368 research outputs found

    Towards robust real-world historical handwriting recognition

    Get PDF
    In this thesis, we make a bridge from the past to the future by using artificial-intelligence methods for text recognition in a historical Dutch collection of the Natuurkundige Commissie that explored Indonesia (1820-1850). In spite of the successes of systems like 'ChatGPT', reading historical handwriting is still quite challenging for AI. Whereas GPT-like methods work on digital texts, historical manuscripts are only available as an extremely diverse collections of (pixel) images. Despite the great results, current DL methods are very data greedy, time consuming, heavily dependent on the human expert from the humanities for labeling and require machine-learning experts for designing the models. Ideally, the use of deep learning methods should require minimal human effort, have an algorithm observe the evolution of the training process, and avoid inefficient use of the already sparse amount of labeled data. We present several approaches towards dealing with these problems, aiming to improve the robustness of current methods and to improve the autonomy in training. We applied our novel word and line text recognition approaches on nine data sets differing in time period, language, and difficulty: three locally collected historical Latin-based data sets from Naturalis, Leiden; four public Latin-based benchmark data sets for comparability with other approaches; and two Arabic data sets. Using ensemble voting of just five neural networks, a level of accuracy was achieved which required hundreds of neural networks in earlier studies. Moreover, we increased the speed of evaluation of each training epoch without the need of labeled data

    Semantic Classification of Multidialectal Arabic Social Media

    Get PDF
    Arabic is one of the most widely used languages in the world, but due in part to its morphological and syntactic richness, resources for automated processing of Arabic are relatively rare. Arabic takes three primary forms: Classical Arabic as seen in the Qur’an and other classical texts; Modern Standard Arabic (MSA) as seen in newspapers, formal documents, and other written text intended for widespread distribution; and dialectal Arabic as used in common speech and informal communication. Social media posts are often written in informal language and may include non-standard spellings, abbreviations, emoticons, hashtags, and emojis. Dialectal Arabic is commonly used in social media. Semantic classification is the task of assigning a label to a text based on its primary semantic content. Given the increased use of dialectal Arabic on social media platforms in recent years, there is an urgent need for semantic classification of dialectal Arabic. Even compared to MSA there are few resources for automated processing of dialectal Arabic. The prior work dealing with automated processing of dialectal Arabic are limited to only one or two dialects. One of the major obstacles to doing semantic classification of multi-dialectal Arabic is the lack of a large, multi-dialectal, tagged corpus. To the best of our knowledge there are no automated processes for semantic classification of multi-dialectal Arabic social media texts. We gather a data set of more than one million tweets collected from 449 accounts located in 12 Arabic-speaking countries. We group those tweets into 21,791 documents by country, account, and month. We first construct a query to represent a particular semantic concept. Then, using Latent Semantic Analysis (LSA) we rank the documents by semantic similarity to the query. Next, we use that ranking to train a deep neural network classifier to identify documents whose text is semantically similar to the query. Experiments demonstrate an overall accuracy of 98.075% and a positive accuracy of 88.178% have been achieved by this approach to semantic classification of multi-dialectal Arabic. The source code and the data set are provided on GitHub at https://github.com/therishel/ArabLeader

    Arabic Text Classification Using Learning Vector Quantization

    Get PDF
    Text classification aims to automatically assign document in predefined category. In our research, we used a model of neural network which is called Learning Vector Quantization (LVQ) for classifying Arabic text. This model has not been addressed before in this area. The model based on Kohonen self organizing map (SOM) that is able to organize vast document collections according to textual similarities. Also, from past experiences, the model requires less training examples and much faster than other classification methods. In this research we first selected Arabic documents from different domains. Then, we selected suitable pre-processing methods such as term weighting schemes, and Arabic morphological analysis (stemming and light stemming), to prepare the data set for achieving the classification by using the selected algorithm. After that, we compared the results obtained from different LVQ improvement version (LVQ2.1, LVQ3, OLVQ1 and OLVQ3). Finally, we compared our work with other most known classification algorithms; decision tree (DT), K Nearest Neighbors (KNN) and Naïve Bayes. The results presented that the LVQ's algorithms especially LVQ2.1 algorithm achieved high accuracy and less time rather than others classification algorithms and other neural networks algorithms

