169 research outputs found

    A study of asynchronous logical feedback networks

    Get PDF
    "April 26, 1957." Based on a thesis, M.I.T. Dept. of Electrical Engineering, May 1, 1957.Bibliography: p. 45.Stephen H. Unger

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Enhancing Logical Reasoning in Large Language Models to Facilitate Legal Applications

    Full text link
    Language serves as a vehicle for conveying thought, enabling communication among individuals. The ability to distinguish between diverse concepts, identify fairness and injustice, and comprehend a range of legal notions fundamentally relies on logical reasoning. Large Language Models (LLMs) attempt to emulate human language understanding and generation, but their competency in logical reasoning remains limited. This paper seeks to address the philosophical question: How can we effectively teach logical reasoning to LLMs while maintaining a deep understanding of the intricate relationship between language and logic? By focusing on bolstering LLMs' capabilities in logical reasoning, we aim to expand their applicability in law and other logic-intensive disciplines. To this end, we propose a Reinforcement Learning from Logical Feedback (RLLF) approach, which serves as a potential framework for refining LLMs' reasoning capacities. Through RLLF and a revised evaluation methodology, we explore new avenues for research in this domain and contribute to the development of LLMs capable of handling complex legal reasoning tasks while acknowledging the fundamental connection between language and logic.Comment: ALP@JURIX202

    The solution of the Sixth Hilbert Problem: the Ultimate Galilean Revolution

    Get PDF
    I argue for a full mathematisation of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: "physics from no physics". Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either don't have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as "clock", "rigid rod ", "force", "inertial mass" (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the Sixth Hilbert's Problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory.Comment: Opinion paper. Special issue of Philosophical Transaction A, devoted to the VI Hilbert problem, after the Workshop "Hilbert's Sixth Problem", University of Leicester, May 02-04 201

    Public Lending Right: The American Author's Viewpoint

    Get PDF
    published or submitted for publicatio

    Adaptive compression of communication signals Patent

    Get PDF
    Adaptive compression signal processor for PCM communication system
    • …
    corecore