397 research outputs found

    A Robot Operating System (ROS) based humanoid robot control

    Get PDF
    This thesis presents adapting techniques required to enhance the capability of a commercially available robot, namely, Robotis Bioloid Premium Humanoid Robot (BPHR). BeagleBone Black (BBB), the decision-making and implementing (intelligence providing) component, with multifunctional capabilities is used in this research. Robot operating System (ROS) and its libraries, as well as Python Script and its libraries have been developed and incorporated into the BBB. This fortified BBB intelligence providing component is then transplanted into the structure of the Robotis Bioloid humanoid robot, after removing the latter’s original decision-making and implementing component (controller). Thus, this study revitalizes the Bioloid humanoid robot by converting it into a humanoid robot with multiple features that can be inherited using ROS. This is a first of its kind approach wherein ROS is used as the development framework in conjunction with the main BBB controller and the software impregnated with Python libraries is used to integrate robotic functions. A full ROS computation is developed and a high level Application Programming Interface (API) usable by software utilizing ROS services is also developed. In this revised two-legged-humanoid robot, USB2Dynamixel connector is used to operate the Dynamixel AX-12A actuators through the Wi-Fi interface of the fortified BBB. An accelerometer sensor supports balancing of the robot, and updates data to the BBB periodically. An Infrared (IR) sensor is used to detect obstacles. This dynamic model is used to actuate the motors mounted on the robot leg thereby resulting in a swing-stance period of the legs for a stable forward movement of the robot. The maximum walking speed of the robot is 0.5 feet/second, beyond this limit the robot becomes unstable. The angle at which the robot leans is governed by the feedback from the accelerometer sensor, which is 20 degrees. If the robot tilts beyond a specific degree, then it would come back to its standstill position and stop further movement. When the robot moves forward, the IR sensors sense obstacles in front of the robot. If an obstacle is detected within 35 cm, then the robot stops moving further. Implementation of ROS on top of the BBB (by replacing CM530 controller with the BBB) and using feedback controls from the accelerometer and IR sensor to control the two-legged robotic movement are the novelties of this work

    Contemporary Robotics

    Get PDF
    This book book is a collection of 18 chapters written by internationally recognized experts and well-known professionals of the field. Chapters contribute to diverse facets of contemporary robotics and autonomous systems. The volume is organized in four thematic parts according to the main subjects, regarding the recent advances in the contemporary robotics. The first thematic topics of the book are devoted to the theoretical issues. This includes development of algorithms for automatic trajectory generation using redudancy resolution scheme, intelligent algorithms for robotic grasping, modelling approach for reactive mode handling of flexible manufacturing and design of an advanced controller for robot manipulators. The second part of the book deals with different aspects of robot calibration and sensing. This includes a geometric and treshold calibration of a multiple robotic line-vision system, robot-based inline 2D/3D quality monitoring using picture-giving and laser triangulation, and a study on prospective polymer composite materials for flexible tactile sensors. The third part addresses issues of mobile robots and multi-agent systems, including SLAM of mobile robots based on fusion of odometry and visual data, configuration of a localization system by a team of mobile robots, development of generic real-time motion controller for differential mobile robots, control of fuel cells of mobile robots, modelling of omni-directional wheeled-based robots, building of hunter- hybrid tracking environment, as well as design of a cooperative control in distributed population-based multi-agent approach. The fourth part presents recent approaches and results in humanoid and bioinspirative robotics. It deals with design of adaptive control of anthropomorphic biped gait, building of dynamic-based simulation for humanoid robot walking, building controller for perceptual motor control dynamics of humans and biomimetic approach to control mechatronic structure using smart materials

    Using evolutionary artificial neural networks to design hierarchical animat nervous systems.

    Get PDF
    The research presented in this thesis examines the area of control systems for robots or animats (animal-like robots). Existing systems have problems in that they require a great deal of manual design or are limited to performing jobs of a single type. For these reasons, a better solution is desired. The system studied here is an Artificial Nervous System (ANS) which is biologically inspired; it is arranged as a hierarchy of layers containing modules operating in parallel. The ANS model has been developed to be flexible, scalable, extensible and modular. The ANS can be implemented using any suitable technology, for many different environments. The implementation focused on the two lowest layers (the reflex and action layers) of the ANS, which are concerned with control and rhythmic movement. Both layers were realised as Artificial Neural Networks (ANN) which were created using Evolutionary Algorithms (EAs). The task of the reflex layer was to control the position of an actuator (such as linear actuators or D.C. motors). The action layer performed the task of Central Pattern Generators (CPG), which produce rhythmic patterns of activity. In particular, different biped and quadruped gait patterns were created. An original neural model was specifically developed for assisting in the creation of these time-based patterns. It is shown in the thesis that Artificial Reflexes and CPGs can be configured successfully using this technique. The Artificial Reflexes were better at generalising across different actuators, without changes, than traditional controllers. Gaits such as pace, trot, gallop and pronk were successfully created using the CPGs. Experiments were conducted to determine whether modularity in the networks had an impact. It has been demonstrated that the degree of modularization in the network influences its evolvability, with more modular networks evolving more efficiently

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Learning and adaptation in physical agents

    No full text
    Learning and adaptation is fundamental for autonomous agents that operate in a physical world and not a computer network. The paper is providing a general framework of skills learning within behaviour logic framework of agents that communicate, sense and act in the physical world. It is advocated that playfulness can be important in learning and to improving skills of agents
    corecore