
A Strategy Language for Testing
Register Transfer Level Logic

Michael Katelman and José Meseguer
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA

{katelman,meseguer}@uiuc.edu

Abstract—The development of modern ICs requires a huge
investment in RTL verification. This is a reflection of brisk release
schedules and the complexity of contemporary chip designs. A
major bottleneck to reaching verification closure in such designs
is the disproportionate effort expended in crafting directed tests;
which is necessary to reach those behaviors that other, more
automated testing methods fail to cover. This paper defines a
novel language that can be used to generate targeted stimuli
for RTL logic and which mitigates the complexities of writing
directed tests. The main idea is to treat directed testing as a
meta-reasoning problem about simulation. Our language is both
formalized and prototyped as a proof-search strategy language
in rewriting logic. We illustrate its novel features and practical
use with several examples.

I. I

Methodologies for register transfer level (RTL) logic verifi-
cation typically involve a mixture of different techniques and
tools, including simulation, model checking, and equivalence
checking, among others. Employing a variety of tools from this
ecosystem produces the best results, but simulation-based tech-
niques still dominate the overall process. Constrained-random
simulation involves generating concrete stimulus by randomly
sampling from all possible inputs, modulo a set of user-given
constraints. As a result of research work, e.g., [1]–[4], and
through the development of hardware verification languages
(HVLs) supporting it, the constrained-random paradigm is
used extensively and is able to efficiently cover much of a
verification plan. However, the ability for constrained-randoms
to find new behaviors usually levels off after some time, and
what is left is a gap where, say, 10% of the simulation test
plan must be closed through other means. Lacking effective
means for doing directed testing therefore creates a verification
bottleneck where much more than 10% of the verification
effort is spent closing the final 10% of testing obligations.

Alternatives to directed and constrained-random testing,
e.g., [5], do help alleviate the problem; but as long as au-
tomated methods fail to close testing entirely, there will be an
important place for directed testing. In order to avoid being a
bottleneck, engineers need tools for crafting directed tests that
rely on a balance of high-level knowledge provided by the
engineer and automation provided by the computer. Indeed,
what is frustrating for an engineer is that while he/she may
have a clear notion of how a test should be constructed,
actually writing a directed test by hand is a tedious and

error prone proposition. Consider a microprocessor such as
the standard 5-stage “DLX” pipeline from [6] (see Fig. 1),
and suppose that we desire a test where a load to the data
cache is to a line that has recently been pushed out of the
cache and up the memory hierarchy, but has not made it to its
destination. The engineer will realize immediately that a test
has to be created with some locality and conflict in the memory
reference stream, but getting the latencies and addresses right
will be extremely difficult. Currently, engineers either write the
test entirely by hand, or they modify their random constraints
to achieve a more directed test.

We show in this paper that by making symbolic simulation
a first-class object that can be manipulated, stored, and used
programmatically, directed testing is made easier and more
effective. We formally define a language having this feature
and demonstrate through examples how it can alleviate the
most tedious aspects of crafting directed tests. In the example
above, the engineer is hindered in two ways, one being the
difficulty in knowing when the cache eviction will occur,
and the second being the difficulty in knowing to which
address. Our language allows the user to look at the future
state of the simulation to resolve the first problem, and has
a sophisticated interface for generating and solving symbolic
execution instances, thereby aiding in the second problem. In
Section III we provide several examples of directed tests with
simple strategies that use these features to good effect.

