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A B S T R A C T   

In recent years, the amount of digital text contents or documents in the Bengali language has increased enor-
mously on online platforms due to the effortless access of the Internet via electronic gadgets. As a result, an 
enormous amount of unstructured data is created that demands much time and effort to organize, search or 
manipulate. To manage such a massive number of documents effectively, an intelligent text document classifi-
cation system is proposed in this paper. Intelligent classification of text document in a resource-constrained 
language (like Bengali) is challenging due to unavailability of linguistic resources, intelligent NLP tools, and 
larger text corpora. Moreover, Bengali texts are available in two morphological variants (i.e., Sadhu-bhasha and 
Cholito-bhasha) making the classification task more complicated. The proposed intelligent text classification 
model comprises GloVe embedding and Very Deep Convolution Neural Network (VDCNN) classifier. Due to the 
unavailability of standard corpus, this work develops a large Embedding Corpus (EC) containing 969,000 unla-
belled texts and Bengali Text Classification Corpus (BDTC) containing 156,207 labelled documents arranged into 
13 categories. Moreover, this work proposes the Embedding Parameters Identification (EPI) Algorithm, which se-
lects the best embedding parameters for low-resource languages (including Bengali). Evaluation of 165 
embedding models with intrinsic evaluators (semantic & syntactic similarity measures) shows that the GloVe 
model is more suitable (regarding Spearman & Pearson correlation) than other embeddings (Word2Vec, Fast-
Text, m-BERT) in Bengali text. Experimental results on the test dataset confirm that the proposed GloVe +
VDCNN model outperformed (achieving the highest 96.96% accuracy) the other classification models and 
existing methods to perform the Bengali text classification task.   

1. Introduction 

Automatic document classification is an emerging research area in 
the field of Natural Language Processing (NLP), where each document 
needs to be assigned to a predefined class or category. In recent years, 
categorization of Bengali text documents is treated as a significant 
research issue in the domain of Bengali Language Processing (BLP). 
Bengali is the 7th most widely spoken language in the world (Hossain, 
Hoque, & Sarker, 2021). Two hundred forty-five million people in 
Bangladesh and some parts of India speak in this language (Hossain & 
Hoque, 2021). In recent years, the digital Bengali text contents have 

been growing readily on the Internet, news portals, blogs, websites, and 
so on due to the effortless usage of electronic gadgets. These content is 
creating an enormous amount of unstructured data. Therefore, it is a 
challenging task to organize, search or manipulate such a massive 
amount of unstructured data by human experts manually. This manual 
process consumes an immense amount of time incurring the cost of 
money. An intelligent document categorization system can handle a 
massive amount of Bengali text data in which documents can be sorted, 
manipulated and organized expeditiously and competently. 

Categorizing Bengali text documents is one of the most challenging 
tasks due to the constitution of the language itself having well-off 
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dialects and complex morphological structure. It also articulates the 
huge variations of subject-verb and person-tense-aspect agreements. 
Unavailability of standard Bengali text corpus with rich morphological 
variants (i.e., Sadhu-bhasha and Cholito-bhasha) and scarcity of re-
sources are antecedents making the Bengali text categorization task 
more complicated. Moreover, there are no efficient tools available that 
have been developed till today for Bengali language processing (BLP). 
Therefore, there is an insistence of developing intelligent tools for BLP so 
that professionals, as well as the common people, can use these tools to 
their needs. However, developing an intelligent system that can catego-
rize Bengali text documents in distinct categories is also an important 
research issue leading to the utmost use in real-world applications. An 
intelligent text categorization system can be used in information 
retrieval, text mining, and text analytic (Hashmi & Bansal, 2019; Akhter 
et al., 2020). The framework and techniques developed under the pro-
posed research can be used as the baseline for developing many intel-
ligent systems such as news portal, medical services or hospital 
management, library/archival management, vertical search engine, and 
toxicity or hostility detector, and semantic analysis tools where Bengali 
text processing is major concerned. The security agencies can use the 
proposed framework to discover aggressive or hostile web content or 
rumours in social media. Moreover, the proposed framework can be 
used by the hospital management to categorize patient’s reports ac-
cording to their diagnosis, an e-library to arrange books according to 
subject categories and news agencies to classify the news based on text 
contents. The considerable barriers of performing research on document 
categorization in BLP are due to the shortage of linguistic resources in 
digital form and inadequate corpora (Phani, Lahiri, & Biswas, 2017). 
Significant research has been carried out on Bengali document catego-
rization (Hossain & Hoque, 2021; Kabir, Siddique, Kotwal, & Huda, 
2015; Ahmad & Amin, 2016; Hossain & Hoque, 2019; Dhar et al., 2020). 
Most of these research used traditional machine learning techniques 
which do not provide reliable results on large datasets and can not be 
applied a higher number of classes. 

The key difficulty of machine learning techniques is to select useful 
features from high dimensional feature spaces (Deng, Li, Weng, & 
Zhang, 2019). Moreover, a common Algorithm for selecting appropriate 
features is not available that can be applied to all kinds of classification 
task (Zia, Akhter, & Abbas, 2015). Very deep Convolutional Neural 
Network (CNN) technique has been used extensively to solve complex 
problems in many domains, including text document categorization and 
NLP. Surprisingly, the potential of the very deep learning techniques has 
not been investigated for Bengali document classification (Dhar et al., 
2020). In comparison with other machine learning-based techniques, 
very deep learning techniques are more competent to discover complex 
features inherently, when the feature dimension is high. In addition to 
that, the very deep learning is faster than the other machine learning 
techniques due to its usage of Graphics Processing Units (GPUs) (Khan & 
Adnan, 2018; Khan, Jan, & Farman, 2019). 

Bengali is a low-resource language, and no well-performed feature 
extractor and classification frameworks are available in Bengali. More-
over, there are huge structural variations between Bengali and English 
languages (or other high-resource languages). As a result, the embed-
ding/classification models developed for one language cannot be 
directly applicable to another language due to their linguistic di-
vergences. The hyperparameters of embedding and classification models 
must be tuned afresh based on the language itself before performing the 
classification task. The hyperparameters of embedding and classification 
models must be newly tuned based on the language itself before per-
forming the classification task. Moreover, Bengali texts usually available 
in two morphological variants, such as Sadhu-bhasha and Cholito- 
bhasha. Thus, an intelligent system should also consider these 
morphological variations while performing text classification task in 
Bengali. 

In order to achieve a reasonable accuracy, selecting the optimum 
hyperparameter values of the embedding and classification models is 

critical for the associated corpus. This is where the challenges lie in this 
research requiring us to carry out the embedding parameters identifi-
cation (EPI) and optimization of the parameters. An algorithm has been 
developed (Algorithm 3), which generates a set of optimized embedding 
parameters from the embedding corpus. This algorithm is applicable to 
optimization of embedding parameters (such as embedding dimension, 
contextual window and the minimum number of the frequent word) in 
any low-resource language. Devising an objective function is the key to 
any embedding model hyperparameter optimization, In the EPI algo-
rithm, we introduce a new intrinsic evaluation function that evaluates 
the semantic and syntactic accuracy of the embedding model. We 
evaluated 165 embedding models based on these optimized parameters 
using the intrinsic evaluation function. None of the work hitherto per-
formed embedding model evaluation and text classification in Bengali 
concerning morphological variations to the best of our knowledge. 

The major contributions of this research are:  

• Develop two larger corpora: word embedding corpus (EC) and text 
classification corpus (BDTC) to perform Bengali text classification 
task considering two forms of Bengali text (i.e., Sadhu-bhasha and 
Cholito-bhasha). The EC containing 969,000 text documents (with 
19,517,390 unique words) whereas BDTCC contained 156,207 text 
documents into 13 categories (Section 4).  

• Develop an embedding parameters identification (EPI) Algorithm, 
which selects the best embedding parameters for low resource lan-
guages (including Bengali) concerning Word2Vec, GloVe and Fast-
Text embedding techniques. (Algorithms 3 & 4). This research also 
introduces a new objective function (e.g., intrinsic evaluation) in EPI 
Algorithm that aided to optimize the embedding parameters.  

• Evaluate 165 embedding models using intrinsic evaluators (i.e., 
syntactic similarity and semantic similarity measures) to select the 
best embedding model in Bengali (Section 8.1). Among 165, select 
12 best performing models to perform the downstream task (i.e., text 
classification). To the best of our knowledge, none of the previous 
work performed embedding model evaluation intrinsically in Bengali 
for text classification.  

• Investigate the performance of 109 classification models developed 
by combining 12 best-performed embedding models and variants of 
four classification techniques (ML, CNN, sequential and BERT). For 
clarity, we presented 26 best classifiers performance (Section 8.3 & 
Table 8).  

• Investigate the performance of the proposed GloVe + VDCNN based 
model for the Bengali text classification task by comparing its per-
formance with the existing techniques (Sections 8.3.1 and 8.5). 
Perform a detailed error analysis of the proposed text classifier 
(Section 8.7). 

The rest of the paper is organized as follows: Section 2 presents the 
related work. Section 3 introduces the problem statement, whereas 
Section 4 describes the development of the Bengali text document 
classification corpus. A detailed explanation of the various methodology 
used in work is described in Section 5. Section 6provides a detailed 
development of the proposed VDCNN-based Bengali text categorization 
with its major constituents. Section 7 highlights the experiment with a 
comprehensive explanation of hyperparameters optimization and eval-
uation measures. The performance analysis of the developed models 
concerning embedding model evaluation and text classification are re-
ported in Section 8. Section 9 presents the analysis of the results, 
including the future implications of the work. Finally, the paper con-
cludes with a comprehensive summary in Section 10. 

2. Related work 

Text document categorization is a long-studied research issue for 
well-resourced languages like Arabic, English and most European lan-
guages. Conneau et al. (Conneau, Schwenk, Barrault, & Lecun, 2017) 
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developed a very deep convolutional networks (VDCN) based text 
categorization system, which achieved 98.71% accuracy on the DBPedia 
ontology classification data set. Their system used 560 K data for 
training and 70K for testing in 14 categories. Liebeskind, Kotlerman, and 
Dagan (2015) developed an unsupervised multi-tag text categorization 
system for entertainment industries. This system used the unsupervised 
technique to categorize the movie titles on Internet movie databases in 
100 categories but failed to achieve higher accuracy due to low feature 
extraction and classification techniques. 

Johnson and Zhang (2017) have designed a Deep Pyramid Con-
volutional Neural Networks (DPCNNs) system for English text catego-
rization. They have achieved 97.36% accuracy on Yelp dataset with 
560K training documents, 38K testing documents and 2 document 
classes. The accuracy is decreased with increasing classes in DPCNNs 
system and hence not suitable for a higher number of document classes. 
Character-level feature extraction and convolution network-based clas-
sifier model have evolved since the first application (Zhang, Zhang, & 
LeCun, 2015). This work achieved 98.69% test accuracy on DBPedia 
ontology classification dataset with 14 distinct categories. However, 
memory exhaustion is the major shortcoming of the system despite the 
use of two costly Tesla K40 GPUs. (Lee & Dernoncourt, 2016) introduced 
a short text classification system based on recurrent and convolution 
neural networks. In this method classifier model is trained with 78 K, 
tested with 15 K and validated with 16 K text documents. This work used 
the Meeting Recorder Dialog Act (MRDA) Corpus (Shriberg, Dhillon, 
Bhagat, Ang, & Carvey, 2004) with 5 categories and achieved an accu-
racy of 84.60%. The recurrent networks demanded huge time during 
training and testing. 

Xu, Feng, Huang, and Zhao (2015) proposed a semantic relation 
classification technique for document classification in which a feature 
extractor is developed by negative sampling with global vector repre-
sentation, and the classifier model has emerged by CNNs. This system is 
trained with 8, 000 text data and tested with 2, 717 labelled data. This 
technique achieved 85.60% accuracy for 10 semantic relations. Tang, 
Qin, and Liu (2015) developed a sentiment analysis system in which 
feature extraction was done by using Word2Vec Algorithm (Mikolov, 
Chen, Corrado, & Dean, 2013). The sentiment classification is developed 
by using Gated Recurrent Neural Network (GRNN). This system ach-
ieved 67.10% accuracy on Yelp2014 datasets which consist of 1,125,
457 training texts in 5 categories. Saad and Yang (2019) developed a 
text-based binary sentiment (i.e., positive and negative) classification 
system using a decision tree Algorithm which achieved 91.81% accu-
racy. This system is trained using 7, 000 Twitter texts (positive/negative 
sentiments) and tested using 3,000 Twitter labelled texts. In these 
sentiment classification systems, the overall classification accuracy 
decreased with the increasing sentiment/document classes. 

Kowsari et al. (2017) developed a Hierarchical Deep Learning (HDL) 
based document which extracted semantic features using Global Vectors 
for Word Representation (GloVe) (Pennington, Socher, & Manning, 
2014) Algorithm. The classifier model was trained using 44,085 text 
documents and tested with 20,603 text documents for 7 categories. 
Overall, 90.93% accuracy was achieved. However, a combined 
approach of HDL and long short-term memory (LSTM) (Hochreiter & 
Schmidhuber, 1997) with generalized regression neural network 
(GRNN) caused more training and testing time. Fuzzy clustering-based 
document categorization system is proposed by Mei, Wang, Chen, and 
Miao (2017). This technique did not determine the number of clusters 
accurately, which is required for unknown data sets. Xiao, Liu, Yin, and 
Hao (2017) developed an unsupervised clustering based system for 
adaptive document categorization. In this system, approximately 20,
000 newsgroups of 20 different news from 20 Newsgroup data sets are 
used and accuracy of 74.50% was achieved. 

