance for each packet Pi (i=0,…,n) in the sequences. Figure 6.2 shows 

the comparison between them. From the result we can see that the difference between the 

k-best edit distance and the continuous edit distance reduces as k increases. And when k is 

increased to 6, the k-best edit distance is very close to the continuous edit distance. This 
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shows that when compressing a packet, using a short discrete history is possible to 

achieve similar compression performance as using a long continuous history. As the 

discrete history is short, it is not necessary to use a large offset range for the matches. For 

example, in MSTS, the average packet size is only 1.5K bytes. So 6 packets in the 

discrete history only need a 9K offset range on average. 

 

6.3. Long-distance Redundancy Reduction Scheme 

Based on the above analysis, we propose a vertical history extension scheme in this 

section. We start with the history buffer organization in this scheme, followed by a 

description of the history selection algorithm used in this scheme. 

 

6.3.1. Organization of History Buffer 

Figure 6.3 (a) and (b) respectively show the history buffer organization in a flat extension 

scheme and the proposed vertical extension scheme. In contrast to the flat extension 

which contains a single history buffer, the proposed extension scheme contains a number 

of history blocks of the same size. The number of history blocks can be negotiated 

between the server and the client at the beginning of a thin client session. Each history 

block is restricted to 64K bytes or less. In compression, the packet which is being 

compressed (current packet) will use one block as history for its compression. The 

current packet, if to be saved, should be saved in that block. The index of that block and 

whether this packet is saved or not need to known by the client to ensure correct 
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decompression and synchronization of the history state.   In this extension scheme, each 

history block has its own auxiliary data structure. As the history block's size is fixed and 

restricted to 64K bytes, the offset range will not change when the total history buffer size 

increases. Thus it's always sufficient to represent an offset with 16 bits in the auxiliary 

data structure. The number of items in a block's auxiliary data structure will keep 

unchanged and will not increase match search time. The number of bits needed to encode 

an offset will not scale either. Hence this extension scheme has more flexibility and 

scalability than the flat extension. The flexibility and the scalability of the history buffer 

provide the possibility of adaptively allocating history buffer according to the available 

memory resources. 

 

 

Figure 6.2: Flat history extension vs. vertical history extension 
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6.3.2. History Selection 

Finding k best history packets with minimal match edit distances to the current packet 

will cost a substantial amount of time if these packets are dispersed in different blocks. 

Fortunately we found that in thin client sessions, these best history packets are often 

clustered. In other words, these best history packets will appear in the same history block 

if we always save them in the block that has the minimal match edit distance to each of 

them. We also observed that even sometimes a few best packets are missing, the rest still 

form a good history. As such, we only need to select a best history block for the current 

packet. We use the algorithm GREEDY shown in Figure 6.4 to achieve this. 

 

In order to quickly detect which block is the best history block for the current packet P, 

we find out all long matches (at least 16 bytes) between P and all cache blocks by a fast 

rolling signature technique. For each history block a hash table is used to index every 16 

bytes history in the block.  During compression GREEDY calculates a 16-bit fast rolling 

signature of a 16 bytes window from the current point in packet P. This signature is used 

to index the global hash table. When an offset is retrieved, we find its corresponding 

position in the history blocks and compare it with the data in P from the current point. If 

a long match is found, GREEDY adds the long match's length to the block's total match 

length. The total match length is used to select the best history block. 
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Figure 6.3: History selection algorithm: GREEDY 
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However, always selecting the block with longest total match length may lead to an 

unbalanced memory usage. To avoid this, we choose one block from a number of 

candidates using another criterion. Candidates are those blocks which have similar total 

match lengths, and have larger total match length than the rest blocks by a threshold. In 

details, GREEDY saves total match length for each block into an array. After searching 

the long matches, GREEDY sorts the array in a descending order and calculates the 

differences between the neighboring numbers in the array. If the difference between two 

neighboring blocks i and j is larger than the predefined threshold, all blocks before and 

including block i in the array are candidates.  GREEDY selects the least used block in the 

candidates. If no difference larger than the threshold is found, GREEDY chooses the least 

used block from all of the history blocks. When a block is selected, GREEDY saves the 

data of P into that block after compressing and updates the hash table at the same time.  

To prevent one block saving the same data for many times, we do not save the packet if 

its total match length is almost equivalent to the packet size. 

 

6.4. Experiment Results and Analysis 

In this section we compare the performance of LDRS with MPPC in terms of network 

traffic and interactive latency. We measured the performance of the scheme with 2, 4, 8 

and 32 history blocks. Unlike network traffic, interactive latency is related to network 

configuration. We measured interactive latency in the seven different emulated network 

configurations described in Chapter 5. We also commented the computation overhead 

and memory usage in Section 6.4.2. 
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6.4.1. Performance 

Figure 6.5 shows the network traffic reduction of LDRS compared to MPPC for the 3 

traces described in Chapter 5: text, vector, and image. We can observe that more history 

blocks lead to better improvements. Using more history blocks permits more data to 

coexist in the history, improving the chance to find matches between current packet and 

the history. Compared to original MPPC, LDRS can eliminate around 4.3% - 8.9% 

network traffic with 2 history blocks, around 15.0 - 33.5% with 32 blocks. This indicates 

LDRS can efficiently reduce long-distance redundancies in different type of screen 

update traces. Compared to image and vector traces, a lower percentage (15.0%) of 

network traffic in text trace is reduced by our vertical extension scheme. Further analysis 

shows that this is because there are more long-distance redundancies in image and vector 

than in text trace. With more history blocks redundancies at longer distances can be 

reduced.  
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Figure 6.4: Network traffic comparison between LDRS and MPPC 
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To evaluate the effect of LDRS on interactive latency, we partition the interactive 

response times into three time bins based on the five time bins proposed by Tolia el. dl 

[8]: crisp – shorter than 150ms; noticeable – longer than 150ms but shorter than one 

second; annoying – longer than one second. Table 6.1 gives the number of operations that 

fall into noticeable or annoying time bin for different traces, history buffer configurations 

and network environments. According to the results in Table 6.1, LDRS achieves the 

same interactive performance as MPPC in LAN. In LAN environment the time to transfer 

a data spike is usually small. The long latencies are mainly induced by long application 

processing time rather than network transferring time. For all chosen WAN network 

configurations, LDRS reduces the number of noticeable and annoying response time 

compared to MPPC. Like the network traffic reduction, more history blocks produce 

better results. With 2 blocks LDRS reduces 1.4% - 3.1%, 2.2% - 5.8%, and 3.0% - 6.2% 

noticeable or even annoying latencies for image, vector and text respectively. With 32 

blocks LDRS respectively reduces 22.9% - 26.7%, 24.6% - 27.8%, and 20.6% - 21.3% 

noticeable or even annoying latencies for the three traces. These results show that LDRS 

can reduce quite a few long operation latencies in WAN environments. This is achieved 

by prohibiting redundant large screen updates to send across the network. With the 

limited bandwidth in WAN environments, a large screen update will need a long time to 

be transferred to the client.  
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Noticeable 

150 ms - 1 sec 

Annoying 

>1 sec Trace Network 

M* D2 D4 D8 D32 M D2 D4 D8 D32 

LAN 24 24 24 24 24 6 6 6 6 6 

WAN1 189 183 177 161 143 24 24 24 24 20 

WAN2 343 335 321 300 256 37 37 36 34 29 

WAN3 521 510 484 453 386 48 46 43 38 31 

WAN4 262 253 244 231 202 31 31 30 28 20 

WAN5 395 390 376 346 303 44 43 41 37 31 

Image 

(13344 

operations) 

WAN6 694 689 669 625 542 70 64 60 53 47 

LAN 17 17 17 17 17 3 3 3 3 3 

WAN1 228 220 209 197 165 29 29 29 28 21 

WAN2 397 380 362 338 300 34 33 32 31 25 

WAN3 639 611 583 557 466 47 46 45 41 33 

WAN4 306 290 281 270 229 33 31 30 28 23 

WAN5 460 450 431 399 345 48 47 42 38 31 

Vector 

(17912 

operations) 

WAN6 881 832 805 765 643 58 53 47 40 35 

LAN 10 10 10 10 10 2 2 2 2 2 

WAN1 63 61 58 54 50 4 4 4 3 3 

WAN2 126 122 118 109 100 4 4 4 3 3 

WAN3 234 220 214 201 186 7 7 6 6 5 

WAN4 93 87 84 79 74 4 4 4 3 3 

WAN5 145 136 132 127 115 5 5 5 4 3 

Text 

(13834 

operations) 

WAN6 301 287 275 253 239 7 7 6 6 5 

* M – MPPC; D2, D4, D8, D32 – DSRS with 2, 4, 8 and 32 cache blocks. 