Formally, we treat the problem of crafting a directed test
as an exercise in proof strategy creation. A strategy in the
context of this paper is taken to mean a way of organizing
proof search; exactly in the same sense that ML [7] was
constructed for orchestrating proof search in LCF. Before the
advent of ML, proving a theorem Γ ` ϕ meant laboriously
applying the inference rules of LCF by hand to justify ϕ from
the axioms Γ. ML, or meta-language, made proofs first-class
objects that could be manipulated, stored, and used within a
general program searching for a particular proof of interest;
and made constructing proofs in LCF much easier. In the
context of formal verification of hardware, languages such as
ACL2 [8] and reFLect [9] also take advantage of this idea in
order to reason about how a hardware design behaves. In this
paper we show that, like formal verification, directed testing is
made easier by adding a meta-reasoning layer where symbolic
simulation becomes a first-class object. The judgments in our

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4821218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I$

PC

+
4

RF

ALU

D$

up the memory hierarchy

bypass lines

Fig. 1. A Sketch of the DLX Pipeline.

strategy language are elements of a theory generated from an
axiomatization of the formal semantics of the RTL language,
e.g., Verilog. Our inference rules aim to provide a simple
interface that allows the user to consider simulation at a high-
level under any input and state context, and also to manage
the complexity of these representations by resolving symbolic
expressions to partially concrete ones.

The paper is organized as follows. Section II rigorously
defines our strategy construction, including how program
semantics are axiomatized in rewriting logic, the definition of
the inference rules, and our version of the meta-language. In
Section III we provide a number of examples demonstrating
the novelty and effectiveness of our framework. A prototype
implementation and larger experiments are described in Sec-
tion IV, and Section V discusses related work and conclusions.

II. A S L F S G

Our strategy language is formalized within the mathematical
framework of rewriting logic [10], and takes advantage of the
fact that rewriting logic can be used to provide an operational
semantics to programming languages [11]. The development
involves three rewriting logic specifications, RRT L, RIR, and
RS TRAT , that build on one another and together define an
executable strategy for generating stimuli. RRT L provides an
axiomatization in rewriting logic of the semantics of the
RTL language, e.g., Verilog; and proofs in RRT L naturally
correspond to either concrete or symbolic simulations in the
RTL language. Therefore, the stimulus generation problem
becomes an exercise in proof search from RRT L. To provide
a clean interface for controlling this search, we define the
theory RIR. RIR uses reflection to meta-represent RRT L as a data
structure, R̂RT L, and defines a set of inference rules specialized
for the generation of stimuli. Finally, RS TRAT is a user-defined
specification that includes RIR and orchestrates the application
of the inference rules in the search for a computation and
stimulus satisfying some desired property.

The theories RRT L, RIR, and RS TRAT all have clear analogies
in the ML/LCF setup. To prove a theorem about group theory
in LCF, for example, we need to define the set of axioms
for groups, say Γ, and then use the inference rules of LCF
to establish our theorem, e.g., Γ ` x · 1 = x. The theory
RRT L serves the role of Γ, and RIR corresponds to LCF’s
inference rules. Finally, the same way that ML is the functional

framework in which an LCF tactic is written, the Maude
rewriting logic language provides the logical framework in
which the theory RS TRAT is written.

A. Preliminaries

Rewriting logic [10] is a computational logic for expressing
concurrency. A rewriting logic specification, R, is a triple
(Σ, E,R) with Σ a set of function symbols (e.g., 0, 1 as
constants and + as a binary function symbol), E a set of
equations characterizing the states of a system as an algebraic
data type (e.g., x + 0 = x), and R a collection of rewrite rules
defining the allowable transitions between equivalence classes
of states (e.g., [x] −→ [x+ 1] and [x] −→ [0] define a counter
with reset). More precisely, Σ defines a many-sorted set of
terms denoted TΣ(X) with X a denumerable set of variables
for each sort; a ground term (t ∈ TΣ ⊂ TΣ(X)) is a term
without variables. E contains equations of the form t = t′

with t, t′ ∈ TΣ(X) terms of the same sort; and R consists
of a set of rewrite rules of the form t −→ t′ if C, where,
again, t and t′ are terms with the same sort, C is a condition,
and t′ introduces no extra variables. Deduction in rewriting
logic establishes judgments of the form (Σ, E,R) ` t −→ t′,
indicating that state t′ is reachable from state t by rewriting
zero, one, or more rewrite steps modulo the equations E. It is
common to write −→ as −→∗ to emphasize this. For a more
thorough introduction to rewriting logic, see [10], [12].