Nikolentzos, Meladianos, Rousseau, Stavrakas, and Vazirgiannis 
(2017) developed a document classification system where Word2Vec 
Algorithm is used for feature extraction, and SVM is used for classifi-
cation (Hearst, 1998). Their system was trained using TREC news data 

set (Li & Roth, 2002) consisting of 5, 452 train and 500 test documents 
for six categories. This system achieved 98.20% accuracy. He, Wang, 
Liu, Feng, and Wu (2019) proposed document classification system 
where a document is represented by an embedding model. Recurrent 
Attention Learning (RAL) with CNNs Algorithm is used for a classifica-
tion task. This system is trained using 33,388 text documents for 11 
categories and achieved about 94.18% accuracy. Bahassine, Madani, 
and Mohamed (2017) developed a stemmer based feature selection and 
decision tree based classifier for Arabic text classification. This classifier 
was trained using 3, 382 text documents for 6 categories, tested using 1,
688 text documents and achieved 79.00% accuracy. The decision tree 
based classifier is unable to be trained with high dimensional data set. 
Alhawarat and Aseeri (2020) designed an Arabic text categorization 
system which used TF-IDF for feature extraction and CNNs for the 
classifier tasks. Their system used 15 Arabic open-access news data set 
and achieved 98.89% accuracy on Abuaiadah (V2) data set (Abuaiadah, 
Sana, & Abusalah, 2014) for nine categories. The TF-IDF based features 
extractor is not capable of extracting semantic features leading to higher 
misclassification rate. 

Bengali is a low resource language due to unavailability of linguistic 
resources and inadequate corpora (Rahman & Dey, 2018; Phani et al., 
2017). The research on automatic text document classification is in the 
preliminary stage until now in the realm of Bengali languages. Hossain 
and Hoque (2021) proposed a Bengali document categorization system 
in which the DCRNNs technique is used to extract features. The DCRNNs 
classifier is trained using 120,000 text documents and tested by using 
36, 207 text documents for twelve categories. Kabir et al. (2015) pro-
posed a TF-IDF feature extraction and gradient descent classifier for 
Bengali document classification. They trained the classifier using 5,448 
documents and tested using 3, 679 news text documents for 9 categories. 
This system achieved 93.78% categorization accuracy. Another work 
also used stochastic gradient descent (SGD) based classifier for Bengali 
text categorization (Hossain & Hoque, 2018). This system obtained 
93.33% test accuracy for 9 distinct categories with 10,000 training and 
4, 651 testing document samples. Both SGC based techniques worked 
with a limited number of texts categories and test samples. Moreover, 
the SGD based classifiers do not work well for large feature dimensions 
(Ruder, 2016). 

Recent work used, Word2Vec based, feature extraction technique, a 
combination of K-Means clustering with SVM, for classification of 
Bengali texts (Ahmad & Amin, 2016). This system used 19, 705 online 
news text documents for 7 text categories. The feature extraction tech-
nique can extract semantic features with a large number of words, but 
the K-Means Algorithm has failed to handle the outlier data. Hossain and 
Hoque (2019) introduced a Bengali document categorization system 
based on Word2Vec and Deep CNNs. This system used 86, 199 training 
news text documents for 12 types of document categories. The system 
obtained, on average 94.96% document classification accuracy on 10,
707 test samples. However, this system is unable to carry out the sen-
tence level semantic/syntactic meanings. Dhar et al. (2020) proposed a 
graph-based feature extraction technique along with LSTM RNN based 
classifier for Bengali text categorization. This system considered only 9 
document classes and achieved 99.21% classification accuracy on 
14,371 text documents. In this system, more time is required to extracts 
features and failed to extracts semantic/syntactic features. 

Most previous studies used SVM (Kabir et al., 2015), SGD (Hossain & 
Hoque, 2018), KNN (Mucherino et al., 2009), and Deep CNN (Hossain & 
Hoque, 2019) techniques to perform the text classification task in 
Bengali. These studies dealt with a limited number of text categories and 
classification corpora. Moreover, none of the work performed any 
embedding model evaluation so far in Bengali. Thus, it is unknown how 
the embedding model’s parameters affected the Bengali text classifica-
tion performance. This research introduces an EPI Algorithm for 
selecting the embedding model’s parameters to overcome the short-
comings of previous statistical feature extraction-based methods con-
cerning resource-constrained languages. The proposed GloVe + VDCNN 
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based Bengali text classification technique also overcome the weak-
nesses of existing text classification methods by improving the accuracy 
with a larger corpus and a more significant number of classes. 

3. Problem statement 

The proposed framework’s main purpose is to develop a text docu-
ment categorization (TDC) system that can categorize a text document 
into an expected class or category. For this purpose, it contains a clas-
sification corpus CC and CC ∈ {TDs ∪ TDu}, TDs denotes the seen 
corpus whereas TDs ∈ {(tds

i , cl
s
j )}

n,CL
i,j=0. The (tds

i , cl
s
j ) represents ith sample 

seen text document and label. As well as TDu indicates the unseen corpus 
and TDu ∈ ({tdu

i , cl
u
j )}

m,CL
i,j=0

. The (tdu
i , cl

u
j ) indicates ith example unseen text 

document and label. Where, n,m represent the total number of training 
and testing document in CC and CL denotes the total number of class in 
CC . Now, the goal is to train a high-quality document classification 
model (Z ) using the seen corpus TDs and assigning category label cluj ∈
CL to each text document tdu

i ∈ TDu. Before train the Bengali text clas-
sification model, tds

i convert to a (Vd × F) feature representation using an 
embedding model. Vd indicated the number of words and F denotes the 
feature dimension. The embedding techniques take the embedding 
corpus EC and EC = {eti}

D
i=0, where D denotes the total number of 

embedding corpus and output is an embedding model. For example, the 
ith unseen text document tdu

i is converted to (Vd × F) features repre-
sentation and corresponding classification label is predicted using Eq. 
(1). 

clu
i = maxc=N

c=1 (Z c[Vd × F]i) (1)  

where, {Z 1,Z 2,Z 3, …, Z N} denotes the classification models sets and 
clui represents the ith unseen predicted label and N indicates the total 
number of classification models in the proposed system. The max is a 
symbolic function that takes the input as an unknown features repre-
sentation (Vd × F) and maximum expected value calculated using Eqs. 
(9)–(10). The max function was operated through the classifier models 
and obtained a maximum accuracy with a category. 

A deep learning-based text classification system consists of two key 
components: embedding and classification. The embedding technique 
generates an embedding model using unlabelled texts, whereas the 
classification technique produces a classification model based on 
labelled texts. Many state-of-the-art embedding model generation 
techniques (such as GloVe, FastText, Word2Vec, BERT) and embedding 
models have available for English Language (Pennington et al., 2014; 
Bojanowski, Grave, Joulin, & Mikolov, 2017; Mikolov et al., 2013; 
Devlin, Chang, Lee, & Toutanova, 2019). These models evolved based on 
optimized hyperparameters that are worked for the English language 
only. However, the model developed for one language can not be helpful 
for another language, i.e., English language’s models are not working 
efficiently for low resource language like Bengali, Italian and others 
(Hossain & Hoque, 2020; Gambino & Pirrone, 2019). As a result, 
available embedding techniques in other languages can not be appro-
priate for the Bengali texts. In recent time, the multilingual embedding 
model (Grave, Bojanowski, Gupta, Joulin, & Mikolov, 2018; Devlin 
et al., 2019), has investigated for the resource-constrained language (e. 
g., Bengali), but the performance of their downstream tasks are not 
significant due to the shortage of vocabularies, lack of handling 
morphological variations (e.g., Sadhu-bhasha and Cholito-bhasha) and 
unavailability of optimized embedding hyperparameters. In addition to 
that, most classification techniques devised and tested for high-resource 
languages (i.e., English) and the model’s hyperparameters profoundly 
optimized for their own benchmarks datasets. The classifier model and 
corresponding hyperparameters can not be replicated to develop a 
model in a resource-constrained language to perform downstream tasks 
due to inferior performance (Grießhaber, Vu, & Maucher, 2020). Bengali 

is considered one of the most resource-scarce languages globally due to 
its lack of large corpora or manually crafted linguistic resources 
adequate for developing NLP applications (Hossain & Hoque, 2019). 
Now, to overcome the previous problems, this research introduces a 
VDCNN classifier model based on developed corpus and developing a 
new technique to identifying optimizing parameters for embedding 
model generation techniques (Algorithms 3 & 4). 

4. Bengali text corpora 

The big challenge to research in Bengali language processing is the 
unavailability of the standard corpus. Thus, to develop a Bengali text 
corpus. This work adopted the same approach as described by Dash and 
Ramamoorthy (2019) to develop the corpus, which consists of five main 
phases: data crawling, preprocessing, crowd-sourcing or manual label-
ling, verification and Kappa measure. The details of the corpus devel-
opment process illustrated in the following subsections. 

4.1. Data crawling 

There is no well known linguistic resource repository in Bengali. 
Thus, data is accumulated from different web source using a Python 
crawler.5. Initially, we have selected an authentic Bengali data source 
such as online newspapers, blogs and e-book has been selected. The 
crawler crawled text data from the selected sources regarding dates, 
subjects, popularity, geographical areas and trends. Total of 1,020,000 
Bengali text files have been collected, and each of the text is encoded as 
UTF-8 and stored in ∗.txt format. The crawling system extracted the data 
about ten years duration (January 2010 to December 2019). 

4.2. Data preprocessing 

The corpus contained noisy data due to the freestyle of writing on the 
web. Thus, a program is developed to remove noisy or ill-formatted data 
from the corpus. Thus, each collected text file requires the following 
preprocessing:  

• The foreign alphabets (e.g., non-Bengali) and digits are replaced with 
a NULL value.  

• All the regular expression and symbols are eliminated by a single 
white space.  

• A whitespace substitutes a HTML tags, hashtags, URLs and 
punctuation.  

• Multiple new lines are eliminated by a single newline.  
• All the duplicate texts are removed. 

If a text contains less than three words and its size is greater than 100 
KB, then this text is eliminated from the corpus. After preprocessing, 
there are 969,000 texts in the clean corpus and the preprocessing task is 
reduced to 51,000 texts (e.g., 5.00%). Therefore, 969,000 texts have 
been considered as embedding corpus (EC). Table 1 illustrates the key 
characteristics of the developed Bengali text corpus which consists of 
200,081,093 words in total and 19,517,390 unique words. 

4.3. Crowd-sourcing/manual labelling 

A total of 969,000 preprocess texts are available for human anno-
tation. However, due to the shortage of annotators, only 35.00%, e.g., 
339,150 texts are randomly selected for the crowd-sourcing purpose. 
The crowd-sourcing task assigns the class label in the hand-crafted text 
data and is based on maximum voting. Seven Computer Science and 
Engineering graduate students worked to annotate the data by hand. All 
of them are Bengali native speakers, and the data are stored in .txt file 

5 https://github.com/mrhossain/BD-Scraper-Cleaner 
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format into one of the 13 predefined categories. These categories are 
sports, lifestyle, art, science & technology, education, environment, 
entertainment, economics, opinion, health, politics, crime, and accident. 
If a text is not semantically similar to the predefined categories, then it is 
discarded from the corpus. A total of 175,000 hand-crafted labelled 
texts acquired in the crowd-sourcing process in 13 categories. There are 
164,150 texts (e.g., 48.40%) that are discarded from the crowd-sourcing 
step due to a shortage of predefined semantic tag similarities. The 
overall data labelling procedure is summarized in Algorithms 1 and 2. 
These Algorithms take the unlabelled inputs corpus and return a labelled 
corpus.  

Algorithmic1 Automatic text label determination. 

1: Input : vector < string > unlabelText  
2: Output : vector < string > BDTC  
3: total←unlabelText.size()
4: annotators←7  
5: vector < int > crowdSourcingLabel  
6: vector < string > crowdSourcingText  
7: procedure CrowdSourcingannotators,unlabelText  
8: for i←1→total do  
9: tempLabel←Voting(annotators,unlabelText[i]))

10: if tempLabel > 0 then  
11: crowdSourcingLabel.push back(tempLabel)
12: crowdSourcingText.push back(unlabelText[i])
13: end if 
14: end for 
15: end procedure 
16: experts←10  
17: procedure Verificationexperts, crowdSourcingText  
18: for i←1→crowdSourcingText.size()
19: tempLabel←Voting(annotators,crowdSourcingText[i])
20: if temoLabel = = crowdSourcingLabel[i]
21: BDTC.push back(crowdSourcingText[i])
22: end if 
23: end for 
24: return BDTC  
25: end procedure   

Algorithmic2 Text category selection based on annotators or experts votes 

1: Input : Number of annotators and text document.  
2: Output : Label of the given text.  
3: map < int, int > voteCast  
4: voteCast.clear()
5: totatlClass←13  
6: procedure VOTINGannotators, text  
7: TempLabel←0  
8: for i←1→annotators  
9: TempLabel← labeling(text)  

10: if TempLabel > 0  
11: VoteCast[TempLabel]←VoteCast[TempLabel] + 1  
12: end if 
13: end for 
14: finalLabel←0  
15: for i←1→totalClass  
16: finalLabel←max(finalLabel,voteCast[i])
17: end for 
18: return (finalLabel)
19: end procedure  

4.4. Verification 

Ten experts were recruited to verify the manual data label. Among 
them, 3 are postgraduate, and 7 are graduate students of Bengali liter-
ature. Each of the text documents is labelled by the ten experts. The 
expert’s caste the individual’s vote (e.g. category name) for each text 
document. A document class or category is grouped into one of the 13 
categories, which achieved the highest votes. The category labelled by 
the experts and the crowd-sourcing process both are cross-checked. If 
the experts and crowd-sourced process category assignment are matched 
for a document, its category is confirmed and included in the Bengali 
text classification corpus (BDTC). Otherwise, it is rejected, and no class 
is assigned. This process is explained in Algorithms 1 and 2. A total of 
156,207 documents are matched among 175, 000, and the corpus in-
cludes all matched category documents. A total of 18,793 documents (i. 
e., 10.74%) is ignored due to the mismatch, which lacks the quality and 
extractions. Fig. 1 shows the category-wise data distribution of the 
corpus. 

Developed corpus was partitioned into three sets where 106,899 
documents are used in training, 27,831 documents in validation and 21,
477 documents in testing sets respectively. Table 2 shows the categorical 
summary. The highest number of text set belongs to politics, whereas the 
lowest number of documents belongs to the environment category. A 
random selection of 68.43% documents was allocated for the training 
set, 31.57% for the validation set and 13.75% for the test set, 
respectively. 