Table 6.1: Interactive latency comparison between LDRS and MPPC 

 

6.4.2. Computation Overhead & Memory Usage 

Except for the history selection process, all the other parts of LDRS are the same as 

MPPC. So the additional computation is mainly induced by selecting a block as history 

which includes auxiliary data structures updating time. Since LDRS uses a global hash 
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table to index the history, the overhead caused by the selection process does not increase 

with the number of history blocks. Column 2 of Table 6.2 shows the average history 

selection overhead to process 1K bytes data for different traces. Column 3 shows the 

average compression speed of our extension. Compared to the baseline compression 

speed given in Table 5.3, we can find that LDRS increased about 25.5%, 23.6% and 

16.3% compression time for image, vector and text respectively. Generally, such an 

overhead contributes little to the total latency since the compression itself is very fast and 

has no bad effect on the server's scalability. In fact, in the case that the scalability of a 

thin client server is mainly bounded by network bandwidth, using LDRS can improve its 

scalability. Of course, LDRS is essentially a tradeoff between computation time and 

network transferring time. Hence it is not suited to be used where the scalability of the 

server is tightly bounded by the computation resources.  

 

Screen update 

trace 

History Selection 

(µs/KB) 

Compression Speed 

(µs/KB) 

Image 18.32 77.21 

Vector 15.20 68.43 

Word 14.57 56.64 

Table 6.2: Computation overhead of LDRS 

 

In our implementation, we use hash tables as auxiliary data structures on the server side. 

For every 16 bytes written to a history block, we create a hash table entry for it. Hence 

the number of hash entries needed is one sixteenth of the block size.  The total additional 

memory required on the server side can be calculated by 
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( )
16

blk size
blk size bytes per hash entry blk number+ × × . If the block size is 64K bytes, each hash entry 

needs two bytes to store the offset. The additional memory required on the client side is 

equal to the cache size. 

 

6.5. Summary 

In thin client computing systems, long-distance redundancies may cause a large amount 

of network traffic but have not received adequate attention. This chapter presented a way 

to extend the history buffer of LZ compression algorithm that is often used for screen 

update data, aiming at reducing long-distance redundancies. We empirically studied the 

effectiveness of our scheme on three different types of screen update traces of Microsoft 

Terminal Server. The numerical results show that this scheme can reduce 15.0% - 33.5% 

network traffic for the tested traces with a history buffer of 2M bytes. Moreover, it also 

can reduce 20.6% - 27.8% noticeable long latencies for different types of applications 

with 2M bytes history buffer. This scheme costs only a little additional computation time 

and the cache size can be negotiated between the client and server. 
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CHAPTER 7 

A DATA SPIKE REDUCTION SCHEME FOR 

THIN CLIENT SYSTEMS 

In Chapter 6 we proposed an optimization scheme to reduce the long-distance 

redundancy in screen update data by extending the dictionary-based Lempel-Ziv (LZ) 

algorithm. While this scheme provides a flexible and scalable extension scheme to the 

history buffer of LZ algorithm, the history buffer size is limited by the available memory 

resource of the server and client in practice. So how to improve the user experience as far 

as possible with limited resources is a problem we should address. In this chapter we 

present a data spike reduction scheme, aimed to reduce the long, noticeable latencies that 

are caused by sending a large amount of screen update data in a very short time. 

 

7.1. Introduction 

Although various optimization techniques have been used, we observed that many user 

operations can still produce a large amount of screen update data when using existing thin 
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client computing systems. These screen update data are generated in a very short period, 

resembling a 'data spike' in an update sequence to be transferred over network. Usually 

delivering such a data spike to clients within a user-perceivable latency needs a 

bandwidth that is much higher than the average bandwidth requirement. Although 

network bandwidth has been greatly increased in recent years, available bandwidth in 

many networks may still not be able to meet the needs of transferring data spikes 

adequately fast. In that case, the user will feel the interaction with remote application 

"unsmooth". An unsmooth user experience may make users unsatisfied with the whole 

thin client systems. After all, "it is the worst case not the average case determines the 

usability of the thin client" [8]. Therefore, reducing the number and peak values of data 

spikes can improve the interactive performance of thin client systems, giving users a 

more satisfactory experience.  

 

As data spikes are essentially a large amount of screen update data produced in a short 

time, existing techniques that reduce data size can reduce data spikes to some extent. 

UltraVNC [27] employs an on-screen cache and a cache encoding mechanism which save 

the latest two updates for each pixel of the screen. The new updates will be compared 

with the saved updates to pass only the unsaved screen regions. The two cache schemes 

can only reduce data spikes caused by recurrences of the latest two updates of the same 

screen region.  

 

Citrix Metaframe [71], Microsoft Terminal Server [72], Tarantella [30], and NoMachine 

NX [83] cache basic graphic objects or X messages in memory. Caching basic graphic 
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objects and the data parts of X messages can efficiently reduce the transferred data size 

and thus can reduce some data spikes caused by them. However, only exact matches of 

graphic objects or data parts can benefit from these caches. Similar graphic objects or 

data parts, even having only a little change compared to the saved ones, have to be 

transferred as they are new. Furthermore, these cache techniques cannot reduce the 

number of drawing orders or X messages, and thus can not reduce the data spikes caused 

by some complicated screen update consisting of many drawing orders or X messages.  

 

Thin client compression [36] and streaming thin client compression [37] are designed to 

compress synthetic images. Both of them can only be used with bitmap-based thin client 

computing systems such as VNC and cannot be used to compress smooth-toned images 

that are popular in multimedia applications.   

 

2-D lossless linear interpolation coding (2DLI) [38] is designed for both synthetic images 

and smooth-toned images. Although 2DLI performs very fast and efficiently on 

compressing update images, it only leverages the redundancy in a single update image. 

The redundancy across frames cannot be reduced. Like thin client compression, 2DLI can 

only be used with pixel-based thin client computing systems such as VNC.  

 

Differential X protocol compression (DXPC) [83] efficiently encodes X messages by 

specializing on each field's value range, frequency and applying delta encoding. It also 

employs different compression methods for different image types. Similarly, T.128 

protocol [28] specifies two compression schemes that are separately applied to orders 
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(order encoding) and bitmap data (bitmap compression). Order encoding avoids 

transferring the same field values in consecutive orders for multiple times. All these 

compression schemes can reduce the length of orders/messages, but cannot reduce the 

number of them. Thus data spikes consisting of lots of orders/messages cannot be 

reduced.  

 

The Generic compression algorithm LZ searches a history for matches and encodes them 

with length and offset pairs.  In order to restrict the number of bits to encode the offset, 

the history is usually small (not greater than 64KB). Since all screen updates (before 

compression) will be saved into such a small history, the screen updates that cause data 

spikes are easily overwritten before similar screen updates are produced.  

 

In this chapter we propose a data spike reduction scheme (DSRS) to reduce data spikes 

[100]. The proposed scheme is a hybrid cache-compression one which reduces data 

spikes by caching their main contributors and uses the cached data as history to better 

compress the recurrent screen updates in possible data spikes.  

 

7.2. Analysis Model for Screen Update Data 

In a thin client system, screen update data are usually encapsulated into packets 

proprietary to a thin client protocol such as T.128 [28] and Remote Frame Buffer 

protocol (RFB) [26]. A packet contains the screen update data to paint some graphical 

objects.  Later these graphical objects may be repainted when the user performs the same 
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operation. This will generate a packet that may be similar to a previous one. Our 

objective is to exploit the similarities between similar packets to reduce network traffic as 

well as user-perceptible latency in a thin client system.  