B. The Theory RRT L

Rewriting logic provides a good formal basis for stimulus
generation because of its ability to cleanly axiomatize the
semantics of a wide range of programming languages [11].
For example, Java and Lisp have been given a semantics in
this way, and we are working on a rewriting logic semantics
for Verilog (see Section IV). For the purposes of this paper
we assume that RRT L = (Σ, E,R) provides an operational-style
semantics of the form described in [11] for an RTL language of
interest. This means that (Σ, E) defines an algebraic data type
corresponding to program configurations, and that R defines
a relation on program configurations that corresponds with
computation steps. A configuration is just a pair of a program,
p, and a state, σ, and is written 〈p, σ〉. Judgments in RRT L are
therefore of the form

RRT L ` 〈p, σ〉 −→ 〈p′, σ′〉

module example(i, clk);
input clk;
input [31:0] i;
reg [31:0] x,y;

always @(posedge clk) begin
x <= i;
y <= x + y;

end
endmodule

Fig. 2. Example Verilog Module.

and mean that 〈p′, σ′〉 is the result of stepping some number of
computation steps from 〈p, σ〉. A configuration does not have
to be a ground term; and when 〈p, σ〉 actually does contain
symbolic variables, we usually write 〈p, σ(x)〉 to emphasize
this fact. Furthermore, judgments involving non-ground terms
automatically correspond to symbolic simulation; no additional
infrastructure is necessary.

Suppose that RRT L defines a semantics for Verilog. It is
beyond the scope of this paper to define this semantics pre-
cisely, but we can give a high-level summary. A configuration
〈p, σ〉 contains in p the set of all active processes, and in σ a
representation of both the input stream and the current state of
all named nodes. As an example, let us consider the Verilog
module in Fig. 2 and see what sort of judgments we expect to
be able to prove from RRT L. We assume an initial state σ(x)
defined using the following Maude-like pseudo-code:

sigma = -- initial state of the configuration
istream: [("i",4)->x][("clk",5)->1]
store: ["clk"->0]["i"->0]["x"->0]["y"->0]

The input stream maps identifier, future-time pairs to input
values, e.g., [("i",4)->x] means that the identifier i will get
the symbolic value x in 4 time units (#4 in Verilog). Similarly,
the store maps identifiers to their current values. If RRT L is
defined correctly,

RRT L ` 〈p, σ(x)〉 −→ 〈p′, σ′(x)〉

should hold for each of the following σ′(x), all of which
are reachable in some number of computation steps from the
above σ(x).

sigma’ = -- update time 4 units
istream: [("clk",1)->1]
store: ["clk"->0]["i"->x]["x"->0]["y"->0]

sigma’ = -- update time 1 unit
istream: empty
store: ["clk"->1]["i"->x]["x"->0]["y"->0]

sigma’ = -- process always block
istream: empty
store: ["clk"->1]["i"->x]["x"->x]["y"->0]

C. The Theory RIR

As explained above, RIR provides an interface to search for
proofs that discharge our testing goals. Let us, then, define
precisely what we mean by a “testing goal”. Given a program

p and an initial state σ(x) with x ∈ X representing the
input stream, we define the stimulus generation problem to
be the finding of a ground substitution ρ : {x} −→ TΣ and a
configuration 〈p′, σ′〉 such that

Q
(
RRT L ` ρ(〈p, σ(x)〉) −→ 〈p′, σ′〉

)
;

where Q is a predicate describing the desired property of the
computation, e.g., ρ might instantiate x to a load instruction
and Q might insist that 〈p′, σ′〉 exhibits a cache load hit. The
process through which we search for a satisfying substitution
ρ and 〈p′, σ′〉 is controlled through RIR.