4.5. Annotation quality 

The difference in experiences, the annotation task itself, and focus on 
the annotators contribute to a disagreement between the annotators 
(Rebecca, 2006). Thus, it is required to find how much the annotators 
agree in assigning text classes by using Cohen’s kappa (Cohen, 1960). 
Cohen’s kappa measures the agreement among annotators and this de-
termines how well one annotator agrees with another annotator. Thus, 
to investigate the standard inter-annotator agreement, a pairwise kappa 
coefficient is calculated using Eq. (2). 

K =
Po − Pe

1 − Pe
(2)  

where P0 denotes relative observed agreement and Pe determines the 
hypothetical probability of chance agreement. The developed corpus 
(BDTC) achieved a Kappa score (K) is 67.23%, which indicates a 

Table 1 
Characteristics of the embedding corpus EC.  

Corpus Attributes Attributes Value 

Number of text documents 969,000 
Number of sentence 1,744,200 
Maximum number of sentence 170 
Minimum number of sentence 1 
Average number of sentence per document 7 
Number of words 200,081,093 
Number of unique words 19,517,390 
Estimated required memory 29.7 GB  

Fig. 1. Class-wise distribution of corpus (BDTC).  
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reasonable agreement among annotators. 

5. Methodology 

The primary objective of this research is to classify the Bengali text 
documents into 13 predefined categories. To accomplish this objective, a 
computational model is developed by investigating various machine 
learning, deep learning and transformer-based methods. This section 
briefly explains the methods and techniques employed to address the 
objective. Fig. 2 illustrates the overview of the proposed system. Pa-
rameters selection and architectures of different approaches will be 
discussed in the subsequent subsections. 

5.1. Text preprocessing and feature extraction 

Raw input texts may contain noises such as punctuation, digits, un-
wanted symbols and characters written in other languages. All of these 
were removed during the preprocessing step (Section 4.2). Three kinds 
of feature extraction techniques are used in this study for extracting text 
relevant features. For example, traditional feature extraction (e.g., TF- 
IDF), contextual feature extraction (e.g., m-BERT) and local contextual 
feature extraction (e.g., GloVe, FastText & Word2Vec). The local 
contextual feature extraction can be further divided into frequency- 
based (e.g., GloVe) and prediction-based methods (e.g., FastText & 
Word2Vec). The frequency-based method extracts features based on 
local context, global word frequency and word-word co-occurrences 
over the whole corpus. In contrast, the prediction based method extracts 
text features based on the neural embedding and local context whether 
words occur in allied contexts. 

The term-frequency with inverse document frequency (TF-IDF) is the 
most popular as the traditional feature extractor technique used in 
classification tasks (Kumari, Jain, & Bhatia, 2016). This feature 
extractor focus on the most frequent word and n-gram in the whole 
document. In this work, a maximum of 2, 048 words considered for the 
feature extraction. The contextual feature extracts the word feature 
based on word context and semantics (Dang & Palmer, 2002). The pre- 
trained Multilingual-BERT (m-BERT) (Devlin et al., 2019) is used with 
12 hidden layers, 12 multi attention head, 512 position embedding, 
GELU activation and 768 feature dimension. Three local context or local 
window-based feature extraction techniques are considered in this 
study, such as Word2Vec (Mikolov et al., 2013), FastText (Bojanowski 
et al., 2017) and GloVe (Pennington et al., 2014). The details of the local 
contextual feature extraction techniques are described in Section 6.1. 

Table 2 
Categorical distribution of corpus (BDTC).  

Document 
category 

No. of Training 
documents 

No. of Validation 
documents 

No. of Testing 
documents 

Sports 13,499 2,761 1,958 
Lifestyle 2,615 750 2,017 
Art 2,320 720 236 
Science & 

technology 
3,554 1,200 1,183 

Education 6,590 2,300 970 
Environment 2,265 900 534 
Entertainment 11,194 3,520 3,439 
Economics 6,100 2,150 953 
Health 3,500 650 859 
Opinion 8,754 1,780 1,985 
Politics 25,490 5,600 3,713 
Crime 13,577 3,200 2,814 
Accident 7,441 2,300 816  

Total 106,899 27,831 21,477  

Fig. 2. Abstract view of the document categorization system.  
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5.2. Text classification 

To investigate the performance of text document categorization task 
in Bengali, four different classification techniques are employed on the 
developed corpus (BDTC). The techniques are: traditional machine 
learning (ML)-based (Mirończuk & Protasiewicz, 2018), convolutional 
neural network(CNN)-based (Zhou, 2020), sequential-based (Sakalle, 
Tomar, Bhardwaj, Acharya, & Bhardwaj, 2021) and transformer-based 
(Ambalavanan & Devarakonda, 2020). Each of the technique is 
described in the following subsections in details. 

5.2.1. Traditional ML 
This work investigates the performance of three ML-based tech-

niques: GPU based support vector machine (SVM) (Catanzaro, Sun-
daram, & Keutzer, 2008), GPU based Libsvm (Wen, Shi, Li, He, & Chen, 
2018) and stochastic gradient descent (SGD). Various parameters are 
tuned on the developed corpus to generate ML-based classifier models to 
perform the Bengali text classification task. The SVM and Libsvm pa-
rameters are: kernel = sigmoid, tol = 0.00001, decision function shape 
= over and remaining parameters are used as default value. Libsvm and 
SVM classification parameters are almost similar, but Libsvm is faster 
than SVM. The parameter loss = modified_huber and alpha = 0.001 are 
used for the SGD classifier, and the rest of the parameters are used as 
default value. The ML classifiers are not suitable for improving accuracy 
for a higher dimension and a large number of samples. These techniques 
also failed to capture local and global text semantics. 

5.2.2. Convolutional NN 
Three variations of CNN-based techniques have been investigated in 

this study, such as very deep convolutional neural networks (VDCNN) 
(Conneau et al., 2017), deep convolution neural networks (DCNN) 
(Hossain & Hoque, 2019) and convolutional neural network (CNN) 
(Kim, 2014). The interior of each convolutional are NN techniques are 
explained in the following.  

• CNN: A single layer multi-kernels CNN architecture (Kim, 2014) 
with three embedding models (FastText, GloVe & Word2Vec) are 
used to investigate the Bengali text classification task performance. 
The distinguished kernels are 3, 4 and 5, whereas the number of 
filters is 128, 128 and 256. The convolution layer follows a 1D max- 
pool layer and activation layers. Finally, all of the polled features are 
appended one after another and applied to a dropout operation with 
a threshold value of 0.045. The softmax layer or output layer are 
responsible for classifying the document using 512 flatten features.  

• DCNN: The DCNN architecture contains three convolution layers 
with different filters (e.g., 16, 32 and 64). Each of the convolution 
layer is followed by activation and max-pooling layers. There are two 
fully connected (FC) layers, and one softmax layer is in the frame-
works. Each of the FC layers are densely connected by 512 neurons. 
The softmax layer uses sigmoid activation function and generates the 
predicted category name using the FC layer feature values.  

• VDCNN: This work proposes VDCNN architecture to perform the 
Bengali text document categorization task. The layered architecture 
and interior design are inspired by VDCNN (Conneau et al., 2017), 
ResNet (Kaiming, Xiangyu, Shaoqing, & Jian, 2015) and VGG (He, 
Zhang, Ren, & Sun, 2016a) philosophy. However, VDCNN feature 
extraction work on character-level embedding is not suitable for 
achieving good performance of Bengali classification tasks (Khatun, 
Rahman, Islam, & Marium-E-Jannat, 2019). The original VDCNN 
takes more training time and suffers from model overfitting problem 
due to the shortage of corpus and deep convolution operation. The 
VDCNN architecture combined with different embedding techniques 
is capable of reducing few convolution operations to improve Bengali 
text classification performance (Section 6.1). The detailed architec-
ture and preparation of VDCNN architecture are described in Section 
6. 

5.2.3. Sequential 
There are two sequential classification techniques used in this 

research: long short term memory (LSTM) (Behera, Jena, Rath, & Misra, 
2021) and gated recurrent units (GRU) (Chung, Gülçehre, Cho, & Ben-
gio, 2014). A combination of CNN with LSTM and GRU has also been 
implemented with the developed corpus (BDTC). A detailed description 
of each technique is presented in the following. 

LSTM: A two-layers LSTM is employed in this research. The 
sequential layers contain the following parameters: max sequence =
512, hidden dimension = {128, 256}, batch size = 16, dropout = {0.49, 
0.38}, loss = categorical_crossentropy, optimizer = adam, activation =
softmax. A maximum epoch of 50 is used on the developed corpus. 
Although a higher number of sequences degrades the classification 
performance. A max sequence length (or a number of words) of 1024 
and 2048 is also tried in this work. 

GRU: The two-layers GRU contains the following parameters: hidden 
state = {256, 256}, max sequence = 512, batch size = 32, epoch  = 80, 
dropout = {0.50, 0.47}, loss  = categorical_crossentropy, optimizer =
adam and activation function = {tanh, softmax}. The last GRU layer 
follows a 1D max-pool layer. Finally, 512 feature values for softmax 
layer are concatenated and the softmax layer generates the prediction of 
the expected category. 

CNN þ LSTM: A single layer multi-kernel CNN (Kim, 2014) and a 
single layer LSTM are combined (CNN + LSTM) and used in this work. 
There are three 1D kernels (e.g., 3, 4 & 5) and 128 filters used in the 
convolution layer. The convolution layer follows an activation and 1D 
max-pool (e.g., 3, 4 & 5) layer. The pooled feature concatenating the 
pooled feature are fed into LSTM cells. The LSTM cell applied a dropout 
(e.g., 0.49) operation, and its output feeds to the softmax layer. Finally, 
the softmax layer produces the prediction values. 

CNN þ GRU: A Single layer GRU and multi-kernel CNN (Kim, 2014) 
are communally (CNN + GRU) used in this study. A single layer with 
three 1D kernels (e.g., 2, 3 & 4) and 256 filters conduct the convolution 
operation. A tanh activation and 1D max-polling operation are applied 
after the convolution operation. The pooled feature feeds to the GRU 
cell, and the GRU imposes a dropout operation for the model general-
ization. Finally, the softmax layer takes input from GRU output and 
generate the category-wise prediction. 

5.2.4. Transformer 
A transformer-based pre-trained m-BERT model is used for feature 

extraction purpose, whereas the model is trained with the developed 
corpus (BDTC) using the BERT technique. The classification feature 
dimension of 768, and the number of multi-head attention of 12 with 12 
hidden layers. The batch size of 8 and 30 epoch helped converging the 
model. There is a vocabulary list for multilingual language containing 
105,879 vocabularies for 104 languages (Devlin et al., 2019). 

6. Proposed text document categorization system 

The proposed TDC system architecture comprises five main modules: 
Embedding model generation, two text to feature extraction modules, 
VDCNN training module, and VDCNN testing module. The proposed 
document categorization system shown in Fig. 3. The embedding model 
generation phase generates the embedding model which is inserted into 
the training and testing text representation modules to generate fea-
tures. VDCNN training module creates the classifier model using fea-
tures of training samples, whereas the testing module produces the 
document category of the test document based on the classifier model 
and features of the unlabeled test sample. Fig. 3 illustrates the 
constituent-wise details architecture of the proposed VDCNN based 
document categorization system. 

6.1. Embedding model generation 

There are many embedding techniques (e.g., GloVe, Word2Vec, 
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FastText & m-BERT) and pre-trained embedding models available for 
English text language (Pennington et al., 2014; Mikolov et al., 2013; 
Bojanowski et al., 2017; Devlin et al., 2019), and their performances are 
outstanding for downstream tasks (Moirangthem & Lee, 2021a; Enrı-
quez, Troyano, & López-Solaz, 2016). Nevertheless, a limited number of 
embedding models that provides a set of optimized parameters are 
available for low resource languages including Bengali. Most of the 
embedding techniques have shared some standard parameters such as 
embedding dimension (ED), contextual window (CW), word frequency, 
learning rate, epoch number and context type. Among these parameters, 
ED, CW and minimum word frequency (min_count) are the most influ-
ential for semantic and syntactic features representation. The overall 
impact of three parameters (e.g., ED, CW & min_count) on classification 
accuracy is interrelated, and their actual combinations vary from corpus 
to corpus. An exponential combination of these parameters is possible 
and it is nearly impossible to generate these huge amount of combina-
tions manually. Thus, this study proposed an embedding parameters 
identification (EPI) Algorithms 3 to select a set of optimized parameters 

from the embedding corpus. The Algorithm 4 is part of Algorithm 3 
which use an objective function to maximize the semantic and syntactic 
similarity accuracy based on the given corpus. In particular, the pro-
posed EPI Algorithm 3 is considered 89 ED, 24 CW and 96 minimum 
word-frequencies. Thus, a total of 205,056 [e.g., ED (89) x CW (24) x 
min_count (96)] parameters are generated, which is quite impossible to 
optimize by the traditional trial-and-error method. Out of 205,056, the 
proposed Algorithm 3 selected the best 33 parameters (ED: 11, CW: 3 & 
min_count: 1) for the downstream tasks (text classification), which aided 
to reduce the overall classification model generation time. 

The embedding model generation process initializes with an 
embedding corpus (EC) which is a collection of unlabeled embedding 
text. The EC can be represented as EC : EC = {et1,et2,et3,…,etD}, where D 
denotes the total number of embedding text in EC. The total number of 
embedding text (D) is equal to 969,000 in this research. There are three 
word embedding techniques are used in the proposed system e.g., GloVe 
(Pennington et al., 2014), FastText (Bojanowski et al., 2017) and 
Word2Vec (Mikolov et al., 2013). 

Fig. 3. Proposed very deep convolution neural network based text categorization.  
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Embedding model generation techniques are described in the next 
subsections.  