 

7.2.1. Packet Reference 

In Definition 6.4, we defined the match edit distance from string A to B (denoted 

as ( | )D B A ) to reflect the relevance of string B to string A. It can also be used as an 

indication of the potential compression performance that can be obtained from a LZ 

algorithm or its variants.  In the following, we examine the relationship between ( | )D B A  

and the communication cost in a further step. 

 

DEFINITION 7.1. The communication cost of a match partition is defined as the 

number of bytes needed to encode the literals and matches in it.  

 

Using different coding schemes may result in different communication costs. Suppose l 

and m are respectively the maximal number of bytes to represent a literal and a match in a 

coding scheme. Normally,  l m≤ because for a match its position and length need to be 

encoded while for a literal only the symbol needs to be encoded. 

 

LEMMA 7.1. If ( | ) | | thD B A B D≤ × ( | |B is the length of string B, thD is a constant named 

difference threshold), the communication cost of a ( | )MMP B A using a coding scheme for 

which l m≤ is less than | | thB D m× × . 
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Proof.  Assuming a ( | )MMP B A has M matches and L literals, we can use 

 M m L l× + × bytes to encode a ( | )MMP B A . ( ) - ( - ) | | thM m L l M L m L m l B D m× + × = + × × ≤ × × . ■ 

 

Lemma 7.1 shows that if the match edit distance from string A to string B is very small, 

by caching string A on the client and using an appropriate coding scheme, we can 

considerably reduce the network traffic needed to communicate B to the client. For 

example, if Dth=0.1 and m=3, the communication cost will be less than 30% of the length 

of B. Further, if the difference between the sizes of packet A and B is small, we can 

quickly locate where A is saved in the cache, as shown later. We can also use a replace 

algorithm to efficiently manage the cache space. This assumption is reasonable because 

many windows, when repainted, only change a little. In other words, only a very small 

number of bytes are inserted or deleted compared to a previous packet. So the new 

packet’s size usually differs little from the previous packet. We characterize the 

relationship between such two packets in the following definition. 

 

DEFINITION 7.2.  Suppose Pi and Pj (j>i) are two packets in a packet stream, if 

packet Pi and packet Pj satisfy the following two conditions, we say Pi is a reference of 

Pj. 

1) ( | ) | |j i j thD P P P D< ×  

2) || | - | || | |j i j thP P P D< ×  
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Obviously, difference threshold ( thD ) plays a very important role in this definition. We 

will discuss later in Section 7.5.1 how we choose an appropriate value for it by 

experiments. 

 

7.2.2. Analysis Model 

Figure 7.1 shows an analysis model for screen update data, which is very similar to the 

stack reference model used in traditional cache performance analysis [61]. In the model, a 

sequence of packets in a screen update stream collected from a thin client system is fed to 

a FIFO-managed buffer whose capacity is C. If a packet in the buffer is a reference of the 

current incoming packet as per the definition in last subsection, we say the current packet 

references (or hits) the packet in the buffer. The total data contained in the packets 

between the current packet and its nearest reference in the buffer is defined as reference 

distance ∆ . If the current packet has no reference in the buffer, ∆ = ∞ . Distance 

distribution ( )d n is the probability that the current packet has a reference at distance n 

from it and has not another reference with a distance smaller than n. Note that d(n) is a 

'defective' distribution in that it may not sum to unity because of the possible infinite 

reference distance. The corresponding cumulative distance distribution is defined 

as ( ) ( ) ( )

C

n

D C d n P n

=

= ×∑
1

, where P(n) is the proportion of data in the packets with reference 

distance n against the total data in the screen update trace. The cumulative distance 

distribution is actually the trace's hit rate for cache size C, i.e. the proportion of data in 

the packets which have a reference within a distance of C. For a given screen update trace, 
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D(C) indicates the amount of data redundancy that can be exploited by a FIFO-managed 

cache with capacity C. Therefore, D(C) can be used to investigate the amount of data 

redundancy among a subset of screen update data and to guide the selection of cache 

capacity. 

 

 

Figure 7.1: Data redundancy analysis model 

 

7.3. Data Spike Analysis 

7.3.1. Data Spike Definition 

The bursty nature of screen updates is the source of data spikes in thin client systems. 

Once user input is processed, some screen update data are generated in a very short time. 

Some user operations induce a large amount of screen update data, raising data spikes. 

Examples of such user operations include launching a new application, switching to 

another application, opening a dialog with complex graphic elements and displaying 

some large menus such as the 'start' menu in Microsoft Windows. In a thin client system, 

screen update data are normally packetized, compressed and then sent over network. In 

this process, the network interface of the server can be viewed as a queue system. We 
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assume that the data in the same packet arrive in the queue at the same time. Given a 

short period τ and an integer Sth , if the total data arriving at the queue in time interval (t- 

τ, t) amounts to Sth bytes or above, we say there is a (τ, Sth)-data spike at time t. τ is 

called data spike width and Sth is called data spike threshold.  Any packet arriving in 

period (t- τ, t) is said to be a contributor of the data spike at time t. If a contributor’s 

individual size is above half of data spike threshold, we call it a main contributor. A 

data spike can have one or more main contributors. For example, in Figure 7.2, data spike 

A has 2 main contributors. Two data spikes can share contributors and main contributors. 

In the figure, data spike B and C share a main contributor.  

 

100 120 200 220 420 440 480 600

Spike A

Spike B
Spike C

Time (ms)  

Figure 7.2: Data spikes (τ = 50ms, Sth = 2K bytes) 
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7.3.2. Distance Distribution of Data Spike 
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Figure 7.3: Average cumulative distance distribution of data spike main contributors 

 

Using the analysis model proposed in Section 7.2 we analyzed the packet-level 

redundancy of data spikes in 100 screen update traces. In this analysis, the cache capacity 

C is specified as 2M bytes. Such a cache size is acceptable in many practical situations 

for thin client computing. We chose 2K bytes and 0.15 respectively for the parameter Sth 

and Dth . The data spike width (τ) used is 20ms. The reason to choose these values will be 

given later in Section 7.5.1. We only analyzed the redundancy between main contributors. 

The experimental results show that in all traces redundant main contributors account for 

6.3 - 34.4% of the total data, and in 79 traces this number is larger than 10%. Figure 7.3 

shows the cumulative reference distance distribution of these screen update traces when 
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they are concatenated together. It can be seen that the cumulative reference distance 

distribution increases with the reference distance but the increase gradually drops. When 

the reference distance is 512K bytes the distribution is 15.4% while the value is 18.5% at 

reference distance 2M bytes. This indicates that there is a considerable amount of packet-

level redundancy in data spikes of screen updates that can be exploited by a reasonably 

small cache.  

 

7.4. Data Spike Reduction Scheme 

 

Figure 7.4: Overview of DSRS (server side) 

 

Based on the analysis in Section 7.3, we propose in this section a hybrid cache-

compression scheme, called Data Spike Reduction Scheme (DSRS), to reduce the data 

spikes in screen update streams. Figure 7.4 shows an overview of DSRS. DSRS is built 
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around a general online compression scheme. It enhances the compression scheme with 

two caches separately on the server and client side. The spike detection component in 

DSRS identifies data spikes in compressed screen updates and saves the main 

contributors of them into the cache. The history selection component in DSRS selects a 

good history to compress a large packet. If such a history does not exist, the normal 

compression method is used for that packet. The client-side cache is always synchronized 

with the server-side cache so that the encoded data can be decoded using the client-side 

cache as history. Compared to the general compression scheme, DSRS is able to exploit 

some long-distance references and has the flexibility to reduce some specific screen 

updates. By selecting history, some large packets can be better compressed, reducing the 

possibility of causing a data spike. 