Based on the above definition we limit our consideration to
judgments of the form

RRT L ` ρ(〈p, σ(~x)〉) −→ 〈p′, σ′(~y)〉

where ~x, ~y are sets of variables, and ρ : ~x −→ TΣ(~y) is
a substitution. Note that ρ is not required to be a ground
substitution. As an equivalent but more suggestive form of
the above judgment we will write

RRT L ` 〈p, σ(~x)〉
ρ
{ 〈p′, σ′(~y)〉

The key idea is that we associate directly with every judgment
a substitution ρ that encodes the portion of the input stream
that has so far been resolved to partially instantiated values.

The theory RIR defines a set of four combinators for
producing judgments of the above form. The typings of these
combinators are

ID : Configuration -> Judgment
T : Judgment Judgment -> Judgment
I : Judgment Substitution -> Judgment
RW : Judgment -> Judgment

Each combinator corresponds to an inference rule given in
Fig. 3. The ID rule generates a judgment from an initial
configuration and is sound by virtue of the identity inference
rule from rewriting logic [10]. In RIR it is defined as

ID(< P, SIGMA >) = < P, SIGMA, id, P, SIGMA >

where we use matching to get the components P and SIGMA
from the argument configuration, and the resulting judgment
is written as a five-tuple. Capital letters are used for variables,
and id is a constant symbol denoting the identity substitution.
The I rule allows one to further instantiate an input stream by
composing ρ with another, arbitrary substitution ρ′. This rule
follows from the fact that rewriting is stable under substitution,

ID
t

id
{ t

t
ρ1
{ t′ t′

ρ2
{ t′′ T

t
ρ2◦ρ1
{ t′′

t
ρ
{ t′ I

t
ρ′◦ρ
{ ρ′(t′)

t
ρ
{ t′ t′ −→1 t′′ RW

t
ρ
{ t′′

Fig. 3. Inference Rules for Building Stimulus Generation Strategies.

i.e., t −→ t′ implies ρ(t) −→ ρ(t′) for any substitution ρ. It is
defined as

compose : Substitution Substitution -> Substitution
compose(RHO1, RHO2) = ... -- compose substitutions

I(<P1, SIGMA1, RHO1, P2, SIGMA2>, RHO2)
= <P1, SIGMA1, compose(RHO2, RHO1), P2, SIGMA2>

The T rule allows for two judgments to be combined by com-
posing their component substitutions. It is sound by virtue of
transitivity in rewriting logic and stability under substitution.

T(<P1, SIGMA1, RHO1, P2, SIGMA2>,
<P2, SIGMA2, RHO2, P3, SIGMA3>)
= <P1, SIGMA1, compose(RHO2, RHO1), P3, SIGMA3>

T(JMNT1, JMNT2) = JMNT1 [owise]

In the above definition we use matching to ensure that the
second configuration of the first judgment matches the first
configuration of the second judgment, which is required for
transitive composition. In order to ensure that T is well-defined
in all cases, the second part of the definition defaults to
returning the first judgment when the two arguments do not
match. The RW rule allows a judgment to be extended by a
single rewrite step (computation step). This one step rewrite
relation is denoted −→1, and t −→1 t′ derivations are formed
using the inference rules of rewriting logic [10].

RW(<P1, SIGMA1, RHO, P2, SIGMA2>) =
let <P3, SIGMA3> :=
metaRewrite(oR-RTL, <P2, SIGMA2>, 1)

in <P1, SIGMA1, RHO, P3, SIGMA3>

RW(JMNT) = JMNT [owise]

The constant oR-RTL is the object-level representation
of RRT L, i.e., it is the meta-representation R̂RT L. The
metaRewrite function is borrowed from Maude; its takes a
meta-represented rewrite theory, a term to rewrite, and a value
for the number of steps to rewrite (see [12, §14.4.3]). The
reason for the extra default case is that metaRewrite is a
partial function. It will only produce a result if the term can
actually be rewritten.