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Analyse d’images de documents patrimoniaux : une approche structurelle à base de texture

    Get PDF
    Over the last few years, there has been tremendous growth in digitizing collections of cultural heritage documents. Thus, many challenges and open issues have been raised, such as information retrieval in digital libraries or analyzing page content of historical books. Recently, an important need has emerged which consists in designing a computer-aided characterization and categorization tool, able to index or group historical digitized book pages according to several criteria, mainly the layout structure and/or typographic/graphical characteristics of the historical document image content. Thus, the work conducted in this thesis presents an automatic approach for characterization and categorization of historical book pages. The proposed approach is applicable to a large variety of ancient books. In addition, it does not assume a priori knowledge regarding document image layout and content. It is based on the use of texture and graph algorithms to provide a rich and holistic description of the layout and content of the analyzed book pages to characterize and categorize historical book pages. The categorization is based on the characterization of the digitized page content by texture, shape, geometric and topological descriptors. This characterization is represented by a structural signature. More precisely, the signature-based characterization approach consists of two main stages. The first stage is extracting homogeneous regions. Then, the second one is proposing a graph-based page signature which is based on the extracted homogeneous regions, reflecting its layout and content. Afterwards, by comparing the different obtained graph-based signatures using a graph-matching paradigm, the similarities of digitized historical book page layout and/or content can be deduced. Subsequently, book pages with similar layout and/or content can be categorized and grouped, and a table of contents/summary of the analyzed digitized historical book can be provided automatically. As a consequence, numerous signature-based applications (e.g. information retrieval in digital libraries according to several criteria, page categorization) can be implemented for managing effectively a corpus or collections of books. To illustrate the effectiveness of the proposed page signature, a detailed experimental evaluation has been conducted in this work for assessing two possible categorization applications, unsupervised page classification and page stream segmentation. In addition, the different steps of the proposed approach have been evaluated on a large variety of historical document images.Les récents progrès dans la numérisation des collections de documents patrimoniaux ont ravivé de nouveaux défis afin de garantir une conservation durable et de fournir un accès plus large aux documents anciens. En parallèle de la recherche d'information dans les bibliothèques numériques ou l'analyse du contenu des pages numérisées dans les ouvrages anciens, la caractérisation et la catégorisation des pages d'ouvrages anciens a connu récemment un regain d'intérêt. Les efforts se concentrent autant sur le développement d'outils rapides et automatiques de caractérisation et catégorisation des pages d'ouvrages anciens, capables de classer les pages d'un ouvrage numérisé en fonction de plusieurs critères, notamment la structure des mises en page et/ou les caractéristiques typographiques/graphiques du contenu de ces pages. Ainsi, dans le cadre de cette thèse, nous proposons une approche permettant la caractérisation et la catégorisation automatiques des pages d'un ouvrage ancien. L'approche proposée se veut indépendante de la structure et du contenu de l'ouvrage analysé. Le principal avantage de ce travail réside dans le fait que l'approche s'affranchit des connaissances préalables, que ce soit concernant le contenu du document ou sa structure. Elle est basée sur une analyse des descripteurs de texture et une représentation structurelle en graphe afin de fournir une description riche permettant une catégorisation à partir du contenu graphique (capturé par la texture) et des mises en page (représentées par des graphes). En effet, cette catégorisation s'appuie sur la caractérisation du contenu de la page numérisée à l'aide d'une analyse des descripteurs de texture, de forme, géométriques et topologiques. Cette caractérisation est définie à l'aide d'une représentation structurelle. Dans le détail, l'approche de catégorisation se décompose en deux étapes principales successives. La première consiste à extraire des régions homogènes. La seconde vise à proposer une signature structurelle à base de texture, sous la forme d'un graphe, construite à partir des régions homogènes extraites et reflétant la structure de la page analysée. Cette signature assure la mise en œuvre de nombreuses applications pour gérer efficacement un corpus ou des collections de livres patrimoniaux (par exemple, la recherche d'information dans les bibliothèques numériques en fonction de plusieurs critères, ou la catégorisation des pages d'un même ouvrage). En comparant les différentes signatures structurelles par le biais de la distance d'édition entre graphes, les similitudes entre les pages d'un même ouvrage en termes de leurs mises en page et/ou contenus peuvent être déduites. Ainsi de suite, les pages ayant des mises en page et/ou contenus similaires peuvent être catégorisées, et un résumé/une table des matières de l'ouvrage analysé peut être alors généré automatiquement. Pour illustrer l'efficacité de la signature proposée, une étude expérimentale détaillée a été menée dans ce travail pour évaluer deux applications possibles de catégorisation de pages d'un même ouvrage, la classification non supervisée de pages et la segmentation de flux de pages d'un même ouvrage. En outre, les différentes étapes de l'approche proposée ont donné lieu à des évaluations par le biais d'expérimentations menées sur un large corpus de documents patrimoniaux