 

7.4.1. Cache Organization 

The cache in DSRS consists of two parts, respectively called object cache and bitmap 

cache. Object cache is used to save packets that contain various drawing orders. Bitmap 

cache is used to save large bitmaps each of which can result in a data spike. Object cache 

and bitmap cache are organized differently. Object cache is partitioned into equal-size 

history blocks. All the packets saved in one block can be used as a history to compress a 

new packet. To limit the number of bits to encode a match in a history block, we restrict 

the history block size to be 64K bytes or smaller. But the number of history blocks can be 

negotiated between the client and the server, allowing a tradeoff between performance 

and resource requirement. Packets are saved in a history block continuously from the 
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beginning to the end. As in MPPC, if the remaining space in a history block is not enough 

to hold a new packet, the new packet will be saved from the beginning of the block, 

overwriting the old data. Bitmap cache is a continuous memory area which is organized 

as a ring buffer. Bitmaps are saved into the buffer one after another. Each saved bitmap 

can be used as a history to compress a new bitmap. An additional data structure records 

the width and height of a bitmap as well as its location in bitmap cache. When an old 

bitmap in bitmap cache is overwritten, its information is removed from the additional 

data structure. Like object cache, the size of bitmap cache is also negotiable.  

 

7.4.2. Data Spike Detection and Main Contributor Saving 

A large bitmap itself will cause a data spike. Hence all of them will be saved into the 

bitmap cache. To detect data spikes caused by other screen update data, DSRS monitors 

the compressed packets. According to the definitions in Section 7.3, if the total data 

received within a data spike width exceed the data spike threshold a data spike is 

assumed and its main contributors will be saved. As the main contributors of a data spike 

may be received before the data spike is identified, we need to trace the recently received 

large packets that are possible main contributors. Since two contiguous data spikes can 

share main contributors, a large packet may be saved already. So we trace only the recent 

large packets that are not saved. According to the definition of main contributor, only one 

possible main contributor within a data spike width may not be saved before a data spike 

is found. After a data spike is identified, its main contributors will be saved into the 

object cache.  When the content of the server-side cache changes the same change should 
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be made to the client-side cache to keep them synchronized. The client also records the 

possible main contributors as the server does. Later when a spike is detected, the server 

will inform the client of the main contributors to be saved and which history block they 

will be saved in. For bitmaps, we need to pass the bitmap size information to the client. 

We utilize a few bits in packet header to pass such information. 

 

7.4.3. History Selection 

How to select a history for a new packet or bitmap from the saved history blocks or 

bitmaps based on proximity is a key problem in DSRS. To reduce searching time, we first 

shortlist the candidates by comparing packet sizes or bitmap sizes. As per Lemma 7.1, 

using a packet or bitmap's reference as history to compress it, we can get a small 

communication cost. According to the definition of reference, a packet or bitmap has 

similar size as its reference.  For a new bitmap we compare its width and height with each 

saved bitmap's width and height to determine if the saved one is a possible reference. For 

other screen updates, we assign a packet size range (li, ui) to each history block Bi and 

only store the packet whose size is larger than li and not larger than ui into block Bi. This 

way, we shrink the search space to the cache blocks whose assigned sizes are close to the 

current packet's size.  

 

At the second stage, we calculate the match edit distance from the index of each 

shortlisted candidate to the index of the new packet or bitmap. If the match edit distance 

associated with a candidate is smaller than a threshold, that candidate is selected and the 
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selection process stops. Using a byte sequence's index rather than the byte sequence itself 

makes this process very fast for the index is much shorter. Computation of the indexes is 

enlightened by the content-based partition technique proposed in [42]. This technique 

calculates a 64-bit Rabin Fingerprints [11] for every 48-byte region (overlapping) in a 

byte sequence. When a fixed number of lower bits of a region's fingerprint equal to a 

chosen value, the region forms a breakpoint. These breakpoints divide a byte sequence 

into chunks. A Rabin fingerprint is the polynomial representation of the data modulo a 

predetermined irreducible polynomial. Rabin Fingerprints can be computed in linear time 

with simple logic and shifting operations and can be computed in a rolling style [64]. 

This partition method avoids sensitivity to data shifting in a byte sequence by setting 

breakpoints based on packet contents rather than the positions within a byte sequence. 

Insertions and deletions therefore only affect the local breakpoints [42].  

 

In our context, a breakpoint is formed when the low-order 7 bits (for order data) or 12 

bits (for bitmap data) of a region's fingerprint equal to a chosen value. The distances 

between every two breakpoints are recorded in a sequence and this sequence is defined as 

the byte sequence's index. To prevent breakpoints from being too dense or too sparse, we 

restrict the distance between two breakpoints to be at least 64 bytes and no more than 256 

bytes (8K bytes for bitmap) by eliminating/inserting breakpoints if necessary. We use 

more low-order bits for bitmap data because a bitmap is usually much larger than a 

packet. When a packet or bitmap is saved in the cache, the index of it is also saved. Since 

each distance in an index needs two bytes and the minimal distance is 64 bytes, the 

indexes for all packets in a 64K bytes history need at most 2K bytes. 
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7.4.4. Encoding 

For screen updates using object cache as history, we use LZ algorithm to calculate an edit 

script. If a packet is encoded using a history block on the server side, it must be decoded 

using the same block on the client side.  We utilize a few bits in the packet header to 

inform the client which history block should be used to decode the current packet. The 

number of bits needed is subject to the number of cache blocks used. For the bitmap data 

we use a two-dimensional LZ algorithm (2D-LZ) [65] to calculate an edit script. This 

algorithm takes advantage of the inherent two-dimensional nature of bitmap data. The 

match between the target bitmap and the reference bitmap is a rectangular region rather 

than a linear data sequence. This gives better compression efficiency compared to LZ 

algorithm. As illustrated in Figure 7.5, in 2D-LZ algorithm, a match region can be 

specified with 4 fields: the match region’s x offset, y offset, width and height. In contrast, 

LZ algorithm needs to encode each line of the match region. 

 

 

Figure 7.5: Encoding a matched region of bitmaps: 2D-LZ versus LZ 
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7.5. Experiment Results and Analysis 

In this section we compare the performance of DSRS with MPPC in terms of data spikes, 

network traffic and interactive latency. We described how we reach the values of the 

three important parameters data spike threshold (Sth), data spike width (τ), and difference 

threshold (Dth) in Section 7.5.1. We measured the performance of DSRS with 2, 4, 8, and 

32 cache blocks and presented the results in Section 7.5.2. For the configuration of 2, 4, 

and 8 cache blocks, bitmap cache is not used. For the configuration of 32 cache blocks, 

we set aside 16 blocks to the object cache and the rest to the bitmap cache. Unlike data 

spikes and network traffic, interactive latency is related to network environment. We 

measured interactive latency in 7 emulated network environments described in Chapter 5 

Section 5.3. The computation overhead and memory usage of DSRS are discussed in 

Section 7.5.3. 

 

7.5.1. Parameter Selection 

Data spike threshold (Sth), data spike width (τ), and difference threshold (Dth) are 

important parameters in DSRS. We experimented with various values for them. 

According to our experiments, if data spike threshold is too large (e.g. 4K bytes), some 

large packets cannot constitute data spikes. These large packets could cause a long 

latency in some practical low-bandwidth situations (e.g. DSL). But if data spike threshold 

is too small (e.g. 1K bytes), many small packets will form data spikes and will be cached. 

This causes some large packets to be overwritten before they reoccur. When data spike 
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width is too short (e.g. 10ms), some continuous packets cannot together constitute a data 

spike. But when it is too long (e.g. 50ms) a lot of meaningless data spikes (having the 

same main contributors) will appear.  If the difference threshold is too large (e.g. 0.4), the 

selection process may not select a good enough history when it stops. But if the 

difference threshold is too small (e.g. 0.1), the selection process frequently does not find 

a good history. For the experiments presented in Section 7.5.2, we used the same 

empirical values for data spike threshold (2000 bytes), data spike width (20ms), and 

difference threshold (0.15).  