Algorithmic3 Automatic embedding parameters identification (EPI) based on 
intrinsic accuracy (e.g., semantic & syntactic) 

1: Input : Embedding corpus (EC), semantic word similarity datasets (SE),  
syntactic word similarity datasets (ST) 

2: Output : Optimize hyperparameters  
3: ED←{} ▹ Optimize embedding dimensions  
4: CW←{} ▹ Optimize contextual window  
5: min count←0 ▹ Optimize minimum word frequency  
6: X MAX←95 ▹ Maximum word frequency  
7: gSE←0, gSY←0 ▹ Global semantic and syntactic accuracy  
8: procedureEPIEC ▹ Embedding Parameters Identification (EPI)  
9: SE←0, SY←0 ▹ local semantic and syntactic accuracy  

10: i, j, k←0 ▹ Global initialization  
11: for i←10→450 do ▹ Increment with 5 (i+=5)  
12: SeAcc←0, SyAcc←0 ▹ Local semantic and syntactic accuracy  
13: for j←2→25 do ▹ Increment linearly j+=1  
14: SeAcc1←0, SyAcc1←0 ▹ Local semantic, syntactic accuracy  
15: for k←min count→X MAX do ▹ Increment linearly k+=1  
16: model←EmbeddingTechnique(EC, i, j,k)
17: SticAc,SyticAc←intrinsicEvaluation(model,SE,ST)
18: SeAcc1,SyAcc1←max(SeAcc1,SyAcc1,SticAc,SyticAc)
19: end for 
20: SeAcc,SyAcc←max(SeAcc1,SyAcc1,SeAcc,SyAcc,1)
21: ED,CW,min count←Update(SeAcc,SyAcc, i, j,k)
22: end for 
23: SE,SY←max(SeAcc,SyAcc,SE,SY)
24: ED,CW,min count←Update(SE,SY, i, j,k,2)
25: end for 
26: end procedure   

Algorithmic4 Update the embedding dimension, contextual window and min 
frequency words based on global semantic and syntactic accuracy 

procedure UpdatesemacticAc, syntacticAc, i, j,k,Flag  
if Flag == 1 then ▹ Picked optimized the contextual window  

if fabs(gSE − semacticAc) < 1e − 3 then  
if fabs(gSY − syntacticAc) < 1e − 3 then  

gSE←semanticAc,gSY←syntacticAc  
CW.append(j)

end if 
end if 

end if 
ifFlag == 2 then ▹ Picked optimized embedding dimension (ED) and min 
frequency count  

if fabs(gSE − semacticAc) < 1e − 3 then  
if fabs(gSY − syntacticAc) < 1e − 3 then  

gSE←semanticAc,gSY←syntacticAc  
ED.append(i)
min count←k  

end if 
end if 

end if 
return ED,CW,min count ▹Optimized parameters sets  

end procedure  

6.1.1. GloVe 
The GloVe technique generates a total of 33 embedding models using 

embedding corpus EC with the combinations of embedding dimension 
(ED) and context window (CW) where ED ∈ {25, 50, 100, 150, 200, 250, 
275, 300, 325, 350, 400} and CW ∈ {6, 9, 12}. The remaining hyper-
parameters are set as default settings e.g., min count : 2,X MAX : 95,
epochs : 30, binary : true,memory : true and threads : 8 respectively. 
GloVe generates the feature vector based on global word count, local 
word count, word-word co-occurrence and local context with the centre 
word. These characteristics of GloVe can extract better semantic and 
syntactic features. However, it consumes more time due to matrix 
factorization. 

6.1.2. FastText (Skip-gram & CBOW) 
FastText is a prediction based embedding technique and carries the 

sub-word information. This technique takes EC as an input and generates 

an embedding model as the output uses gensim library (Řeh∘uřek & 
Sojka, 2010). FastText is a modified version of Word2Vec where Fast-
Text works with sub-word information. Two variants of FastText, such as 
the skip-gram with negative sampling (negative : 25) and CBOW with 
hierarchical loss, were used. A 66 embedding model (e.g., 33 for skip- 
gram & 33 for CBOW) has been generated using hyperparameters ED 
and CW where ED ∈ {25, 50, 100, 150, 200, 250, 275, 300, 325, 350, 
400} and CW ∈ {6,9,12}. The rest of the hyperparameters are used as 
default settings e.g., min count = {2}, epochs = 30, learning rate 
(lr) : 0.098, minimum an-gram 2 and maximum n-gram 6 respectively. 
Minimum two hours required for CW : 6 and ED : 25 where the 
maximum thirty-one hours has been spend for CW : 12 and ED : 300. 

6.1.3. Word2Vec (Skip-gram & CBOW): 
Word2Vec is a prediction based embedding technique and produces 

the embedding vector from the centre word to the context word or vice 
versa. This technique takes EC as input and produces the embedding 
model as the output using the gensim library. There can be 66 embed-
ding models (e.g., 33 for Skip-gram & 33 for CBOW) produced from the 
combinations of hyperparameters ED and CW with ED ∈ {25, 50, 100, 
150, 200, 250, 275, 300, 325, 350, 400} and CW ∈ {6, 9, 12}. The 
negative sampling negative : 25 and epoch : 30 are used for the skip-gram 
model and hierarchical loss value for the CBOW model. The rest of the 
hyperparameters are set as default settings (e.g., min count, lr & 
threads). 

Every embedding techniques consists of its own pros and cons. The 
significant advantage of the GloVe embedding is that it takes the whole 
corpus statistics during word feature extraction, but Word2Vec explores 
the local window-based statistics only. The GloVe considers local and 
global word frequency and word-to-word co-occurrences, whereas the 
FastText considers only local word frequency. GloVe embedding con-
sumes less training time compared to the m-BERT. The primary cons of 
the Glove embedding are the consumption of massive memory during 
matrix factorization time than the Wor2Vec. A higher frequency of stop 
words may change the actual feature values in GloVe embedding, which 
is not affected by FastText embedding. The GloVe embedding considers 
the local context of a word, whereas m-BERT assesses the full context of 
a word in the corpus. The three embedding techniques can generate 165 
embedding models (e.g., 33 for GloVe, 66 for FastText & 66 for 
Word2Vec). All of these embedding models are evaluated by the 
intrinsic evaluators (Section 7.1.1). Among these models, we selected 
the best performing 12 embedding models for document classification 
purpose (Section 8.1). The default hyperparameters of GloVe, FastText 
and Word2Vec Algorithms are not suitable for all types of text pro-
cessing. That is why the model should be tuned with the best hyper-
parameters before training. 

6.2. Training/testing text feature extraction 

There are two texts to feature extraction modules: one is for the 
labelled input text, and the other is for the unlabelled input text. Each 
module comprises Labelled/Unlabelled input text, text to list conversion 
(TLC), List (L), Embedding Model (EM) and Feature Extraction (FE). The 
labelled input text is used for the VDCNN training module, and the 
unlabelled input text is used for the VDCNN testing module. The training 
or testing text feature representation takes the labelled or unlabelled text 
document as the input and produces a 2D feature matrix as the output 
which goes into the VDCNN training module or into the VDCNN testing 
module. 

The training/testing text feature extraction is performed in three 
phases: text to list conversion (TLC), GloVe model generation, and 
feature extraction (FE). The TLC is initialized with the labelled input text 
document (tdi), and it converts the input text as a word list vector (L). 
The list vector is a collection of words defined as L = [l1, l2, l3, …, lN], 
where li denotes the ith word for i = 1, 2, 3, …, N. N is the maximum 
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length of L and N = 2, 048. If an input text contains more than 2,048 
words, then it is truncated to the first 2,048 words. It uses zero padding 
if the number of words is smaller than 2,048. 

The FE process considers the list vector (L) an embedding model 
(EM) as inputs. The list L is a 1D vector containing a total of 2,048 
words. The EM is a 2D vector containing a total of 1, 517,390 unique 
words each assigned an individual h-index and ED corresponding feature 
values whereas ED ∈ {25,50,100,150,200,250,275,300,325,350,400}. 
For every word in L, a set of (Hi) is generated using FE. FE process ex-
tracts the features from the EM by mapping (Hi) to EM. If the L of (Hi) is 
found in EM, then FE returns the corresponding (Hi) feature values. 
Otherwise, it returns a null vector for ED features. For example, the first 
word (l1) is mapped to the index h2 of EM. The FE phase generates an 
output of feature matrix (Vd*F), where Vd denotes the number of words 
and F denotes the number of features. The ith word li extracts a vector of 
ED features (F1,F2,F3,…,FED) from the EM. Each word of a text document 
is arranged in rows and corresponding features in columns. As a result, 
each document is represented by an input feature matrix of dimension 
(2048 × ED) where each row of the feature matrix is an H-Index (Hi),Hi :

Hi = {h1,h2,…,h2048} and each column is a feature Fj : Fj = {F1,F2,F3,…,

FED}. The testing text feature extraction takes the unlabelled text 
document as the input and produces a 2D feature matrix as the output 
using the GloVe model generation and FE processes. The process of the 
2D feature matrix generation is the same as the training text feature 
extraction technique. The upper right part of Fig. 3 illustrates the pro-
cess of the testing text feature extraction. 

6.3. VDCNN training module 

The training module generates a document classifier model with the 
Bengali corpora. The input of the VDCNN is the 2D feature matrix 
(Vd*F), which propagates through several layers such as the input layer, 
convolution layer, pooling layer, activation layer, and fully connected 
layer. Fig. 4 shows the layers of VDCNN training module. 

6.3.1. Input layer 
The Input Layer (IL) is a set of tensor nodes IL = {IW1, IW2, IW3,…,

IWa}, where a represents the tensor length of 2048. This layer brings the 
initial feature vector from the word embedding model and transmits this 
vector to subsequent VDCNN layers for further processing. The size of 
input layer tensor is Tensor (2048, ED), where ED indicates the 
embedding dimension. In the next subsection, the tensor is presented as 
Tensor(heights,width, filter), where height and width are substituted by 
the number of words and features length. The filter is substituted by the 
number of filters. 

6.3.2. Convolution layer 
It is a local feature extractor layer where the kernels are well trained 

for weight adjustment using the back-propagation technique (Rumel-
hart, Hinton, & Williams, 1986). In the proposed architecture, there are 

five convolution layers used at different depths. The convolution layers 
are Conv1, Conv2, …, Conv5. The layer Conv1 comprises tensor nodes 
(C1,C2,C3,…,Cb), where C denotes the tensor nodes and the subscript (b) 
denotes the tensor height and b = 2048 at Conv1 and gradually de-
creases in the following layers. The ith layer input propagates through to 
the output defined by Eq. (3). 

τi = τi− 1. (3)  

where τi represents ith layer kernel/weight metric. During the convolu-
tion, each kernel is multiplied by the input matrix element-wise. 

The coordinate position such as input(s, r) is updated according to Eq. 
(4) where s and r denotes a coordinate position in the 2D input matrix. 

input(s, r)i
=

∑ki
h

p=0

∑ki
w

q=0
input(p+ s, q+ r) × K(p, q) (4)  

where, ki
h, and ki

w denotes the ith-layer kernel height and width. p, and q 
represent the kernel coordinate. The kernel K(p,q) is sliding from the left 
to right and top to bottom in each position. The kernel sliding or 
convolution operation extracts the local (e.g., sentence level) and global 
(e.g., document level) features based on the document semantics. The 
small kernel size extracts the local details, and the large size kernel 
extracts the abstract document view. 

In each convolution layer, the number of outputs is equal to the 
number of the kernels. All parameters are broadcasting from the output 
of this layer to the next layers. The tensor size of the five convolution 
layers (Conv1 to Conv5) are Tensor(2048,ED,8),Tensor(2046,ED1,16),
Tensor(1021,ED2,32),Tensor (1017, ED3,64) and Tensor (337, ED5, 128) 
respectively. For example, tensor attributes of Conv1 are 2048,ED, and 8 
meaning the number of words, embedding dimension and number of 
filters, respectively. The embedding dimension ED to ED5 values are 
changed according to layer operations. 

6.3.3. Activation layer 
In this layer, each node determines whether the value of the current 

node is delivered or not to the next layer depending on the activation 
function. A non-linear activation function ReLU is used in the element- 
wise operation in the input tensor matrix. ReLU is an aide to optimiza-
tion function that speeds up the training process (Agarap, 2018). The ith 

layer tensor metric value is affected by the ReLU operation (Eq. (5)). 

input(s, r)i
= max(input(s, r)i− 1

, 0) (5)  

where, input(s, r) denotes (s, r) index value of ith layer. All non-zero nodes 
fire for the next layer operation in the activation layer. There are three 
activation layers (Acv1, Acv2, and Acv3) and each of the layer tensor 
shape are Tensor(2042,ED1,16),Tensor(1011,ED4, 64) and Tensor(336,
1),Tensor (335, 1), …, Tensor((332,1), 128) respectively. The Acv1 ex-
poses as (A1,A2,A3,…,Ac), where A indicates the activation tensor nodes, 
and c represents the tensor height. 

Fig. 4. Proposed VDCNN classifier architecture. Left green arrow indicates the backpropagation and right black arrow denotes the forward propagation.  
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6.3.4. Pooling layer 
The pooling operation generalizes the input feature map and reduces 

the input dimension. There are three Pooling layers (Pool1, Pool2, and 
Pool3). The Pooling tensors are denoted as P1, P2, P3, …, Pd, where P 
denotes tensor nodes and d is the tensor height. The first two-layer 
tensor shapes are Tensor(2042,ED1,16),Tensor(1011,ED4, 64) and 
Tensor((336, 1), (335, 1), …, (332,1),128) respectively. Pooling sum-
marizes the output over a whole adjacent element. This operation sub-
stitutes the output of a tensor at an index by the final statistic of the 
adjacent outputs. The max-pool function is used in this proposed 
VDCNN. 

6.3.5. Fully connected layer 
Two fully connected layers (FC1 and FC2) are used in the proposed 

architecture. The internal tensor nodes are represented by Z1,Z2,Z3,…,

Z(n∨m), where the subscript (n ∨ m) denotes the lengths of node (FC1 or 
FC2). The convolution layer extracts high-level features which flatten in 
the fully connected layer. The first fully connected layer contains 106,
752 neurons and the neurons are connected with 2,048 neuron in the 
next layer. The fully connected layers propagate feature values with a 
linear model defined in Eq. (6). 

Wi = Wi− 1 × ωi (6)  

where, Wi denotes the ith layer weight and ωi indicates the flattened 
feature values. A dropout operation is applied to control the model over- 
fitting. The dropout operation generalizes the high-level features. The 
training process generated is a hierarchical structure and is a well- 
trained weighted kernel. 

6.3.6. Output layer 
In this layer, input tensor takes an 1D feature map (Tensor(256,1)) 

and outputs an expected category name. The internal nodes of the 
Output Layer (OL) represent O1,O2,O3,…,Ox, where the subscript (x) 
denotes the length of the flattened feature map. The expected score is 
calculated using Eq. (7). 