    Advances in Automatic Keyphrase Extraction

    Get PDF
    The main purpose of this thesis is to analyze and propose new improvements in the field of Automatic Keyphrase Extraction, i.e., the field of automatically detecting the key concepts in a document. We will discuss, in particular, supervised machine learning algorithms for keyphrase extraction, by first identifying their shortcomings and then proposing new techniques which exploit contextual information to overcome them. Keyphrase extraction requires that the key concepts, or \emph{keyphrases}, appear verbatim in the body of the document. We will identify the fact that current algorithms do not use contextual information when detecting keyphrases as one of the main shortcomings of supervised keyphrase extraction. Instead, statistical and positional cues, like the frequency of the candidate keyphrase or its first appearance in the document, are mainly used to determine if a phrase appearing in a document is a keyphrase or not. For this reason, we will prove that a supervised keyphrase extraction algorithm, by using only statistical and positional features, is actually able to extract good keyphrases from documents written in languages that it has never seen. The algorithm will be trained over a common dataset for the English language, a purpose-collected dataset for the Arabic language, and evaluated on the Italian, Romanian and Portuguese languages as well. This result is then used as a starting point to develop new algorithms that use contextual information to increase the performance in automatic keyphrase extraction. The first algorithm that we present uses new linguistics features based on anaphora resolution, which is a field of natural language processing that exploits the relations between elements of the discourse as, e.g., pronouns. We evaluate several supervised AKE pipelines based on these features on the well-known SEMEVAL 2010 dataset, and we show that the performance increases when we add such features to a model that employs statistical and positional knowledge only. Finally, we investigate the possibilities offered by the field of Deep Learning, by proposing six different deep neural networks that perform automatic keyphrase extraction. Such networks are based on bidirectional long-short term memory networks, or on convolutional neural networks, or on a combination of both of them, and on a neural language model which creates a vector representation of each word of the document. These networks are able to learn new features using the the whole document when extracting keyphrases, and they have the advantage of not needing a corpus after being trained to extract keyphrases from new documents. We show that with deep learning based architectures we are able to outperform several other keyphrase extraction algorithms, both supervised and not supervised, used in literature and that the best performances are obtained when we build an additional neural representation of the input document and we append it to the neural language model. Both the anaphora-based and the deep-learning based approaches show that using contextual information, the performance in supervised algorithms for automatic keyphrase extraction improves. In fact, in the methods presented in this thesis, the algorithms which obtained the best performance are the ones receiving more contextual information, both about the relations of the potential keyphrase with other parts of the document, as in the anaphora based approach, and in the shape of a neural representation of the input document, as in the deep learning approach. In contrast, the approach of using statistical and positional knowledge only allows the building of language agnostic keyphrase extraction algorithms, at the cost of decreased precision and recall
    • …
    corecore