 

7.5.2. Performance 

Figure 7.6 shows the data spike reduction of DSRS compared to baseline MPPC (for 

details about the baseline MPPC please refer to Section 5.4). Overall, DSRS eliminates 

around 8.5% - 12.1% data spikes with 2 cache blocks, and around 26.7% - 42.2% with 32 

blocks. This indicates DSRS can efficiently reduce the data spikes in different types of 

user traces. We can see that for all three traces the reduction ratio increases with the 

number of cache blocks used. Using more cache blocks permits more data to coexist in 

the cache, improving the hit chance. Nevertheless, not every data spike can be removed 

by DSRS. Some data spikes are caused by the screen updates that do not appear before 

and thus cannot benefit from a cache scheme. Compared to image and vector traces, a 

lower percentage (20.69%) of data spikes in text trace are reduced by DSRS. Further 

analysis shows that this is because there are more long-distance redundancies in image 

and vector than in text trace. From Figure 7.6 we can also notice that with 8 or less cache 
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blocks vector trace improves faster than image trace as the number of cache blocks 

increases. But from 8 to 32 blocks, image trace improves more than vector trace. In 

image trace most of the data spikes are formed by bitmap data while in vector trace many 

data spikes are formed by a large number of drawing orders. The bitmap data can be 

better compressed with the separate bitmap cache in 32-block configuration. 
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Figure 7.6: Data spike comparison between DSRS and MPPC 

 

Figure 7.7 shows the network traffic reduction of DSRS compared to MPPC. Again we 

can observe that more cache blocks lead to better results and overall DSRS is able to 

significantly reduce network traffic for all three traces. With 32 blocks, DSRS reduces 

21.2%, 19.2% and 9.9% network traffic for image, vector and text respectively. Data 

spikes are quite data intensive. Reducing them can directly decrease network traffic. In 

contrast to data spike reduction, image trace achieves more network traffic reduction than 

vector trace in 32-block configuration. This is because the data spikes in image trace 

account for a higher proportion of the total network traffic than in vector. 
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Figure 7.7: Network traffic comparison between DSRS and MPPC 

 

To evaluate the effect of DSRS on interactive latency, we also partition the interactive 

response time into three time bins as used in Chapter 6: crisp – shorter than 150ms; 

noticeable – longer than 150ms but shorter than one second; annoying – longer than one 

second.  Table 7.1 gives the number of operations that fall into noticeable or annoying 

time bin for different traces, cache configurations and network environments. According 

to the results in Table 7.1, DSRS achieves the same interactive performance as MPPC in 

LAN. In LAN environment the time to transfer a data spike is usually small. The long 

latencies are mainly induced by long application processing time rather than network 

transfer time. For all chosen WAN network configurations, DSRS reduces the number of 

noticeable and annoying response time compared to MPPC. Like data spike reduction, 

more cache blocks produce better results. With 2 cache blocks DSRS reduces 3.4% - 

4.4%, 6.2% - 7.0%, and 6.9% - 8.0% noticeable or even annoying latencies for image, 

vector and text respectively. With 32 blocks DSRS respectively reduces 28.5% - 33.0%, 
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33.4% - 38.5%, and 25.8% - 28.6% noticeable or even annoying latencies for the three 

traces. These results show that DSRS can efficiently reduce the number of long operation 

latencies in WAN environments. With the limited bandwidth in WAN environment, a 

data spike will need a long time to be transferred to the client. The large network latency 

will exacerbate this situation as more time is needed before all the data in a data spike are 

delivered to the client. As a result, we can see in Table 7.1 that there are a larger number 

of noticeable latencies when the network bandwidth decreases and the network latency 

increases.   
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Noticeable 

150 ms - 1 sec 

Annoying 

>1 sec Trace Network 

M* D2 D4 D8 D32 M D2 D4 D8 D32 

LAN 24 24 24 24 24 6 6 6 6 6 

WAN1 189 181 171 157 128 24 24 24 22 17 

WAN2 343 328 313 292 242 37 35 34 31 26 

WAN3 521 500 476 431 349 48 44 41 36 32 

WAN4 262 251 239 222 184 31 30 27 24 17 

WAN5 395 382 367 340 289 44 40 38 35 25 

Image 

(13344 

operations) 

WAN6 694 673 646 588 482 70 65 59 51 42 

LAN 17 17 17 17 17 3 3 3 3 3 

WAN1 228 213 201 185 145 29 28 28 26 19 

WAN2 397 369 353 324 245 34 32 31 29 20 

WAN3 639 598 576 541 422 47 44 40 35 28 

WAN4 306 285 272 253 196 33 31 29 25 20 

WAN5 460 431 419 387 299 48 43 38 34 27 

Vector 

(17912 

operations) 

WAN6 881 829 802 746 592 58 51 46 40 33 

LAN 10 10 10 10 10 2 2 2 2 2 

WAN1 63 58 55 51 46 4 4 4 2 2 

WAN2 126 117 110 104 92 4 4 4 2 2 

WAN3 234 216 202 191 168 7 6 6 4 4 

WAN4 93 86 81 76 70 4 4 4 2 2 

WAN5 145 133 128 119 106 5 5 5 3 3 

Text 

(13834 

operations) 

WAN6 301 280 261 247 220 7 6 6 4 4 

* M – MPPC; D2, D4, D8, D32 – DSRS with 2, 4, 8 and 32 cache blocks. 

Table 7.1: Interactive latency comparison between DSRS and MPPC 

 

7.5.3. Computation Overhead & Memory Usage 

On the server side, the computation overhead of DSRS has two components: selecting a 

cache block as history, and saving main contributors of data spikes, including updating 
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auxiliary data structures. Both components are approximately proportional to the amount 

of data processed. Column 2 and 3 of Table 7.2 show the average cost to process 1K 

bytes of data for the three traces. As mentioned in Section 7.4, not all screen updates need 

to be processed by them. In image, vector and text, the cached main contributors 

respectively contain 29.3%, 28.2%, and 17.8% of the total screen update data. The 

packets involving history selection respectively contain 35.4%, 30.7%, and 15.5% of the 

total screen update data. Column 4 of Table 7.2 shows the compression speed of DSRS. 

Compared to the baseline compression speed given in Table 5.3, we can find that DSRS 

respectively increased 9.4%, 13.6%, and 7.0% computation time for the three traces. On 

the client side, the only difference between DSRS and MPPC is that DSRS uses the 

history block specified by the server to decompress a packet while MPPC uses the only 

history block. The decompression process is the same. So DSRS introduces little 

computation overhead on the client side. Like other compression schemes, DSRS is a 

tradeoff between computation time and network transferring time. Hence DSRS is not 

suited to be used where the scalability of the thin client server is tightly bounded by the 

computation resources. In the case that the scalability of a thin client server is mainly 

bounded by network bandwidth, using DSRS can improve its scalability. 

 

Screen update 

trace 

History 

Selection 

(µs/KB) 

Contributor 

saving 

(µs/KB) 

Compression 

Speed 

(µs/KB) 

Image 12.39 20.93 67.29 

Vector 14.12 20.14 62.91 

Word 10.08 17.60 52.13 

Table 7.2: Computation overhead of DSRS 
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In our implementation, we use hash tables as auxiliary data structures on the server side. 

For every 4 bytes written to a cache block, we create a hash table entry for it. Hence the 

number of hash entries needed is one fourth of the cache block size. Besides, each cache 

block needs 2K bytes to save the index of the data in it.  In sum, the total additional 

memory required on the server side can be calculated by 

(  )
4

cache blk size
cache blk size bytes per hash entry index size cache blk number+ × + × . If the cache block size is 64K 

bytes or less, each hash entry costs 2 bytes to save the offset. The additional memory 

required on the client side is equal to the cache size.   

 

7.6. Summary 

In thin client computing, data spikes are caused by the need of transferring a large 

amount of screen update data in a very short time. These data spikes cause long 

interactive latencies when the available bandwidth is not enough, giving users unsmooth 

usage experiences. This chapter analyzed the object-level redundancy in data spikes. 