It is worth noting that our inference system does not expose
the inference rules of rewriting logic directly to the user. This
allows for a user-interface that treats simulation only at a high-
level, something which seems appropriate for directed testing.
Exposing the inference rules of rewriting logic directly to the
user would yield a full formal verification environment.

D. The Theories RS TRAT : An Example

While RRT L and RIR are essentially pre-defined and fixed
for the user, recall from our ML/LCF analogy that RS TRAT is

fully user-defined, just like an LCF tactic written in ML. In this
section we consider writing a strategy RS TRAT for the example
module in Fig. 2. As a testing goal, assume that we add to the
module a new signal hit and a continuous assignment

assign hit = x == y && y[1:0] == 0;

Of course, the goal is to generate an input sequence that forces
hit to be 1. Furthermore, let us assume an initial configuration
σ(x) with the input stream entirely symbolic

sigma = -- initial configuration
istream: x
store: ["clk"->0]["i"->0]["x"->0]["y"->1]

["hit"->0]

Writing a directed test to hit the above goal is not difficult,
but this example illustrates a problem similar to the one given
in the introduction. Recall that our goal in the introduction
was to hit a memory value while it is being pushed out of
the cache and up the hierarchy. The main difficulty was that
we needed to look into the future state of the simulation in
order to plan when we should push a matching load into the
instruction stream. Otherwise, by the time we see the cache
line eviction it will be too late to start the matching load. The
same is true in our example: once we see that y[1:0] == 0,
it is too late to latch a value into x.

Our strategy is very simple. It will generate sequential val-
ues for i, 1, 2, 3, . . . ; monitor for the condition y[1:0] == 0;
and then backtrack and change the previous value of i to
match the current value of y. It can be implemented in just a
few lines of Maude code

strat(JMNT, V, T) =
let RHOA := [x->[("clk", 1+T)->0]

[("i" , 4+T)->V]
[("clk", 5+T)->1]x]

JMNT’ := go(I(JMNT,RHOA))
VALY := getValOf("y", JMNT’)
RHOB := [x->[("clk", 1+T)->0]

[("i" , 4+T)->VALY]
[("clk", 5+T)->1]]

in if (VALY % 4 == 0)
then go(I(JMNT, RHOB))
else strat(JMNT’, V+1, T+5)

The substitutions RHOA and RHOB map the variable x to a
partial concrete input stream that pumps the clock for one
cycle and assigns the next value of the input i. The remainder
of the input stream is delayed by ensuring that the substitution
maps x to a non-ground term. The function go is assumed
to apply the RW combinator until all pending concrete input
stream events are handled and the input stream becomes
entirely symbolic. getValOf("y", JMNT’) is assumed to get
the symbolic value currently associated to y in the store of

the computation denoted by JMNT’. In the case of the above
strategy, the value associated to y will always be concrete,
because RHOA and RHOB are constructed such that clk and i
are concrete. If we find that the condition on y is met, then we
backtrack to the previous step and apply RHOB to JMNT using
the I rule; otherwise we proceed by applying RHOA to JMNT’,
again via the I rule. The strategy gets executed as follows

-- call 1: strat(ID(CNFG), 1, 0)
RHOA1 = [x->[("clk" 1)->0][("i",4)->1]

[("clk",5)->1]x]
-- x <= 1, y <= 1 in JMNT’, recurse

-- call 2: strat(JMNT, 2, 5)
RHOA2 = [x->[("clk" 6)->0][("i",9)->2]

[("clk",10)->1]x]
-- x <= 2, y <= 2 in JMNT’, recurse

-- call 3: strat(JMNT, 3, 10)
RHOA3 = [x->[("clk" 11)->0][("i",14)->3]

[("clk",15)->1]x]
RHOB3 = [x->[("clk" 11)->0][("i",14)->4]