Ei =

∑g
j=0W(j, i) × X(j)i

∑CL
k=1

∑g
j=0W(k, j) × X(j)i (7)  

where, Ei represents the ith class expectation and X(j) denotes the feature 
vector. g is the feature-length, which is 256. The accuracy of the clas-
sifier depends on the values of g. In this implementation, we fixed the 
value of g to 256 to optimize the classifier performance. The class value 
is normalized by the Soft-Max function. The maximum value with the 
corresponding index is the expected class name. 

The expected value of a class is subtracted from the actual value to 
adjust the classification error. Error (i.e. the subtracted value) is back-
propagated to updated the weights of FC and Conv layers. The backward 
and forward propagation processes are continued until the model is 
converged or error is minimized according to the predefined value. 

In this study, the aim is to investigate the classification performance 
of a pre-train multi-lingual transformer based BERT (Devlin et al., 
2019), DCRNNs (Hossain & Hoque, 2021), LibSVM (Chang & Lin, 2011), 
SGD (Kabir et al., 2015), DCNN (Hossain & Hoque, 2019), CNN (Kim, 
2014), GRU (Moirangthem & Lee, 2021b) and CNN-LSTM (Behera et al., 
2021) model with the same datasets. The classification performance are 
summarised in Table 8. 

6.4. VDCNN testing module 

The purpose of the testing module is to assign an expected class from 
a set of predefined classes to an unlabelled text document (tdi). This 
module takes the result of VDCNN training model and the output of the 
testing text feature extraction module (i.e., an input feature matrix, 
Vd*F). The VDCNN testing layers load the trained metafiles and assign 

the kernel weights. The feature matrix (2048 × ED) is passed through 
the VDCNN classifier model to produce the output of a 2D score vector 
(SV). The SV is a set of classification scores, {s1,s2,s3,…,sCL}, where CL is 
the number of classes. SV is computed using the Eq. (8). 

si =
esi

∑CL
j=1esj

(8)  

here, esi denotes the ith score exponential (e) value and CL is the total 
number of classes. The maximum expected value of an index represents 
the corresponding class and is the final output class. For example, in the 
case of the unlabeled input text in Fig. 1, VDCNN classifier model pro-
duced the maximum expected value of 0.98 at the index 9. The classifier 
generates category or class corresponding to this index is health. 

7. Experiments 

The system is implemented on a multi-core processor with NVIDIA 
GTX 1070 GPU. The physical memory of the processor is 32GB and GPU 
internal memory is 8GB. The VDCNN architecture is deployed in the 
Tensor-Flow framework of Python. 

7.1. Evaluation measures 

The proposed VDCNN based document categorization system is 
evaluated in four phases: embedding model phase, training phase, 
validation phase and testing phase. 

7.1.1. Embedding model evaluation phase 
Embedding model evaluation is referred to the characteristic 

assessment of feature vectors which is an essential task for low-resource 
languages (Hossain & Hoque, 2020). Intrinsic and extrinsic evaluations 
are used for evaluating the embedding model. Intrinsic evaluators 
evaluate the semantic, syntactic and relatedness quality whereas 
extrinsic evaluators evaluate the downstream tasks. The Spearman (ρ̂) 
and Pearson (r̂) correlations are used for intrinsic evaluation such as 
semantic word similarity (Sŝρ/Sŝr ) and syntactic word similarity 
(Syρ̂/Sŷr ). 

7.1.2. Training/validation phase evaluation 
The evaluation of the training and validation phases is performed in 

terms of loss and accuracy. In the case of large data size, batch-wise 
training and validation are most common in any deep learning frame-
work. In a single iteration, a fixed number of batch size data is processed 
for training. The ith batch with jth example expectation E(i, j) is calcu-
lated by Eq. (9). 

E(i, j) =
∑256

k=0
W(j, k) × X(j, k) (9)  

here, W(j, k) denotes the weight and X(j, k) indicates the feature value of 
jth sample with kth index. The probability P(i, j) of ith batch with jth 

sample is calculated by Eq. (10). 

P(i, j) =
e(E(i,j))

∑CL
y=0e(

∑256
k=0

W(y,k)×X(y,k))
(10)  

where, e(E(i,j) denotes the normalized expectation and CL indicates the 
number of classes. The batch-wise loss and accuracy are computed ac-
cording to Eqs. (11)–(12). 

Li = −
∑SP

l=0

∑CL

y=0
R(l, y) × log2P(l, y) (11)  
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Ai =
Hi

SP
(12)  

where, Li,Ai, and Hi represent the logarithmic-loss, accuracy and num-
ber of correctly predicted class in ith batch respectively. Moreover, SP 
indicates the total data sample in ith batch whereas R(l, y) denotes the 
number of correct prediction in ith batch. The total loss and accuracy are 
computed by averaging all batch-wise loss and accuracy values overall 
training/validation samples. 

7.1.3. Testing phase evaluation 
The evaluation of the testing phase is performed in terms of accuracy 

and error. In addition to that several statistical measures such as pre-
cision (p), recall (r), micro f1 score, confusion matrix and accuracy (a) 
are also used to evaluate the performance of the proposed document 
categorization system (Wu, Zhang, Shen, Huang, & Gu, 2020; Alhaj 
et al., 2019). 

7.2. Hyperparameters optimization 

In order to optimize the hyper-parameters, the proposed VDCNN 
classifier model is initialized with various parameter values which are 
shown in Table 3. The proposed system is implemented on Intel Core i7- 
7700K 4.5 GHz processor, 32 GB of RAM, NVIDIA GeForce GTX 1070 
graphics card, NVIDIA GeForce with 1,920 CUDA Cores, Ubuntu 16.04, 
Python 3.6, CUDNN v6.0, and Tensorflow-GPU 1.4.0 with CUDA 8.0 
toolkit. 

In order to examine the effect of various hyper-parameters on the 
accuracy, the developed corpus is divided into three sets: (i) Small Data 
Set (SDS), (ii) Medium Data Set (MDS), and (iii) Large Data Set (LDS) or 
BDTC which contains whole data of the developed corpus. Table 4 shows 
the summary of data sets. It can be observed that BDTC is the volumi-
nous dataset with the highest number of documents, words and size (in 
MB). 

A vocabulary is produced by aligning each word to an integer index. 
Word embedding is the most widely used technique to illustrate the 
vocabulary of a textual document (Akhter et al., 2020). Words in a 
document can be illustrated as a vector of real-values and the model 
performance depends on the dimension of the vector. Therefore, the 
embedding dimension (ED) can be selected as a hyper-parameter. Fig. 5 
shows the effect of ED on the classifier performance. 

Form Fig. 6, it is evident that the accuracy depends on the embedding 
dimension and the size of the dataset. SDS, MDS, and BDTC obtained the 
highest accuracies for the embedding dimensions of 325,325, and 300 
respectively. 

Batch size indicates the number of samples assigned at a time to the 
classifier for extracting in a particular iteration (Akhter et al., 2020). The 
batch-wise operation increases the GPU performance and has a signifi-
cant impact on classifier performance that is observed in Fig. 6. 

Huge batch size uses up greater memory of GPU and slows down the 
training process. In other words, the processing of different batch size 
strongly depends on the physical memory (RAM) and GPU memory. It is 
observed from Fig. 6 that a batch size of 64 achieved about 98.2% 

accuracy for proposed developed data set (BDTC). Due to the GPU 
memory limitations, it is limited to use a batch size of 64. Due to the 
reasonable accuracy achieved, batch size is fixed to 64 for all the eval-
uations. The huge batch size demands substantial memory, requires 
higher time to process data and reduce the overall accuracy while the 
small batch size improves the results (Keskar, Mudigere, Nocedal, 
Smelyanskiy, & Tang, 2016). 

Dropout is a simple mathematical operation that is used to anticipate 
the classifier model from overfitting and noisy features. The classifier 
may fall in the difficulty of overfitting due to the training with the 
limited dataset. This difficulty can be solved by increasing the size of the 
dataset or decreasing the number of hidden units. Dropout eliminates or 
disables the disengaged units in the hidden layer which do not take part 
in the computation on subsequent iterations. Fig. 7 illustrates the per-
formance of the classifier model on various dropout values. The result 
indicates that the classifier model achieved the highest accuracy on 0.56 
dropout on developed dataset (BDTC). 

The learning rate determines the optimum termination time re-
quirements for a classifier model. A large value for learning rate is 
responsible for quick termination while a small value for learning rate 
requires a very long time to terminate the model. The effects of the 
various learning rates on classifier performance are shown in Fig. 8. 

The accuracy is increased gradually up to 97.25% at a learning rate 
of 0.01, which is the maximum. After the learning rate of 0.01, the ac-
curacy is decreased slowly, and the trend continues due to model 
overfitting. 

In order to compute the feature maps, convolution operation utilizes 
one or more filters with distinct or same kernel size. The number of 
filters and the size of the kernel can influence network performance. 
Larger kernel size and greater numbers of filters obtained better accu-
racy but slowed down the training/testing process. On the other hand, 
small kernel size and fewer filters degrade the performance by missing 
distinguishing features (Akhter et al., 2020). There are various possible 
combinations of kernel size and number of filters. Table 5 shows the few 
such combinations that affect the performance. 

In the initial experiment, the kernel starts from the size (1,1) and 
ends at (5,21) with a number of filter combinations (4,8,16,32,64) in 
each convolutional layer, which achieved 92.64% accuracy. The kernel 
size and number of filter combinations are varied on trial and error basis. 
A combination of large and small kernel size and variable size filters in 
different layers perform better (highest accuracy 96.75% for the com-
bination 7). 

The epoch number is one of the important linear hyperparameters of 
VDCNN classifier model. The whole documents are passed through the 
model once in a forward pass and a backward pass in a single epoch. A 
careful selection of a number of epochs is necessary because quite a 
number of epochs can induce overfitting which in turn affect the clas-
sifier performance. Fig. 9 shows the effects of a number of epochs on 
classifier performance. For this developed BDTC dataset, the classifier 
model achieved the maximum accuracy (97.42%) on around 700 
epochs. 

Max-average pooling is used in this proposed model. Softmax layer is 
used to acquire a confidence score that helps to determine the level of 
the categorization. After running several experiments on the develop 

Table 3 
VDCNN initial hyperparameters.  

Parameters Parameters Value 

Batch size 32 
GloVe embedding dimension 200 
Kernel size (1, 1), (3, 3), (5, 5), (7, 7) (2, 45), (3, 45) 2048, 256 
Number of filter 4, 8, 16, 32, 64 
Pooling size (2, 2), (3, 3), (2, 1) 
Learning rate 0.1 
Dropout rate 0.50 
Activation ReLU, SoftMax 
Pooling type Max, Avg.  

Table 4 
Summary of the three datasets.  

Properties SDS MDS BDTC  

No. of documents. 85,000 10,500 156,207 
Size 369.44 MB 456.61 MB 678.98 MB 
No. of sentences. 0.9345 M 1.155 M 1.7175 M 
No. of words 21.37609 M 26.419886 M 39.286713 M 
Max. documents size 21 KB 26 KB 38 KB 
Min. documents size 230 B 600 B 1 KB 
No. of categories 13 13 13  
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corpus, we choose the optimized hyperparameter values are chosen 
(Table 6). 

8. Results 

After optimizing all the hyperparameters, the performance of the 
proposed VDCNN based Bengali document categorization is evaluated in 
various ways which are described in the following subsections. 

8.1. Embedding model evaluation 

In this work, various combinations of hyperparameters three 
embedding techniques (e.g., GloVe, FastText and Word2Vec) have 
generated 165 local contextual embedding models (33 for GloVe, 66 for 
FastText (Skip-gram & CBOW), 66 for Word2Vec (Skip-gram & CBOW)). 
Intrinsic evaluators evaluate a total of 166 models (165 for local 
contextual embedding and one for pre-trained m-BERT) using syntactic 
and semantic similarity measures (Chiu, Korhonen, & Pyysalo, 2016). 
Based on the intrinsic evaluation performance, a total of 13 top- 
performing models are selected to perform the downstream task (i.e., 

Fig. 5. Impact of ED on network performance.  

Fig. 6. Effect of batch size on classifier performance.  

Fig. 7. Accuracy of classifier on distinct dropout values.  
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text classification). Table 7 exhibits the intrinsic evaluation results of the 
13 best performing models for 1000 semantic and syntactic word pairs. 

The result shows that the GloVe model with 300 embedding 
dimension (ED) and 9 contextual window (CW) achieved the highest 
Spearman correlation (Sŝρ ) of 63.12% for measuring the semantic word 
similarity task. The GloVe model also achieved the highest Pearson 
correlation (Sŝr ) score of 64.05% with the same ED and CW. In 
measuring the syntactic word similarity task, the GloVe model achieved 
the highest Spearman correlation (Syρ̂) score of 71.75% with 200 ED and 
12 CW, whereas the highest of 73.04% Pearson correlation (Sŷr ) is 
achieved with the 300 ED and 9 CW. The contextual pre-trained m-BERT 
model achieved lower scores than the GloVe embedding due to a 

shortage of distinct vocabulary and unavailability of morphological 
variations (such as Sadhu-bhasha and Cholito-bhasha). As a result, this 
model faces the out-of-vocabulary (OOV) problems (Bojanowski et al., 
2017), affecting the semantic and syntactic evaluation performance. The 
FastText (Skip-gram) and Word2Vec (Skip-gram) cannot carry out 
reasonable accuracy due to the lack of global word-word co-occurrence 
information(Pennington et al., 2014). The CW with 6 does not perform 
well, and the CBOW version of FastText and Word2Vec embedding 
techniques are excluded from the analysis due to their lower 
performance. 

As regards to the semantic similarity, the GloVe embedding achieved 
a maximum Spearman correlation of 63.12% and Pearson correlation of 
64.05%, whereas the Word2Vec achieved a maximum of 45.57% 
(Spearman correlation) and 46.09% (Pearson correlation). Concerning 

Fig. 8. Effects of learning rate on classifier performance.  

Table 5 
Effect of various kernel size and number of filters.  