Based on the analysis result, we proposed a hybrid cache-compression scheme, DSRS, to 

reduce the data spikes. We empirically studied the effectiveness of DSRS using a number 

of screen update traces of Microsoft Terminal Server. The experimental results show that 

DSRS can reduce 26.7% - 42.2% data spike count and 9.9% - 21.2% network traffic for 

the tested data with a cache of 2M bytes. Moreover, DSRS can reduce 25.8% - 38.5% 

noticeable long latencies for different types of applications with the same cache 

configuration. This scheme costs only a little additional computation time and the cache 

size can be negotiated between the client and server. 
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CHAPTER 8 

CONCLUSIONS 

Thin client computing has made rapid development during recent years. To make thin 

client computing more widely used, especially in low-bandwidth and high-latency 

networks, the performance of existing thin client computing systems still need to be 

improved. The purpose of this dissertation is to investigate techniques to optimize the 

performance of thin client computing. In the first part of this thesis, we revealed the 

existence of static objects in an application's GUI and proposed a static object cache 

technique to reduce the network traffic caused by redundant transferring of static objects' 

presentation data. Our experiment results show that this approach reduces both the 

baseline VNC's network traffic and interactive latency up to 60% with only a little more 

CPU usage. While this application-specific approach is efficient, it requires offline 

profiling to collect static object information of an application. Hence it's only suited for 

the enterprise environment where applications need to be shared by many users. 

 

In the second part of this thesis we proposed a long-distance redundancy reduction 

scheme (LDRS), to reduce the data redundancy occurring at long distance. LDRS is 
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based on the dictionary-based Lempel-Ziv algorithm (LZ) [13], which is widely used in 

thin client systems. LDRS extends the history buffer of LZ algorithm in a vertical and 

discrete way. This gives LDRS more flexibility and scalabilities over a flat extension.  

Our analysis shows that LDRS can achieve a compression performance similar to using a 

flat long continuous history. Experimental results further show that compared to the 

baseline LZ-based MPPC compression scheme, LDRS can reduce 15.0% - 33.5% 

network traffic and 20.6% - 27.8% noticeable long latencies for different types of 

applications with a history buffer of 2M bytes. LDRS can be used to compress any kinds 

of screen update data. It is especially efficient when the long-distance redundant data 

account for a large portion of the total screen updates. 

 

The memory and computing resource may be limited on a thin client. When the resources 

are limited, how to use them wisely will become important. Not painting every graphical 

object will cause user-perceptible latency. Painting a simple and small graphical object 

may only induce a small amount of screen update data and short user latency. But 

painting complex and large objects can generate a data spike, which is a large amount of 

screen update data produced in a short time. Delivering data spikes to thin clients may 

induce long user latencies and unsmooth user experiences in many contemporary 

networks. Motivated by this, we proposed the data spike reduction scheme (DSRS) which 

utilizes the limited memory resources to improve the user experience as far as possible.  

 

DSRS is a hybrid cache-compression scheme which reduces data spikes by caching their 

main contributors and uses the cached data as history to better compress the recurrent 
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screen updates in possible data spikes. We empirically studied the effectiveness of DSRS 

using a number of screen update traces of Microsoft Terminal Server. The experimental 

results show that DSRS can reduce 26.7% - 42.2% data spike count and 9.9% - 21.2% 

network traffic for the tested data with a cache of 2M bytes. Moreover, DSRS can reduce 

25.8% - 38.5% noticeable long latencies for different types of applications with the same 

cache configuration. These results suggest that removing data spikes in thin client screen 

update streams can reduce user interactive latency and improve user-perceptible 

performance.  Like LDRS, DSRS costs only a little additional computation time. The 

cache size can be negotiated between the client and server. DSRS is intended to reduce 

long latencies. In high-bandwidth, low-latency network environment, long latencies are 

rarely seen for thin client computing. In that situation DSRS has a little influence on 

interactive latency. Nevertheless, it will still reduce network traffic in that situation if 

data spikes are produced. 

 

During the course of carrying out this research, we also found some possible directions 

for future research. We highlight them as below. 

• The optimization techniques presented in this thesis are designed for GUI-intensive 

applications. We aim to reduce the interactive latency of GUI operations. Multimedia 

applications such as MediaPlayer are not the target applications of these optimization 

techniques as such applications need only infrequent interactions and are not sensitive 

to latency. However, such applications produce a lot of screen updates and still can 

cause unsmooth screen updates when the network bandwidth is not enough. How to 

reduce the network traffic produced by these applications in a thin client computing 
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system needs to be further investigated, especially for the thin clients constrained by 

memory and CPU power. For still or motion pictures, a little loss of accuracy is often 

tolerable. Lossy compression methods such as those presented in JPEG and MPEG 

standards are very efficient. But before such methods can be applied, two problems 

should be addressed. First, this requires the thin client to have more resources for 

decoding. Hence, simplified versions of such compression methods may be more 

practical. Another problem is that there should be a method for the server to detect 

that the current display updates are of such specific types. 

• The optimization techniques presented in this thesis are designed for existing thin 

client computing techniques which perform well in PC environments. However, the 

thin client computing techniques are more and more widely deployed in mobile 

devices such as mobile phone and PDA. For these devices with limited computation 

and memory resources, merely deploying these optimization techniques may not be 

enough. Some new display encoding methods should be proposed to fit in these new 

networking applications. A new display encoding method should take into 

consideration both the pros and cons of existing display encoding methods. How to 

achieve as low bandwidth consumption as the vector-based thin client encodings and 

at the same time achieve as low client complexity as the bitmap-based thin client 

encodings need to be further researched. 

 



Bibliography 

 119 

 

BIBLIOGRAPHY 

[1]  S.K. Card, T.P. Moran and A. Newell. The Psychology of Human-Computer 

Interaction. Hillsdale, NJ, U.S.: L. Erlbaum Associates, 1983. 

 

[2] H. Kalmus, D.B. Fry and P. Denes. "Effects of Delayed Visual Control on Writing, 

Drawing and Tracing". Language Speech, 1960, v3, pp. 96-108.  

 

[3] J.L. Guynes. "Impact of System Response Time on State Anxiety". Comm. ACM, 

1988, vol. 31, no. 3, pp. 342-347. 

 

[4] G.L. Martin and K.G. Corl. "System Response Time Effects on User Productivity". 

Behavior and Information Technology, 1986, vol. 5, no. 1, pp. 3-13. 

 

[5] R.B. Miller. "Response Time in Man-Computer Conversational Transactions". Proc. 

AFIPS Fall Joint Computer Conf., 1968, AFIPS Press, pp. 267-277. 

 

[6] A. Rushinek and S.F. Rushinek. "What Makes Users Happy?". Comm. ACM, 1986, 

vol. 29, no. 7, pp. 594-598. 



Bibliography 

 120 

[7] B. Kahneman. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. 3rd ed. Reading, MA: Addison-Wesley, 1997. 

 

[8] N. Tolia, D.G. Andersen, and M. Satyanarayanan. "Quantifying Interactive User 

Experience on Thin Clients". IEEE Computer, March 2006, vol. 39, no. 3, pp. 46-52. 

 

[9] A. Lai and J. Nieh. "Limits of Wide-Area Thin-Client Computing". Proceedings of the 

ACM SIGMETRICS 2002, Marina del Rey, CA, June 15-19, 2002. 

 

[10] A. Lai and J. Nieh. "On the Performance of Wide-Area Thin-Client Computing". 

ACM Transactions on Computer Systems (TOCS), May 2006, vol. 24, no. 2, pp. 175-

209. 

 

[11] M.O. Rabin. "Fingerprinting by Random Polynomials". Center for Research in 

Computing Technology, Harvard University, Technical Report TR-15-81, 1981. 

 

[12] J.M. Danskin. "Compressing the X Graphics Protocol". Ph.D Dissertation, 

Department of Computer Science, Princeton University, NJ, U.S., Jan. 1995. 

 

[13] J. Ziv and A. Lempel. "A universal algorithm for sequential data compression". 

IEEE Trans. Inform. Theory, May 1977, vol. IT-23, pp. 337-343. 

 



Bibliography 

 121 

[14] R.W. Scheifler. “The X Window System Protocol”. M.I.T. Laboratory for 

Computer Science, 1988. 

 

[15] R.W. Scheifler and J. Gettys. X Window System. Burlington, MA: Digital Press, 

1992. 

 

[16] R.W. Scheifler and J. Gettys. “The X Window System”. Transactions on Graphics, 

April 1986, vol. 5, no. 2, pp. 79-109, and Software Practice and Experience, October 

1991, vol. 20(S2), S2/5-S2/34. 

 

[17] J. Postel. "Transmission Control Protocol". USC/Information Sciences Institute, 

Marina del Rey, CA, Report RFC 793, Sept. 1981. 