[("clk",15)->1]]
-- x <= 3, y <= 4 in JMNT’, finish

-- final stimulus
compose(RHOB3, RHOA2, RHOA1)
= [x->
[("clk" 1) ->0] [("i",4) ->1] [("clk",5) ->1]
[("clk" 6) ->0] [("i",9) ->2] [("clk",10)->1]
[("clk" 11)->0] [("i",14)->4] [("clk",15)->1]]

III. E S D T

This section gives four more examples demonstrating our
strategy language and how it can be used to good effect. The
examples highlight novel features of our language that are
not possible via constrained randoms or within widely used
HVLs such as SystemVerilog. In particular we take advantage
of having computations as first-class objects and, in addition,
exploit the control that our strategy language provides over
the generation and solving of symbolic expressions. The ex-
amples combine the application of a user’s high-level design
understanding with automated or programmatic methods used
to discharge the most tedious aspects of writing a directed test.

A. Example 1: Extended Constraint Solving

An important feature of many HVLs is the ability to
the define input constraints used during constrained-random
testing; e.g., you can force the source and destination register
of the next instruction to be equal. Having computations as
first-class, user-controlled objects, as well as the ability to
solve symbolic expressions, we can provide an extended form
of user input constraints that look some number of clock cycles
into the future state of the simulation. Suppose, recalling the
microprocessor of Fig. 1, that we want to test the ALU’s adder
by running it on all combinations of positive and negative
operands. Our language allows the user to constrain the
register operands of the next instruction so that, for example,
one reads a positive value from the register file and the other
reads a negative value during the decode stage.

In order to demonstrate how our strategy language enables
the solving of internal constraints such as those in the example
just described, consider the following snippet of Verilog code

always @(posedge clk) begin
x <= i ˆ x;
y <= x ˆ 32’hDEADBEEF;

end

The goal is to direct the next value of input i so that when
it propagates to y, y takes some chosen value, say 0. Just as
the ALU inputs in the DLX pipeline are internal signals that
need to be constrained relative to an input event that occurred
some number of clock cycles in the past, we can imagine that
y may feed into a sub-circuit where 0 is a corner case that
needs to be tested. A simple strategy to generate the required
stimulus is given below.

strat(JMNT) =
let RHO := [x->[("clk",0)->0]

[("i" ,1)->x1]
[("clk",2)->1]
[("clk",3)->0]
[("clk",4)->1]]

JMNT’ := go(I(JMNT, RHO))
PHI := eq(getValOf("y", JMNT’), 0)
RHO’ := solve(PHI)

in I(JMNT, compose(RHO’, RHO))

Understanding that it takes two cycles for the input i to affect
the value at y, the above strategy first defines a substitution
which, when applied to an initial configuration with an entirely
symbolic input stream, pumps the clock for two cycles, leaving
the other input, i, completely symbolic. Pumping the simula-
tion and constructing the symbolic constraint on y yields PHI.
For example, if we assume that both variables x and y have
value 32′h77777777 in the initial state, the resulting symbolic
expression will be (roughly)

(x1 ˆ 32’h77777777 ˆ 32’hDEADBEEF) = 0

SAT solving can be used to solve this expression and force i
at cycle 0 to be 32’hA9DAC998, as required.

B. Example 2: Backtracking
Having computations as first-class objects also opens up

novel opportunities for backtracking-based strategies. A com-
mon context where backtracking is useful is when the latency
of an operation is difficult to determine. Suppose that one
wants to test the register bypassing paths in the DLX pipeline,
say from the writeback stage to the execute stage. Due to
interlocks, knowing what instruction will be in which pipeline
stage every cycle is non-trivial. However, a simple and likely
to be effective method for generating a satisfying test is to:
(a) generate a random, concrete ALU instruction, (b) simulate
until it reaches the execute stage, (c) check the destination
register in writeback, and then (d) backtrack to change the
original ALU instruction to match, and finally simulate again.
Such a strategy is not guaranteed to succeed; for example,
if writeback has a store instruction then it does not have a
destination register, but it is likely to succeed and requires no
SAT solving, so it is efficient.