Combinations Kernel Size Number of Filter Accuracy 
(%) 

1 C1=(1, 1) C2=(3, 3) C3=(5, 
5) C4=(7, 7) C5=(2, 17) (3, 
17) (5, 17) 

F1 = 4 F2 = 8 F3 =
16 F4 = 32 F5 = 64 

92.67% 

2 C1=(3, 3) C2=(5, 5) C3=(7, 
7) C4=(9, 9) C5=(2, 21) (3, 
21) (5, 21) 

F1 = 10 F2 = 15 F3 
= 20 F4 = 25 F5 =
30 

90.82% 

3 C1=(3, 3) C2=(5, 5) C3=(5, 
5) C4=(7, 7) C5=(2, 45) (3, 
45) (4, 45) (5, 45) 

F1 = 32 F2 = 64 F3 
= 128 F4 = 256 F5 
= 256 

95.31% 

4 C1=(3, 3) C2=(5, 5) C3=(5, 
5) C4=(7, 7) C5=(2, 45) (3, 
45) (4, 45) (5, 45) (6, 45) 

F1 = 8 F2 = 16 F3 
= 32 F4 = 64 F5 =
128 

96.75%  

Fig. 9. Effect of epochs on classifier performance.  

Table 6 
Optimized hyperparameters for VDCNN.  

Hyperparameters Value 

Batch size 64 
GloVe embedding 

dimension 
300 

Kernel size (3, 3), (5, 5), (5, 5), (7, 7), (2, 45), (3, 45), (4, 45), (5, 
45), (6, 45), 2048, 256 

Number of filter 8, 16, 32, 64, 128 
Pooling size (2, 2), (3, 3), (2, 1) 
Number of epoch 700 
Learning rate 0.01 
Dropout rate 0.56 
Activation ReLU, SoftMax 
Pooling type Max-Avg.  
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the syntactic similarity, a maximum of 71.75% (Spearman correlation) 
and 73.04% (Pearson correlation) are achieved for the GloVe embed-
ding. On the other hand, the Word2Vec obtained a maximum of 32.66% 
(Spearman correlation) and 31.29% (Pearson correlation). Word2Vec 
embedding achieves whether words occur in related contexts based on 
the local window only, whereas the GloVe embedding extracts word 

features based on global word frequency and word-to-word co-occur-
rence over the entire dataset. Thus, the GolVe embedding outperformed 
Word2Vec due to its better feature representation by grasping meanings, 
semantic relationships between words, and words similarities. The 
evaluation results showed that the GloVe embedding achieved the best 
result due to its better semantic and syntactic feature representations. 
Although GloVe embedding performed better in intrinsic evaluation, 
other methods may perform better in the downstream task evaluation (i. 
e., text classification). Thus, among 165 models, 13 best-performed 
models have been chosen for the classification task. 

8.2. Training/validation accuracy and loss 

Fig. 10 shows the training and validation accuracy in terms of 
epochs. At the beginning, the training accuracy is lower than the vali-
dation. The training accuracy increases gradually from epoch number 
100, whereas the validation accuracy remained the same (i.e., the blue 
line in Fig. 10). The training and validation accuracy both are stable in 
between 300 − 600 epoch, where the classifier model gained the 
maximum accuracy. This improvement is due to the normalized 
expectation value employed in Eq. (12). Fig. 11 illustrates the training 
and validation losses. The loss value is about 40 at the beginning, 
whereas the validation loss is about 2.5. The proposed system converges 
completely at epoch 100. The loss values almost remained constant and 
linear in between 150 to 600 epochs. This faster convergence is due to 
the normalized expectation used in Eq. (10). 

8.3. Text classification task evaluation 

To investigate the Bengali text classification task performance, 109 
models are implemented using the combinations of embedding models 
and classification techniques (ML, CNN, sequential, BERT). In partic-
ular, 108 models are generated from three classification techniques 
where three ML-based techniques contributed to 36 models [12 
(embedding model) × 3 (SVM, Libsvm & SGD)], three CNN-based 
techniques contributed to 36 models [12(embedding model) × 3 
(CNN, DCNN, VDCNN)] and three sequential-based technique generated 
36 models [12(embedding model) × 3 (LSTM, GRU, GRU + LSTM)]. One 
model is generated from the BERT-based technique (m-BERT). Among 
109 models, Table 8 illustrates the result of 26 top-performing models, 
which are selected based on different classification techniques (8 for ML, 
8 for CNN, 9 for sequential, 1 for transformer-based). Among 8 ML 
models, GloVe + SGD gained the maximum accuracy of 86.20% 
(f1-score= 85.08%) to perform the Bengali text classification task. The 
SVM and Libsvm classification techniques cannot generate the separable 
decision boundary in the developed training corpus (BDTC) due to the 
lack of generalized text features and word inflexion rate. Thus, the 
performance of SVM and Libsvm-based models showed lower accuracy. 
Out of 36 CNN-based models, the results of eight best-performed models 

Table 7 
Intrinsic evaluation performance of 13 top-performed models concerning se-
mantic and syntactic word similarities.     

Semantic (%) Syntactic (%) 

Model ED CW Sŝρ  Sŝr  Syρ̂  Sŷr   

300 9 63.12 64.05 68.79 73.04  
250 9 62.02 62.98 67.78 71.92 

GloVe 200 12 55.68 56.97 71.75 72.43  
100 12 53.32 54.96 66.88 70.06   

300 9 58.01 57.98 45.00 45.87  
250 12 56.74 57.89 44.79 45.98 

FastText (Skip-gram) 200 12 54.72 54.12 40.23 39.43  
100 12 53.12 52.98 39.01 37.11   

300 9 45.57 46.09 32.66 31.29  
250 9 44.00 44.17 30.97 29.77 

Word2Vec (Skip-gram) 200 12 43.53 43.98 30.00 28.90  
100 12 42.20 42.14 29.01 28.97  

Pre-trained m-BERT 768 – 60.17 61.02 65.27 68.92  

Table 8 
Bengali text classification task performance of26 best-performed models.  

Techniques Models ED CW f1-score  A(%)  

TF-IDF + SVM – – 77.24 78.17  
Word2Vec (Skip-gram)+
Libsvm 

300 9 81.40 82.06  

GloVe + Libsvm 300 9 82.10 83.15 
Traditional ML FastText (Skip-gram)+

Libsvm 
300 9 81.89 82.72  

TF-IDF + SGD 300 9 79.31 80.41  
Word2Vec (Skip-gram)+
SGD 

300 9 84.15 85.31  

GloVe þ SGD 300 9 85.08 86.20  
FastText (Skip-gram)+
SGD 

300 9 84.78 85.98   

GloVe + CNN 200 12 89.41 90.82  
Word2Vec (Skip-gram)+
CNN 

300 9 89.97 91.23  

FastText (Skip-gram)+
CNN 

300 9 90.06 91.79 

Convolutional 
NN 

Word2Vec (Skip-gram)+
DCNN 

300 9 92.18 93.23  

GloVe + DCNN 300 9 93.50 94.86  
FastText (Skip-gram)+
DCNN 

300 9 92.69 93.85  

Proposed(GloVe þ
VDCNN) 

300 9 97.00 96.96  

GloVe + DCNN 200 12 92.50 93.16   

Word2Vec (Skip-gram)+
LSTM 

300 9 91.98 92.15  

GloVe + LSTM 200 12 92.30 92.80  
GloVe + CNN-GRU 200 12 89.47 90.07  
GloVe + LSTM 300 9 94.14 94.76  
GloVe þ CNN-LSTM 300 9 95.14 95.20 

Sequential FastText (Skip-gram)+
LSTM 

300 9 93.40 93.97  

FastText (Skip-gram)+
CNN-LSTM 

300 9 94.15 94.88  

Word2Vec (Skip-gram)+
CNN-LSTM 

300 9 92.73 93.00  

GloVe + CNN-LSTM 200 12 92.95 93.12  

Transformer m-BERT 768 - - 92.45  

Fig. 10. Training and validation accuracy.  
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are shown in Table 8. The results showed that the GloVe + VDCNN 
achieved the highest accuracy of 96.96% (with an average f1-score of 
97.00%) than other CNN-based combinations. The CNN is implemented 
using a single layer multi-kernel (Kim, 2014) and this technique suffer 
from capturing adequate semantic and syntactic features (at the sen-
tence and document levels). As a result, the CNN-based models showed a 
quite lower accuracy compared to DCNN and VDCNN-based models. 
Among 10 best performing sequential-based models, the GloVe + CNN- 
LSTM gained the maximum accuracy of 95.69% (f1-score= 95.14%). 
The GRU contains fewer trainable parameters concerning LSTM. These 
fewer parameters cannot extract all relevant features from the large text 
datasets (e.g., BDTC). As a result, the GRU based model did not perform 
well using the developed corpus (the highest accuracy of 90.07% is 
obtained for CNN-GRU). This work investigates the Bengali text classi-
fication task performance using a transformer-based technique (m- 
BERT) on the developed corpus. The pre-trained m-BERT model ach-
ieved 92.45% accuracy. The pre-trained m-BERT model is well- 
performed for the English language, but the performance of this pre- 
rained model is not satisfactory for the low resource language (e.g., 
Italian (Gambino & Pirrone, 2019)), including the Bengali. 

The results revealed that the proposed model (GloVe + VDCNN) 
obtained the maximum accuracy of 96.96% among all models. The 
traditional feature extractors (TF, IDF & TF-IDF) are not able to capture 
the semantic and syntactic features, whereas the GloVe, Word2Vec 
(Skip-gram), FastText (Skip-gram) and m-BERT can capture these type 
of features. Also, ML classifiers cannot capture the local (e.g., word & 
sentence level) and global (e.g., document level) semantics, whereas the 
CNN, DCNN, VDCNN, LSTM, GRU, and m-BERT can carry the local and 
global semantics. The Bengali language has morphological variations in 
textual form: Sadhu-bhasha and Cholito-bhasha. The morphological 
variations like Sadhu-bhasha and Cholito-bhasha are not considered in 
the pre-train model. The m-BERT model pre-trained the Wikipedia 
Bengali dataset, which suffers from handling the variations of Cholito- 
bhasha and Cholito-bhasha of Bengali. However, the proposed GloVe 
model coverage these morphological variations with the most extensive 
vocabulary sets of the developed corpus. Thus, the GloVe + VDCNN 
model obtained better performance than pre-trained m-BERT. On the 
other hand, Word2Vec (Skip-gram) and FastText (Skip-gram) only 
considered the contextual windows, and these models cannot cover the 
whole corpus and word pair statistics. However, the GloVe model has 
taken into consideration of the entire corpus and word pair statistics. 
The GloVe model reduces the feature vector values for high-frequency 
words, but FastText (Skip-gram) and Word2Vec are not considering 
these characteristics. In summary, the experimental analysis revealed 
that the proposed method (GloVe + VDCNN) achieved the maximum 
accuracy (96.96%) than all other models due to its better feature 
extraction capability and hyperparameters selection strategy. A recent 
study on embedding has also shown that the FastText (Skip-gram), 
Word2Vec (Skip-gram), and pre-trained m-BERT cannot be performed 

well for the Italian language (a low-resource language) (Gambino & 
Pirrone, 2019). 

8.3.1. Statistical evaluation 
Table 9 presents the result of the several statistical measures (i.e., 

precision, recall, f1-score measure) of the Bengali document classifier. 
The testing data set contains 21,477 Bengali text documents which are 
exclusive of the train and validation data sets. Here the term support 
represents the number of documents. 

Two categories lifestyle and sports achieved the highest f1 score which 
are close to 0.99. Only one category (art) achieved the lowest f1-score 
and precision values (f1-score= 0.87, and p = 0.78) due to the failure of 
classification of few large documents. Other categories provided fairly 
good classification scores. 

8.4. Receiver Operator Characteristic (ROC) 

ROC is a measure for the performance of a classification model in 
graphical representation. Fig. 12 shows the ROC curve of each category 
with its Area Under the Curve (AUC) value. The x-axis represents the 
false positive rate, and the y-axis represents the true positive rate. The 
AUC values are exposing the probability value of the respective 
category. 

The diagonal curve represents the random selection of class proba-
bility. The maximum AUC value is 99.00%, and the values are covered 
by eight categories (health, lifestyle, accident, crime, education, enter-
tainment, politics, and sports, respectively). The minimum AUC value is 
96.00%, that value covered by opinion and art categories. An intra-class 
separability threshold is 0.96 to 0.99, which revealed that the proposed 
VDCNN based document categorization provided the better separability 
value. 

8.5. Performance comparison 

In recent years, few research activities have been carried out on text 
classification in Bengali. Due to the unavailability of other authors’ 
dataset and benchmark corpus, the contemporary techniques are 
implemented on the developed corpus (BDTC) including existing 
methods (Hossain & Hoque, 2021; Ahmad & Amin, 2016; Kabir et al., 
2015; Hossain & Hoque, 2018; Hossain & Hoque, 2019; Dhar et al., 
2020). The performance of the proposed system is compared with the 
previous approaches in terms of corpus size and accuracy. Table 10 
presents the number of training documents, testing documents, and 
classes used in the existing approaches and the proposed method. 

Table 10 indicates that the proposed approach is developed on the 
largest training and testing datasets (106,899 and 21,477) with a higher 
number of classes (13 classes) than the existing approaches of Bengali 
document categorization. 

Fig. 11. Training and validation losses.  

Table 9 
Statistical evaluation of document classifier.  

Document Category Precision Recall f1-score  Support 

Sports 0.99 0.98 0.99 1,958 
Lifestyle 0.98 0.99 0.99 2,017 
Art 0.78 0.98 0.87 236 
Science & technology 0.97 0.92 0.95 1,183 
Education 0.96 0.98 0.97 970 
Environment 0.95 0.92 0.93 534 
Entertainment 0.98 0.98 0.98 3,439 
Economics 0.94 0.96 0.95 953 
Health 0.99 0.97 0.98 859 
Opinion 0.96 0.93 0.94 1,985 
Politics 0.97 0.97 0.97 3,713 
Crime 0.97 0.98 0.98 2,814 
Accident 0.98 0.98 0.98 816  

Avg/total 0.97 0.97 0.97 21,477  
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Table 11 summarizes the comparison of text document categoriza-
tion systems in Bengali. 