 

[18] S. Wecker. "DNA: The Digital Network Architecture". IEEE Trans. Commun, Apr. 

1980, vol. 28, no. 4, pp. 510-526.  

 

[19] D. MOON. "Chaosnet". Artificial Intelligence Laboratory, MIT, Cambridge, MA, 

AI Memo 628, June 1981. 

 

[20] "Introduction to the X Window System Protocol". Available: 

http://www.x.org/about_x.htm. 

 



Bibliography 

 122 

[21] J. Gettys and R.W. Scheifler. "Xlib – C Language X Interface Reference", X 

Consortium Standard, X Version 11, Release 6.4. 

 

[22] D. Converse et al. “LBX - Low Bandwidth X Extension”. X Consortium, 1996.  

 

[23] J. Fulton and C.K. Kaatarjiev. “An update on low bandwidth X (LBX)”. 

Proceedings of the 7th Annual X Technical Conference, January 1993, O’Reilly and 

Associates. 

 

[24]  LBX X Consortium Algorithms. X Consortium, 1996. 

 

[25] T. Richardson, Q. Stafford-Fraser, K.R. Wood and A. Hopper. "Virtual Network 

Computing". IEEE Internet Computing, Jan./Feb. 1998, vol. 2, no.1. 

 

[26] T. Richardson and K. Wood. “The RFB Protocol”. ORL Cambridge, January 1998. 

 

[27] UltraVNC. Avaiable: http://ultravnc.sourceforge.net/. 

 

[28] ITU T.128 Protocol. Avaiable: http://www.itu.int/rec/T-REC-T.128/en. 

 

[29] ITU T.120 Protocol. Avaiable: http://www.itu.int/rec/T-REC-T.120/en. 

 



Bibliography 

 123 

[30] "Tarantella Web-Enabling Software: One World, One Network, One answer". 

SCO Inc., Tarantella White Paper, May 2001. 

 

[31] "Bandwidth Usage using Citrix ICA". Tolly Research, Technical Report, Sep. 

2001. 

 

[32] "UltraLight Client ". Canoo Engineering AG, Technology White Paper, Apr. 2004. 

Available: http://www.canoo.com/ulc. 

 

[33] "ULC Rich Thin Clients for J2EE". Canoo Engineering AG, Technology White 

Paper, June 2004. Available: http://www.canoo.com/ulc. 

 

[34] P. Bahrs and B. Feiqenbaum. "Introduction to Thin Client Framework, Part 1: The 

basic elements". IBM technical paper, Jan 2003. 

 

[35] “Citrix ICA Technology Brief”. Boca Research, Boca Raton, FL, Technical White 

Paper, 1999. 

 

[36] B.O. Christiansen, K.E. Schauser, and M. Munke. "A Novel Codec for Thin Client 

Computing". Proceedings of the Data Compression Conference (DCC), Mar. 2000, 

Snowbird, UT. 

 



Bibliography 

 124 

[37] B.O. Christiansen, K.E. Schauser, and M. Munke. "Streaming Thin Client 

Compression". Proceedings of the Data Compression Conference (DCC), Mar. 2001, 

Snowbird, UT. 

 

[38] F. Li and J. Nieh. "Optimal Linear Interpolation Coding for Server-Based 

Computing". Proceedings of the IEEE International Conference on Communications 

(ICC) 2002, New York, NY, April 28-May 2, 2002, pp. 2542-2546.  

 

[39] C. Aksoy and S. Helal. "Optimizing Thin Clients for Wireless Active-media 

Applications". WMCSA, 2000, pp. 151-160. 

 

[40] A. Helal and S. Ramamaurthy. “Optimizing Thin Clients for Wireless Computing 

via Localization of Keyboard Activities”. Proceedings of the 2001 International 

Performance, Computing, and Communication Conference, Phoenix, Arizona, April 

2001, pp. 249-252. 

 

[41] S. Ramamurthy. "Localization of Keyboard Activity during High Network 

Latency". Master Thesis, University of Florida, 2000. 

 

[42] A. Muthitacharoen, B. Chen and D. Mazieres. "A Low-bandwidth Network File 

System". ACM SIGOPS Operating Systems Review, 2001, vol. 35, pp. 174-187.  

 



Bibliography 

 125 

[43] "Microsoft Point to Point Compression (MPPC) protocol". RFC2118. Available: 

http://rfc.net/rfc2118.html. 

 

[44] W.J. Masek and M.S. Paterson. "A Faster Algorithm Computing String Editing 

Distances". Comput. System Sci., 1980, vol. 20, pp. 18-31. 

 

[45] Zlib. Available: http://www.zlib.net/. 

 

[46] MPPE/MPPC Kernel Module for Linux. Available: http://mppe-

mppc.alphacron.de/. 

 

[47] P.J. Ausbeck. "Context Models for Palette Images". Proceedings of the IEEE Data 

Compression Conference, Apr. 1998, Snowbird, UT. 

 

[48] P.J. Ausbeck. "A Streaming PWC Model". Proceeding of the IEEE Data 

Compression Conference, Apr. 1999, Snowbird, UT. 

 

[49] I.H. Witten, A. Moffat, and T.C. Bell. "Managing Gigabytes – Compressing and 

Indexing Documents and Images". 2nd
 
edition. Morgan Kaufmann Publishers, Inc., 

1999. 

 

[50] "Thin-client Networking". Tolly Research, Report TCN0102RT01E. 

 



Bibliography 

 126 

[51] K. Marsh. "Win32 Window Hierarchy and Styles". Microsoft msdn. Available: 

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwui/html/msdn_ 

styles32.asp. 

 

[52] S.J. Yang, J. Nieh, and N. Novik. "Measuring Thin-Client Performance Using 

Slow-Motion Benchmarking". Proceedings of the USENIX 2001 Annual Technical 

Conference, June 2001, Boston, MA, pp. 35-49. 

 

[53] S.J. Yang, J. Nieh, M. Selsky and N. Novik, “The Prformance of Remote Display 

Mechanisms for Thin-Client Computing”, in Proceedings of the 2002 USENIX Annual 

Technical Conference, Monterey, California, USA, June 10-15, 2002. 

 

[54] J.H. Hicinbothom and W.W. Zachary. “A Tool for Automatically Generating 

Transcripts of Human-computer Interaction”. Proceedings of the Human Factors and 

Ergonomics Society 37th Annual Meeting, 1993, vol. 2 of SPECIAL SESSIONS: 

Demonstrations, pp. 1042. 

 

[55] Virtual Network Computing. Available: http://www.realvnc.com. 

 

[56] J.W. Hunt and M.D. McIlroy. "An Algorithm for Differential File Comparison". 

Bell Laboratories, Technical Memorandum 75-1271-11, October 1975. 

 



Bibliography 

 127 

[57] K. Sadakane and H. Imai. "Improving the Speed of LZ77 Compression by 

Hashing and Suffix Sorting". IEICE Transactions on Fundamentals, 2000, E83-A(12), 

pp. 2689-2698,. 

 

[58] T. Bell and D. Kulp. "Longest-match String Searching for Ziv–Lempel 

Compression". Software—Practice and Experience, July 1993, 23(7), pp. 757–771. 

 

[59] N.J. Larsson. "Extended Application of Suffix Trees to Data Compression". 

Proceedings of the Conference on Data Compression, March 31-April 03, 1996, 

pp.190. 

 

[60] Rdesktop. Available: http://www.rdesktop.org/. 

 

[61] E.G. Coffman and P.J. Denning. Operating System Theory. Englewood Clis, NJ: 

Prentice-Hall, 1973. 

 

[62] M. Carson and D. Santay. "NIST Net – A Linux-based Network Emulation Tool". 

Computer Communication Review, 2003, vol. 33, no 3, pp. 111-126. 

 

[63] "Classic Blend Whitepaper". Applied Reasoning, Whitepaper, Oct. 2001. 

Available:  http://www.appliedreasoning.com. 

 



Bibliography 

 128 

[64] A.Z. Broder. "Some Applications of Rabin's Fingerprinting Method". Sequences 

II: Methods in Communications, Security, and Computer Science, Springer-Verlag, 

1993, pp. 143-152. 