As a second example, suppose that we decide to add a
victim cache to the DLX data cache and that we need a test
that causes a victim cache hit. Writing a directed test for this
will be difficult, because it depends on the interaction of a
set of memory operations and the cache organization. We can
use backtracking by simply: (a) generating random memory
traffic, (b) monitoring the victim cache for a valid entry, and (c)
programmatically backtracking 1, 2, etc. cycles and changing
the input instruction to a load to the same address. The idea
is to programmatically search for the right number of cycles
to backtrack, so that the latency of the new load matches with
the victim cache entry.

Backtracking is implemented in a strategy simply by storing
a symbolic simulation context so that it can be reverted to
later. In the caching example above, we would store all of the
simulation contexts from 1, 2, etc. cycles previous and revert
to them iteratively as we search for the correct latency for
a load instruction to collide with the victim cache entry. To
demonstrate concretely how backtracking can be implemented,
consider the following “maze”.

always @(posege clk) begin
case (st)
‘S1 : st <= i ? ‘S2 : ‘S3;
‘S2 : st <= i ? ‘S1 : ‘S4;
‘S3 : st <= i ? ‘S5 : ‘S4;
‘S4 : st <= i ? ‘S5 : ‘OUT;
‘S5 : st <= i ? ‘S2 : ‘S3;
‘OUT : st <= ‘OUT;

endcase
end

The goal is to find an input sequence that forces st to equal
‘OUT; and we can assume that we start in state ‘S1. An
efficient strategy first: (a) checks if the current state has been
visited and backtracks if yes, (b) tries value 0 on i and
recurses, if this fails then the strategy tries 1 and recurses.
Symbolic simulation contexts are stored as the recursion of
strat and strat’ unfolds.

-- second argument is ‘‘visited states’’
strat(JMNT, S, T) =
let ST := getValOf("st", JMNT)
in if (ST in S) or (ST == OUT)
then (JMNT, S ST)
else strat’(JMNT, S ST, T)

strat’(JMNT, S, T) =
let RHO0 := [x->[("i" ,T+1)->0]

[("clk",T+5)->0]
[("clk",T+10)->1]x]

RHO1 := [x->[("i" ,T+1)->1]
[("clk",T+5)->0]
[("clk",T+10)->1]x]

(JMNT’,S’) := strat(go(I(JMNT,RHO0)), T+10)
in if (OUT in S’)
then (JMNT’,S’)
else strat(go(I(JMNT,RHO1)), S, T+10)

C. Example 3: Localized Symbolic Execution

High-level knowledge provided by the user can reduce the
complexity of the symbolic expressions sent to SAT. Indeed,

simple manipulations to localize the symbolic expression
provide a balance between user intervention and state space
explosion. Suppose that, for example, we want to generate a
test for DLX where we have a partial cache load hit, meaning
that the load spans two lines with one being in the cache
and the other not. Full symbolic simulation may easily result
in an intractable problem. However, if the user provides a
concrete opcode (i.e., for a load instruction) and a base register,
the problem becomes markedly simpler. Now, the symbolic
problem just involves finding an appropriate offset value.

We demonstrate how this technique gets expressed as a
strategy by considering a simple ALU.

always @(posedge clk) begin
case (op)
2’b0 : out <= v1 + v2;
2’b1 : out <= v1 * v2;
2’b2 : out <= v1 ˆ v2;
2’b3 : out <= v1 == 0;

endcase
end

The goal is to force the output to be 0, and op, v1, and v2 are
all inputs. To localize the symbolic execution, we will force
it to consider just one of the four operations provided by the
ALU. This is accomplished by forcing the input op to be a
concrete value, specifically we give the value 2, meaning that
we only consider the exclusive-or operation provided by the
ALU. In addition, we will set v1 to be an arbitrary constant
value, 0. The strategy just builds the initial substitution, does
symbolic simulation, and solves.