Results indicated that the accuracy of Libsvm based classifiers gained 
accuracy between 78.17% and 83.51% on developed BDTC dataset. The 
accuracy of the SGD based classifications varied from 80.41% to 
86.20%. DCNN based classifier achieved the maximum accuracy of up to 
94.86%. This research is comparing all the previous approaches and 
other methods (such as Word2Vec + Libsvm, Glove + Libsvm, Glove +
SGD, and Glove + DCNN), which leads to the observation that the 
proposed VDCNN based technique achieved significantly higher accu-
racy of 96.96% outperforming all the approaches. 

Usually, the performance of the classification model heavily depends 
on the number of training samples and classes (Hashemi, Yang, Mirza-
momen, & Kangavari, 2009; Alhawarat & Aseeri, 2020). When the 
number of the classes increases, the classification technique faces 

inseparability problems (Hossain & Hoque, 2019). Thus, the classifica-
tion model starts losing its uniqueness and degrades its accuracy. 
Moreover, the classification model relies on better data distributions 
while training with more samples. These helped the classification model 
to improve accuracy with various distributions of the large corpus. 
Although further investigations with different corpus size and classes are 
deemed necessary, the preliminary results in Table 11 revealed that the 
proposed model’s performance (i.e., accuracy) increased with the lower 
number of document classes and with a higher number of training 
samples. 

8.6. Human experts vs. proposed technique 

The performance of the proposed system of Bengali document cate-
gorization is compared with the human experts (HEs) in terms of ac-
curacy. Three experts who are postgraduates in Bengali linguistic are 
asked to manually classify the 21,477 text documents into one of 13 
categories. A single document is read by three experts individually and 
classify it accordingly. A document which achieved the highest number 
of category count is selected as the final category. The accuracy of the 
human experts is calculated by the ratio of the total number of docu-
ments that predicted the class correctly and the total number of test 
documents. The accuracy of the proposed system is determined from the 
confusion matrix by the ratio of correctly classified count and total 
documents. For example, in case of the health category, the system 
correctly predicts 833 documents out of 859 documents which produced 
the accuracy of 96.97% (833/859) (See in Table 13). Table 12 shows a 
summary of the comparison. 

ANOVA (Analysis of Variance) analysis shows that there are no sig-
nificant differences on accuracy achieved by the human experts while 
assigning the categories of text documents (F(2,24) = 0.959,p = 0.39,
η2 = 0.050). Moreover, the average accuracy of the human experts 1, 2 
and 3 are 99.5%,99.7% and 97.3% respectively. The analysis of com-
parison shows that human experts are better in identifying documents 
than the proposed method (99.49% vs. 96.96%). Although the proposed 
system shows almost similar performance as human experts in identi-
fying lifestyle and art categories, there are significant differences for 
other categories (such as crime, environment, opinion, and science & 
technology respectively). ANOVA analysis also demonstrated that there 
is a substantial statistical differences on accuracy measures between 
human experts and VDCNN methods (F(1,12) = 16.07,p = 0.0017,η2 =

0.39). Fig. 13 also illustrates this result. 
The performance of the proposed system can be improved by adding 

more distinct data distribution in the lower support categories and 
extracting more common semantic and syntactic features. 

Fig. 12. ROC in terms of true positive and false positive rates.  

Table 10 
Summary of previous Bengali document classification techniques concerning 
training size, testing size and classes.  

Approaches #Training 
Data 

#Testing 
Data 

#Class 

GloVe + DCRNNs (Hossain & Hoque, 
2021) 

120,000 36,207 12 

Word2Vec + K-NN + SVM (Ahmad & 
Amin, 2016) 

19,750 4,713 7 

TF-IDF + SGD (Kabir et al., 2015) 5,448 3,679 9 
Word2Vec + SGD (Hossain & Hoque, 

2018) 
10,000 4,651 9 

Word2Vec + DCNN (Hossain & Hoque, 
2019) 

86,199 10,707 12 

Graph-based + LSTM-RNN (Dhar et al., 
2020) 

- 14,373 9 

Proposed (GloVe þ VDCNN) 106,899 21,477 13  

Table 11 
Summary of the performance comparison.  

Approaches Accuracy (%) 

GloVe + DCRNNs(Hossain & Hoque, 2021) 95.89 
Word2Vec + Libsvm (Chang & Lin, 2011) 82.06 
GloVe + Libsvm 83.51 
TF-IDF + SGD (Kabir et al., 2015) 80.41 
Word2Vec + SGD (Hossain & Hoque, 2018) 85.31 
GloVe + SGD 86.20 
Word2Vec + DCNN (Hossain & Hoque, 2019) 93.23 
GloVe + DCNN 94.86 
Proposed (GloVe þ VDCNN) 96.96  

Table 12 
Performance comparison between human experts and proposed System.  

Category Name Human-Experts Accuracy 
(%) (correctly predicted) 

VDCNN Accuracy(%) 
(correctly predicted) 

Support 

Sports 100.00 (1,958) 98.26 (1,924) 1,958 
lifestyle 100.00 (2,017) 98.86 (1,994) 2,017 
Art 97.46 (230) 98.31 (232) 236 
Science & 

technology 
100.00 (1,183) 92.10 (1,089) 1,183 

Education 100.00 (970) 98.15 (952) 970 
Environment 100.00 (534) 91.76 (490) 534 
Entertainment 100.00 (3,439) 98.10 (3,373) 3,439 
Economics 100.00 (953) 96.43 (919) 953 
Health 98.95 (850) 96.97 (833) 859 
Opinion 98.18 (1,949) 93.00 (1,846) 1,985 
Politics 98.79 (3,668) 97.15 (3,607) 3,713 
Crime 100.00 (2,814) 98.44 (2,770) 2,814 
Accident 100.00 (816) 97.55 (796) 816  

avg/total 99.55 (21,381) 96.96 (20,825) 21,477  
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8.7. Error analysis 

The error analysis deliberates the qualitative comparison of the 
proposed model with the other models, e.g., shown in Fig. 14. In 
contrast, the proposed model misclassified quantitative analysis repre-
sented in Table 8. Fig. 14, Input1, taken from Blog6 and it contains more 
than 500 words. The ground labelled is Science & Technology, whereas 
the proposed model, Pre-trained m-BERT and GloVe + CNN-LSTM 
model, is predicted correctly. But GloVe + SGD is incorrectly predicted. 
For Input2, taken from Newspaper7 that contains more than 300 words. 
The proposed model only predicts the correct label, but other models do 
not predict the correct labelled due to morphological (e.g., word level) 
variation. Sample Input3, collected from online Newspaper8 title, and 
that contains only four words. As a result, the proposed model and other 
model are not able to predict correctly. That means the proposed model 

is not capable of predicting concise text. For Input4, taken from News-
paper9 and all of the models are correctly predicted. Thus, Fig. 14 
summarized that the proposed system is not working for concise text (e. 
g., 3 to 4 words), and other models cannot predict the morphological 
variant text, e.g., Sadhu-bhasha, Cholito-bhasha and Asamiya Bengali. 

The confusion matrix (CM) is a table that is used to summarize the 
performance of a classifier in tabular form (Stehman, 1997). Table 13 
shows the confusion matrix, which represents the summary of prediction 
results on the proposed Bengali text categorization system. The number 
of correct and incorrect predictions are summarized with count values 
and broken down by each class. This matrix visualizes the classification 
error/confusion when it makes predictions. The diagonal blue cell rep-
resents the number of correct predictions of texts as the actual class and 
other cells represent the misclassification as other classes. For example, 
the HE class is evaluated for a total of 859 unlabeled texts. Among these, 
833 texts are correctly predicted as HE class represented in the first 
diagonal cell of Table 13 texts are misclassified as other classes. 

The confusion matrix illustrates that the minimum misclassification 

Table 13 
Proposed system confusion matrix.  

Fig. 13. Mean accuracy obtained by the human experts and VDCNN. Error bar indicates the standard deviation.  

6 https://cadetcollegeblog.com/rabbi-ahmed/62535  
7 https://www.asomiyapratidin.in/congress-5-guarantees-of-brahmapu 

tra-valley-went-to-barack-4-guarantees/  
8 https://www.prothomalo.com/lifestyle/fashion 

9 https://www.bbc.com/bengali/news-56669407 
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rate occurred in the lifestyle category (1.00%), whereas the maximum 
misclassification rate achieved in the environment category (8.99%). It 
is complied with the confusion matrix that out of 21,477 documents, the 
proposed system correctly predicted 20,825 documents and incorrectly 
predicted 652 documents (Table 13). Several overlaps have occurred 
between categories in classifying documents. As an example, the health 
category correctly classified 833 documents out of 859. Out of the 
remaining 26 documents, nine are overlapped with LS category, and two 
overlapped with CR, EC, ET, PL, SP categories, three overlapped with 
OP, ST categories and one overlapped with EL category respectively. 
There was no overlap with AC, AR and ED categories. It is apparent from 
the confusion matrix that more documents should be included in some 
categories during training phase for improvement of performance (such 
as in LS category). In between frequent class overlap (e.g. CR and AC) 
can be reduced with the addition of more documents. 

9. Discussion 

The proposed system building theory is developed based a series of 
empirical investigations over a period of time (Sections 8.1 and 8.3) 
which led to the final development of the GloVe + VDCNN model for the 
text document categorization in Bengali. In the following, a number of 
key features and findings are highlighted:  

• Availability of benchmark corpus is a crucial constituent to develop 
any intelligent system. Bengali is considered one of the resource-poor 
languages due to the unavailability of the benchmark dataset and 
other related resources. Thus, to develop an intelligent system for the 
Bengali text classification, this research had to develop two corpora: 
(i) an embedding corpus (EC) (ii) text classification corpus (BDTC) 
with 13 categories. Bengali text has two forms of written morpho-
logical variants, such as Sadhu-bhasha and Cholito-bhasha. Thus, to 
develop an intelligent text classification system in Bengali for real- 
world applications, these variants are to considered while building 
the embedding and training models. Multilingual-BERT (m-BERT) is 
a large model trained with 104 monolingual datasets, including 
Bengali Wikipedia. However, Wikipedia only one variant (i.e. Chol-
ito) of Bengali text. The developed corpora considered both forms of 
text by crawling data from several sources. For example, Shadhu- 
bhasha texts were accumulated from the newspapers (e.g. Asomiya 
Pratidin) and Bengali literature. However, Cholito-bhasha texts have 
been collected from the newspapers (e.g., Prothomalo) and online 
portals (e.g., bdnews24.com). Thus, the research community and 
industries working on developing intelligent Bengali language tech-
nology tools can use this developed dataset.  

• Embedding model evaluation is a crucial issue to develop a deep 
learning-based intelligent classification system. The performance of 
an intelligent classifier depends on the nature of the embedding 

Fig. 14. Comparison of ground labelled and predicted labelled with a different techniques.  
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model and dataset. Thus, selecting an appropriate embedding model 
and its parameters is critical in the text classification. An Algorithm 
(i.e., EPI) is proposed to identify the suitable embedding parameters 
for low resource languages (including Bengali). In this Algorithm, a 
new objective function is devised in selecting the best embedding 
parameters. Although further investigations with other languages 
are needed for generalization, this Algorithm can be applied to any 
low-resource languages to develop an intelligent text classification 
model. 

• Identification of appropriate embedding model on embedding data-
set is another critical issue for developing an intelligent classification 
system based on deep learning. Thus, the embedding model should 
be evaluated using standard evaluators before performing the 
downstream task (e.g., machine translation, text classification, word 
sense disambiguation and so on). A total of 165 embedding models 
have been evaluated using intrinsic evaluators in finding the most 
suitable model. In particular, semantic similarity and syntactic sim-
ilarity measures have been used to evaluate 165 embedding models. 
Among 165 models, 13 best performing models are selected for text 
classification. Spearman correlation and Pearson correlation scores 
are used determining the best models. The intrinsic evaluations 
showed that GloVe-based embedding outperformed other embed-
dings (Word2Vec, FastText, BERT) by achieving the highest accuracy 
on semantic similarity and syntactic similarity measuring tasks. The 
performance of the pre-trained m-BERT model is not good because of 
its limited unique words, out-of-vocabulary problem and incapa-
bility to handle Bengali morphological variants (such as Sadhu- 
bhasha and Cholito-bhasha). The FastText (Skip-gram) and Word2-
Vec (Skip-gram) provided reduced performance due to the deficiency 
of global word-to-word co-occurrences. Moreover, the intrinsic 
evaluation results revealed that the GloVe model defeated the 
Word2Vec model by grasping better words semantics and word 
similarities. Thus, the intrinsic evaluation help finding the suitable 
embedding model for developing an intelligent system in Bengali that 
reduces the time during classification model generation and im-
proves the classification accuracy.  

• Although several text classification systems are available regarding 
high resourced languages, the model developed in one language 
cannot be applied to another language because of their linguistics 
divergences. Thus, several hyperparameters have been tuned on the 
training corpus to prepare the models for performing classification 
task. The proposed system is developed on manually optimized 
hyperparameters and obtained the highest classification accuracy on 
the test corpus. Intelligent hyperparameters optimization technique 
may be investigated in future to compare the manual selection of 
hyperparameters.  

• A total of 109 models have been prepared with different parameters 
to perform the Bengali text classification task. Experimental results 
on the test dataset show that the proposed GloVe + VDCNN model 
outperformed other classification models and available Bengali text 
classification systems. The classification accuracy highly depends on 
the text semantics. The more semantics and prominent features can 
generate the more separable classification model. In this sense, the 
GloVe model is able to extract more semantics feature from the 
Bengali text. The proposed VDCNN classification frameworks have 
achieved better result due to their layer architecture and multi-level 
(e.g., word level, sentence level & document level) feature extraction 
constituent. The performance of the proposed (GloVe + VDCNN) 
model has investigated with several statistical measures. It has been 
observed that the accuracy of the proposed system strongly depends 
on the number of support. For example, sports, opinion, and lifestyle 
categories consist of larger support values than others, so these cat-
egories gained better classification accuracy. The overall perfor-
mance of the Bengali text categorization model strongly depends on 
the number of classes. The semantic meaning of some categories is 
very close to each other, which reduces the accuracy. However, the 

proposed classifier model has overcome this ambiguity and achieved 
better performance. The proposed technique achieved superior per-
formance compared to similar research conducted on the Bengali 
text document categorization in terms of a more extensive data set, 
better accuracy, and more significant categories.  

