104,187 research outputs found

    Metamodel Instance Generation: A systematic literature review

    Get PDF
    Modelling and thus metamodelling have become increasingly important in Software Engineering through the use of Model Driven Engineering. In this paper we present a systematic literature review of instance generation techniques for metamodels, i.e. the process of automatically generating models from a given metamodel. We start by presenting a set of research questions that our review is intended to answer. We then identify the main topics that are related to metamodel instance generation techniques, and use these to initiate our literature search. This search resulted in the identification of 34 key papers in the area, and each of these is reviewed here and discussed in detail. The outcome is that we are able to identify a knowledge gap in this field, and we offer suggestions as to some potential directions for future research.Comment: 25 page

    A Strategy Language for Testing Register Transfer Level Logic

    Get PDF
    The development of modern ICs requires a huge investment in RTL verification. This is a reflection of brisk release schedules and the complexity of contemporary chip designs. A major bottleneck to reaching verification closure in such designs is the disproportionate effort expended in crafting directed tests; which is necessary to reach those behaviors that other, more automated testing methods fail to cover. This paper defines a novel language that can be used to generate targeted stimuli for RTL logic and which mitigates the complexities of writing directed tests. The main idea is to treat directed testing as a meta-reasoning problem about simulation. Our language is both formalized and prototyped as a proof-search strategy language in rewriting logic. We illustrate its novel features and practical use with several examples.published or submitted for publicatio

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Automatic instantiation of abstract tests on specific configurations for large critical control systems

    Full text link
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an abstract testing of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error prone verification activity. To automate a safe passage from abstract tests, related to the so called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a state-based behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience

    The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips

    Full text link
    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared.Comment: 15 pages, 10 figures (11 figure files), submitted to Journal of Instrumentatio

    Parallelization of cycle-based logic simulation

    Get PDF
    Verification of digital circuits by Cycle-based simulation can be performed in parallel. The parallel implementation requires two phases: the compilation phase, that sets up the data needed for the execution of the simulation, and the simulation phase, that consists in executing the parallel simulation of the considered circuit for a certain number of cycles. During the early phase of design, compilation phase has to be repeated each time a bug is found. Thus, if the time of the compilation phase is too high, the advantages stemming from the parallel approach may be lost. In this work we propose an effective version of the compilation phase and compute the corresponding execution time. We also analyze the percentage of execution time required by the different steps of the compilation phase for a set of literature benchmarks. Further, we implemented the simulation phase exploiting the GPU architecture, and we computed the execution times for a set of benchmarks obtaining values comparable with literature ones. Finally, we implemented the sequential version of the Cycle-based simulation in such a way that the execution time is optimized. We used the sequential values to compute the speedup of the parallel version for the considered set of benchmarks
    • …
    corecore