 

[65] V. Dai, A. Zakhor. "Lossless Layout Compression for Maskless Lithography 

Systems". Proc. of the SPIE, 2000, vol. 3997, pp.467-477. 

 

[66] S. Lok, S.K. Feiner, W.M. Chiong and Y.J. Hirsch. "A Graphical User Interface 

Toolkit Approach to Thin-Client Computing". Proceedings of the Eleventh 

International World Wide Web Conference, Honolulu, Hawaii, May 7-11, 2002. 

 

[67] J. Krikke. "Thin Clients Get Second Chance in Emerging Markets". IEEE 

Pervasive Computing,  Oct./Dec. 2004, vol. 3, issue 4, pp. 6-10. 

 

[68] N. Tolia, D.G. Andersen and M. Satyanarayanan. "The Seductive Appeal of Thin 

Clients". Computer Science Department, School of Computer Science, Carnegie 

Mellon University, Pittsburgh, Technical Report CMU-CS-05-151, February, 2005. 

 

[69] J. Golick. “Network Computing in THE NEW Thin-Client Age”. Association for 

Computing Machinery, 1999, pp.30-40. 

 

[70] S. Kissler and O. Hoyt. "Using Thin Client Technology to Reduce Complexity and 

Cost". SIGUCCS 2005, pp. 138-140. 



Bibliography 

 129 

[71] T.W. Mathers and S.P. Genoway. "Windows NT Thin Client Solutions: 

Implementing Terminal Server and Citrix MetaFrame". Macmillan Technical, 

Indianapolis, Technical Paper, 1998. 

 

[72] "Microsoft Windows NT Server 4:0, Terminal Server Edition: An Architectural 

Overview".  Microsoft Corporation, Redmond, Wash., Technical White Paper, 2000. 

 

[73] "Windows 2000 Terminal Services Capacity and Scaling". Microsoft Corporation, 

Redmond, Wash., Technical White Paper, 2000.  

 

[74] "Strategic Planning Assumptions for Information Technology Management". 

Gartner Group, Summary of Cause92 Conference Presentation, Dec. 1992. 

 

[75] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. 2nd ed. Reading, MA: Addison-Wesley, 1992. 

 

[76] B.K. Schmidt, M.S. Lam and J.D. Northcutt. "The Interactive Performance of 

SLIM: A Stateless, Thin-Client Architecture". Proceedings of the 17th ACM 

Symposium on Operating System Principles (SOSP), Kiawah Island Resort, SC, Dec. 

1999, vol. 34, pp. 32-47. 

 

[77] Sun Ray 1 Enterprise Appliance. Available: http://www.sun.com/products/sunray1  



Bibliography 

 130 

[78] B.C. Cumberland, G. Carius and A. Muir. Microsoft Windows NT server 4.0, 

Terminal Server Edition: Technical Reference. Redmond, WA: Microsoft Press, Aug. 

1999. 

 

[79] "Citrix MetaFrame 1.8 Backgrounder". Citrix Systems, Citrix White Paper, June 

1998. 

 

[80] "Tarantella Web-Enabling Software: The Adaptive Internet Protocol". SCO 

Technical White Paper, Dec. 1998.  

 

[81] A. Shaw, K.R. Burgess, J.M. Pullan and P.C. Cartwright. "Method of Displaying 

an Application on a Varity of Client Devices in a Client/Server Network". US Patent 

US6104392, Aug. 2000. 

 

[82] G.F. Pinzari. "NX X Protocol Compression". Nomachine, Technical Report D-

309/3-NXP-DOC, 2003. 

 

[83] B. Pane. "Differential X Protocol Compressor". Available: http://www.vigor.nu/ 

dxpc/. 

 

[84] P.G. Howard. "Text Image Compression Using Soft Pattern Matching". The 

Computer Journal, 1997, 40(2/3). 

 



Bibliography 

 131 

[85] J.M. Gilbert and R.W. Brodersen. "A Lossless 2-D Image Compression Technique 

for Synthetic Discrete-Tone Images". Proceedings of the IEEE Data Compression 

Conference, Snowbird, UT, Apr. 1998. 

 

[86] P. Howard, F. Kossentini, B. Martins, S. Forchhammer, and W. Rucklidge. "The 

Emerging JBIG2 Standard". IEEE Transactions on Circuits and Systems for Video 

Technology, 1998, vol. 8, no. 7. 

 

[87] A. Volchkov. "Server-Based Computing Opportunities". IT Professional, 

Mar/Apr, 2002, vol. 04, no. 2, pp. 18-23. 

 

[88] J. Jing, A. Helal and A. Elmagarmid. "Client-Server Computing in Mobile 

Environments". ACM Computing Surveys, 1999. 

 

[89] M. Le and S. Seshan. "Software Architecture of the InfoPad System". Proceedings 

of the Mobidata Workshop on Mobile Wireless Information System, Nov. 1994. 

 

[90] R.A. Baratto, S. Potter, G. Su and J. Nieh. "MobiDesk: Mobile Virtual Desktop 

Computing". Proceedings of the 10th Annual International Conference on Mobile 

Computing and Networking, Sep. 2004. 

 

[91] "Microsoft Windows 2000 Server: Remote Desktop Protocol (RDP) Features and 

Performance". Microsoft Corporation, Redmond, Wash, Whitepaper, June 2000. 



Bibliography 

 132 

[92] M. Wild and S. Herges. "Total Cost of Ownership (TCO)". Ein Uberblick, 

University Mainz, 2000.  

 

[93] "Total Cost of Application Ownership". Tolly Research, Technical Report, Oct. 

2001.  

 

[94] S.J. Yang, J. Nieh, S. Krishnappa, A. Mohla and M. Sajjadpour. "Web browsing 

performance of wireless thin-client computing" Proceedings of the twelfth 

international conference on World Wide Web, 2003. 

 

[95] A.Y. Wong and M. Seltzer. "Evaluating Windows NT Terminal Server 

Performance". Proceedings of the 3
rd

 USENIX Windows NT Symposium, Seattle, WA, 

July 1999, pp. 145-154.  

 

[96] I.H. Witten, A. Moffat and T.C. Bell. Managing Gigabytes — Compressing and 

Indexing Documents and Images. 2nd edition. Morgan Kaufmann Publishers, Inc., 

1999. 

 

[97] T.A. Welch. "A Technique for High-performance Data Compression". Computer, 

June 1984, vol. 17, pp. 8-19. 

 

[98] "ICA Client Bandwidth Analysis". Citrix Consulting Services, Citrix Systems, 

Inc., Whitepaper, 2001. 



Bibliography 

 133 

[99] T.T. Tay and Y. Sun. "A Novel Performance Optimization Approach for Thin 

Client Computing". IASTED Intl. Conf. on Parallel and Distributed Computing and 

Systems 2005 (PDCS), Las Vegas, Sep. 2005. 

 

[100] Y. Sun and T.T. Tay. "Improving Interactive Experience of Thin Client 

Computing by Reducing Data Spikes". 6th IEEE International Conference on 

Computer and Information Science (ICIS), Melbourne, July 2007. 

 

[101] Y. Sun and T.T. Tay. "Reducing Long Distance Redundancy of Thin Client 

Systems". IEEE 1st international workshop on e-activities, Melbourne, July 2007. 

 

[102] R.W. Brodersen. "The Network Computer and Its Future". IEEE Solid-State 

Circuits Conference, San Francisco, Feb.1997. 

 

[103] B. Howard. "Thin Is Back". PC Magazine, Ziff Davis Media, New York, NY, Apr. 

2000, 19(7). 

 

[104] S.J. Yang and J. Nieh. "Thin Is In". PC Magazine, Ziff-Davis Media, New York, 

NY, July 2000, 19(13). 

 

[105] "A White Paper on GartnerGroup's Next Generation Total Cost of Ownership 

Methodology". Gartner Group, Gartner Consulting, Stamford, CT, White Paper, 1997. 

 



Bibliography 

 134 

[106] B. O'Donnell and R. Perry. "Thin Computing ROI: The Untold Story". IDC, White 

Paper, Nov. 2005. 

 

 

 

 


