10,664 research outputs found

    Using Fuzzy Linguistic Representations to Provide Explanatory Semantics for Data Warehouses

    Get PDF
    A data warehouse integrates large amounts of extracted and summarized data from multiple sources for direct querying and analysis. While it provides decision makers with easy access to such historical and aggregate data, the real meaning of the data has been ignored. For example, "whether a total sales amount 1,000 items indicates a good or bad sales performance" is still unclear. From the decision makers' point of view, the semantics rather than raw numbers which convey the meaning of the data is very important. In this paper, we explore the use of fuzzy technology to provide this semantics for the summarizations and aggregates developed in data warehousing systems. A three layered data warehouse semantic model, consisting of quantitative (numerical) summarization, qualitative (categorical) summarization, and quantifier summarization, is proposed for capturing and explicating the semantics of warehoused data. Based on the model, several algebraic operators are defined. We also extend the SQL language to allow for flexible queries against such enhanced data warehouses

    Data Warehouse Design and Management: Theory and Practice

    Get PDF
    The need to store data and information permanently, for their reuse in later stages, is a very relevant problem in the modern world and now affects a large number of people and economic agents. The storage and subsequent use of data can indeed be a valuable source for decision making or to increase commercial activity. The next step to data storage is the efficient and effective use of information, particularly through the Business Intelligence, at whose base is just the implementation of a Data Warehouse. In the present paper we will analyze Data Warehouses with their theoretical models, and illustrate a practical implementation in a specific case study on a pharmaceutical distribution companyData warehouse, database, data model.

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Feasibility of Warehouse Drone Adoption and Implementation

    Get PDF
    While aerial delivery drones capture headlines, the pace of adoption of drones in warehouses has shown the greatest acceleration. Warehousing constitutes 30% of the cost of logistics in the US. The rise of e-commerce, greater customer service demands of retail stores, and a shortage of skilled labor have intensified competition for efficient warehouse operations. This takes place during an era of shortening technology life cycles. This paper integrates several theoretical perspectives on technology diffusion and adoption to propose a framework to inform supply chain decision-makers on when to invest in new robotics technology

    The use of alternative data models in data warehousing environments

    Get PDF
    Data Warehouses are increasing their data volume at an accelerated rate; high disk space consumption; slow query response time and complex database administration are common problems in these environments. The lack of a proper data model and an adequate architecture specifically targeted towards these environments are the root causes of these problems. Inefficient management of stored data includes duplicate values at column level and poor management of data sparsity which derives from a low data density, and affects the final size of Data Warehouses. It has been demonstrated that the Relational Model and Relational technology are not the best techniques for managing duplicates and data sparsity. The novelty of this research is to compare some data models considering their data density and their data sparsity management to optimise Data Warehouse environments. The Binary-Relational, the Associative/Triple Store and the Transrelational models have been investigated and based on the research results a novel Alternative Data Warehouse Reference architectural configuration has been defined. For the Transrelational model, no database implementation existed. Therefore it was necessary to develop an instantiation of it’s storage mechanism, and as far as could be determined this is the first public domain instantiation available of the storage mechanism for the Transrelational model
    corecore