• A detailed error analysis has been conducted using the confusion 
matrix to understand the model’s insight. Analysis revealed that the 
proposed system could not correctly predict the very short text due to 
a shortage of text semantics. The m-BERT, GloVe + CNN-LSTM, and 
GloVE + SGD models have failed to predict the actual class for 
Sadhu-bhasha text, whereas the proposed model can classify this text 
correctly, which shows the module’s functionality considering 
Bengali morphological variants. 

• Feature dimension plays a key role in classification accuracy in se-
mantic meaning-based embedding model. There is a greater chance 
to fall the classifier model into vanishing gradient problem 
(Hochreiter, 1998) with larger dimension which may creates model’s 
converge problem and increase the validation sets errors. In that 
case, embedding hyper-parameters should be changed. The accuracy 
of the proposed classifier model is performing better in between 
300–700 epochs (Fig. 9). The gap between the training/validation 
accuracy and losses learning curves are closer to each other, which 
implies that the proposed classifier can overcome the underfitting 
and overfitting problems (Tetko, Livingstone, & Luik, 1995). It is 
observed that the classifier performs better after 300 epoch, but it 
consumes more time. This problem can be overcome by increasing 
the training batch size and adding uniform data distribution in each 
category.  

• The GloVe based features extraction with VDCNN classifier system 
performed better at fixed document-size rather than the variable 
size. When the number of words per document is larger than the 
predefined document length, then it is truncated according to the 
predefined size. As a result, there is a higher chance to loss of 
meaning of the actual document label. In that case, the accuracy of 
the VDCNN classifier has reduced. In addition to that if the document 
size is smaller than the predefined size, then it added zero paddings. 
In that situation, the VDCNN classifier failed to select the best cate-
gory with a maximum expected value. Overlapping within classes 
and between classes is another issue in VDCNN model, which causes 
overall accuracy to a low value. The semantic meaning of the sen-
tence which contained the common word in different categories are 
different but syntactically similar. As a result, the GloVe model fails 
to extract the distinguishing syntactic features in the related cate-
gory. If the GloVe model is unable to extract both semantic and 
syntactic features accurately in word embedding, then VDCNN 
classifier model also fails to extract the distinguishing features at the 
sentence level. Therefore, class overlapping issues have occurred. 
Class overlap problem in between and within classes may be resolved 
using the Deep Residual Networks (ResNet) (He, Zhang, Ren, & Sun, 
2016b).  

• The technique developed in the proposed method can be applicable 
to Bengali news portals to select news based on class, Bengali search 
engine and textual sentiment analysis in Bengali. Other possible 
implications are hospital patient management system to classify 
patient’s disease based on medical documents of disease, security 
agency to classify toxic/hostile texts, library management to classify 
books or journals based on the subject area. The research community 
and language technology-related industries that work on the Bengali 
language can utilize the dataset and model as a baseline to research 
this domain further. 

In general, an expert system uses AI techniques to solve complex 
problems that ordinarily requires human expertise within a particular 
domain (Sarker, Furhad, & Nowrozy, 2021). Although the human 
expertise is used while annotating the datasets within the domain of 
NLP, this work mainly focuses on Bengali text document categorization 
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within the scope of intelligent systems by taking into account of deep 
learning techniques. The fundamental characteristic of any intelligent 
system is its ability to learn. The proposed work used machine learning- 
based classification techniques (very deep CNN). Thus, the proposed 
system can be considered as an intelligent system. In terms of intelligent 
systems, the framework and techniques developed under the proposed 
research can be used to develop many intelligent systems such as news 
portal, e-library/archival management, vertical search engine, toxic or 
hostile text detector where Bengali text processing is a central concern. 

10. Conclusion 

This research presents an intelligent deep learning-based text classi-
fication method using parameters optimization technique for word 
embedding (GloVe) and VDCNN to perform Bengali text document 
categorization. Due to the unavailability of the Bengali text classifica-
tion benchmark corpus, this work developed two new corpora: embed-
ding corpus and hand-crafted text classification corpus within 13 
categories (BTCC). An intelligent Algorithm (i.e., EPI) is introduced to 
identify and selects the suitable embedding parameters for low resource 
languages (including Bengali). In this Algorithm, a new objective func-
tion (e.g., intrinsic evaluation) is used to optimize the embedding pa-
rameters. A total of 165 embedding models is evaluated using intrinsic 
evaluators (i.e., syntactic & semantic similarity measures). Intrinsic 
evaluation results with Spearman and Pearson correlation showed that 
GloVe embedding is more suitable than other embeddings (i.e., 
Word2Vec, FastText, m-BERT) for Bengali text embedding. Analysis of 
experimental results for 109 classification models revealed that the 
proposed GloVe + VDCNN model achieved the highest accuracy of 
96.96% for Bengali text classification than other models. Moreover, the 
proposed model outperformed the available Bengali text classification 
techniques with BTCC concerning the highest accuracy, increased 
number of text classes and larger corpus. 

Although the proposed technique showed reasonable outcomes, 
future improvements can enhance accuracy using code mixed datasets 
with more text document classes. Variants of transformer-based feature 
extractor can be investigated on the developed embedding corpus. 
Moreover, future research may investigate the effect of variable class 
size and corpus size on text classification task performance. As far as we 
know, this text document categorization model is the first tried-and-true 
endeavour in Expert and Intelligent systems concerning the Bengali lan-
guage, especially since the previous studies had much-reduced corpus 
and categories. 
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Řeh∘uřek, R., & Sojka, P. (2010). Software framework for topic modelling with large 
corpora. In Proceedings of LREC 2010 workshop new challenges for NLP frameworks 
(pp. 46–50). Valletta, Malta: University of Malta. url:http://is.muni.cz/publication/ 
884893/en. 

Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR, abs/ 
1609.04747. url:http://arxiv.org/abs/1609.04747. arXiv:1609.04747. 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by 
back-propagating errors. Nature, 323, 533–536. https://doi.org/10.1038/323533a0 

Saad, S. E., & Yang, J. (2019). Twitter sentiment analysis based on ordinal regression. 
IEEE Access, 7, 163677–163685. https://doi.org/10.1109/ACCESS.2019.2952127 

Sakalle, A., Tomar, P., Bhardwaj, H., Acharya, D., & Bhardwaj, A. (2021). A lstm based 
deep learning network for recognizing emotions using wireless brainwave driven 
system. Expert Systems with Applications, 173, Article 114516. https://doi.org/ 
10.1016/j.eswa.2020.114516. url:https://www.sciencedirect.com/science/article/ 
pii/S095741742031160X. 

Md.R. Hossain et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.csl.2019.101056
https://doi.org/10.1109/TKDE.2008.181
https://doi.org/10.1109/ICOSC.2019.8665534
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/ACCESS.2019.2907992
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-981-13-5953-8_43
https://doi.org/10.1007/978-981-13-5953-8_43
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0190
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0190
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0190
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0190
https://doi.org/10.18653/v1/P17-1052
https://doi.org/10.1109/CCIP.2015.7100687
https://doi.org/10.1109/CCIP.2015.7100687
https://doi.org/10.1109/ACCESS.2018.2865532
https://doi.org/10.1109/ACCESS.2018.2865532
https://doi.org/10.1007/978-981-13-3459-7
https://doi.org/10.1109/ICCIT48885.2019.9038560
https://doi.org/10.1109/ICCIT48885.2019.9038560
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.1016/j.procs.2016.06.093
https://doi.org/10.1016/j.procs.2016.06.093
https://doi.org/10.18653/v1/N16-1062
https://doi.org/10.1007/s10579-015-9298-3
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0255
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0255
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0255
https://doi.org/10.1109/TFUZZ.2016.2604009
https://doi.org/10.1109/TFUZZ.2016.2604009
https://doi.org/10.1016/j.eswa.2018.03.058
https://doi.org/10.1016/j.eswa.2018.03.058
https://doi.org/10.1016/j.eswa.2020.113898
https://doi.org/10.1016/j.eswa.2020.113898
https://doi.org/10.1016/j.eswa.2020.113898
https://doi.org/10.1016/j.eswa.2020.113898
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/3099473
https://doi.org/10.3390/data3020015
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0310
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0310
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0310
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0310
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0310
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/ACCESS.2019.2952127
https://doi.org/10.1016/j.eswa.2020.114516
https://doi.org/10.1016/j.eswa.2020.114516


Expert Systems With Applications 184 (2021) 115394

23

Sarker, I. H., Furhad, M. H., & Nowrozy, R. (2021). Ai-driven cybersecurity: an overview, 
security intelligence modeling and research directions. SN Computer Science, 2, 1–18. 
https://doi.org/10.1007/s42979-021-00557-0 

Shriberg, E., Dhillon, R., Bhagat, S., Ang, J., & Carvey, H. (2004). The ICSI meeting 
recorder dialog act (MRDA) corpus. In Proceedings of the 5th SIGdial workshop on 
discourse and dialogue at HLT-NAACL 2004 (pp. 97–100). Cambridge, Massachusetts, 
USA: Association for Computational Linguistics. url:https://www.aclweb.org/ 
anthology/W04-2319. 

Stehman, V. S. (1997). Selecting and interpreting measures of thematic classification 
accuracy. Remote Sensing of Environment, 62, 77–89. https://doi.org/10.1016/S0034- 
4257(97)00083-7 

Tang, D., Qin, B., & Liu, T. (2015). Document modeling with gated recurrent neural 
network for sentiment classification. In Proceedings of the 2015 conference on 
empirical methods in natural language processing (pp. 1422–1432). Lisbon, Portugal: 
Association for Computational Linguistics. https://doi.org/10.18653/v1/D15-1167. 
url:https://www.aclweb.org/anthology/D15-1167. 

Tetko, I. V., Livingstone, D. J., & Luik, A. I. (1995). Neural network studies. 1. 
Comparison of overfitting and overtraining. Journal of Chemical Information and 
Computer Sciences, 35, 826–833. doi:110.1021/ci00027a006. 

Wen, Z., Shi, J., Li, Q., He, B., & Chen, J. (2018). Thundersvm: A fast svm library on gpus 
and cpus. Journal of Machine Learning Research, 19, 1–5. url:http://jmlr.org/papers/ 
v19/17-740.html. 

Wu, D., Zhang, M., Shen, C., Huang, Z., & Gu, M. (2020). Btm and glove similarity linear 
fusion-based short text clustering algorithm for microblog hot topic discovery. IEEE 
Access, 8, 32215–32225. https://doi.org/10.1109/ACCESS.2020.2973430 

Xiao, Y., Liu, B., Yin, J., & Hao, Z. (2017). A multiple-instance stream learning 
framework for adaptive document categorization. A Knowledge-Based System, 120, 
198–210. url:https://doi.org/10.1016/j.knosys.2017.01.001. 

Xu, K., Feng, Y., Huang, S., & Zhao, D. (2015). Semantic relation classification via 
convolutional neural networks with simple negative sampling. In Proceedings of the 
2015 Conference on Empirical Methods in Natural Language Processing (pp. 536–540). 
Lisbon, Portugal: Association for Computational Linguistics. https://doi.org/ 
10.18653/v1/D15-1062. url:https://www.aclweb.org/anthology/D15-1062. 

Zhang, X., Zhang, J., & LeCun, Y. (2015). Character-level convolutional networks for text 
classification. In Proceedings of the 28th international conference on neural 
information processing systems (pp. 649–657). Cambridge, MA, USA: MIT Press Vol. 
1. doi:10.5555/2969239.2969312. 

Zhou, D.-X. (2020). Theory of deep convolutional neural networks: Downsampling. 
Neural Networks, 124, 319–327. https://doi.org/10.1016/j.neunet.2020.01.018. url: 
https://www.sciencedirect.com/science/article/pii/S0893608020300204. 

Zia, T., Akhter, M. P., & Abbas, Q. (2015). Comparative study of feature selection 
approaches for urdu text categorization. Malaysian. Journal of Computer Science, 28, 
93–109. url:https://ejournal.um.edu.my/index.php/MJCS/article/view/6857. 

Md.R. Hossain et al.                                                                                                                                                                                                                           

https://doi.org/10.1007/s42979-021-00557-0
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0345
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0345
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0345
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0345
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0345
https://doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/10.18653/v1/D15-1167
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0360
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0360
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0360
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0365
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0365
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0365
https://doi.org/10.1109/ACCESS.2020.2973430
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0375
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0375
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0375
https://doi.org/10.18653/v1/D15-1062
https://doi.org/10.18653/v1/D15-1062
https://doi.org/10.1016/j.neunet.2020.01.018
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0395
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0395
http://refhub.elsevier.com/S0957-4174(21)00817-4/h0395

	Bengali text document categorization based on very deep convolution neural network
	1 Introduction
	2 Related work
	3 Problem statement
	4 Bengali text corpora
	4.1 Data crawling
	4.2 Data preprocessing
	4.3 Crowd-sourcing/manual labelling
	4.4 Verification
	4.5 Annotation quality

	5 Methodology
	5.1 Text preprocessing and feature extraction
	5.2 Text classification
	5.2.1 Traditional ML
	5.2.2 Convolutional NN
	5.2.3 Sequential
	5.2.4 Transformer


	6 Proposed text document categorization system
	6.1 Embedding model generation
	6.1.1 GloVe
	6.1.2 FastText (Skip-gram & CBOW)
	6.1.3 Word2Vec (Skip-gram & CBOW):

	6.2 Training/testing text feature extraction
	6.3 VDCNN training module
	6.3.1 Input layer
	6.3.2 Convolution layer
	6.3.3 Activation layer
	6.3.4 Pooling layer
	6.3.5 Fully connected layer
	6.3.6 Output layer

	6.4 VDCNN testing module

	7 Experiments
	7.1 Evaluation measures
	7.1.1 Embedding model evaluation phase
	7.1.2 Training/validation phase evaluation
	7.1.3 Testing phase evaluation

	7.2 Hyperparameters optimization

	8 Results
	8.1 Embedding model evaluation
	8.2 Training/validation accuracy and loss
	8.3 Text classification task evaluation
	8.3.1 Statistical evaluation

	8.4 Receiver Operator Characteristic (ROC)
	8.5 Performance comparison
	8.6 Human experts vs. proposed technique
	8.7 Error analysis

	9 Discussion
	10 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