strat(JMNT) =
let RHO := [x->[("op" ,1)->2]

[("v1" ,1)->0]
[("v2" ,1)->x1]
[("clk",5)->0]
[("clk",10)->1]]

JMNT’ := go(I(JMNT,RHO))
PHI := eq(getValOf("out", JMNT’), 0)
RHO’ := solve(PHI)

in I(JMNT, compose(RHO’, RHO))

D. Example 4: Another Localized Symbolic Execution

Internal pipeline registers sometimes map very directly
to input constraints. For example, in the DLX pipeline the
opcodes and source and target registers are carried along
from the fetch stage through internal pipeline registers. The
pipeline stalls an instruction in the decode stage whenever it
is dependent on the instruction in the execute stage and that
instruction is a memory instruction (load). A user can take
advantage of this high-level knowledge by: (a) constructing
a configuration with these internal registers having symbolic
variables, (b) doing symbolic simulation on this configuration,
(c) solving the constraint for those variables, and finally (d)
mapping the solved values back to an input stream.

As a concrete example, consider the following Verilog
snippet.

assign e = ((y + z) & 3) == 0;

always @(posedge clk) begin
x <= i;
y <= x;
z <= y;
end

and suppose that we want an input stream that eventually
witnesses e get set to 1. Our strategy just follows the steps (a) –
(d) above, so that we first create an initial configuration where
y and z are given symbolic values y and z; followed by doing
symbolic simulation and solving for y and z in the symbolic
expression for e; this portion is accomplished as follows

stepsAToC =
let SIGMA := istream: [("clk",5)->0][("clk",10)->1]

store: ["i"->0]["e"->0]
["x"->x]
["y"->y]
["z"->z]

JMNT := go(ID(<prgm,SIGMA>))
PHI := getValOf("e", JMNT)

in solve(PHI)

Finally, with the resulting substitution, say ρ, we would simply
use ρ(z) as the first cycle’s input, and we use ρ(y) as the second
cycle’s input.

IV. T I E
We have implemented a prototype of our strategy language

using the Maude system [12], which consists of both a
language for defining rewriting logic specifications and an in-
terpreter for executing these specifications. This section reports
on two larger experiments using this tool. The corresponding
RRT L was developed for Verilog; and we employ the SMT
solver STP [13] to resolve queries to solve. Although we do
not have space enough for details, we emphasize that RRT L

is not limited to just the so-called synthesizable subset of
Verilog, as other tools are, and exposes all concurrency/non-
determinism in the language. It is also worth noting that
queries to STP occur outside the otherwise purely rewriting
logic formulation. This is simply a matter of pragmatics
as solvers such as STP are highly optimized and efficient
at discharging our bit-vector-based queries. At present our
prototype is rather cumbersome to use, e.g., interfacing with
STP is done manually; however, based on our experience
building the prototype we are now developing a much more
substantial implementation which is faster, more robust, and
is easy to use.

Our first experiment is based on the implementation
from [14] of an Internet Protocol (IP) lookup. The hardware
receives input packets and uses the header information to
determine where they should be routed. To avoid massive
on-chip memories, a hierarchical table is implemented in
[14] that trades latency of individual lookups for a smaller
memory size. The latency of an IP lookup roughly amounts
to the number of memory reads needed to resolve it, and
so any given lookup can be re-circulated through the system
anywhere from once to some number of times bounded by a
maximum threshold, say t. A reasonable set of coverage goals
is to find lookups exercising each of the 1 – t recirculation

cases. Considering just the case where 3 memory reads are
needed, our first strategy applied full symbolic simulation
for 10 cycles and then queried STP. This experiment yielded
28, 104 lines of input to STP and required 6.5 seconds to
solve on an Intel Core 2 Duo, 2.4GHz with 2GB RAM.
Although 6.5 seconds is reasonably fast, we can perform a
small modification to our strategy that generates the test much
more quickly. Instead of doing full symbolic simulation we
instead keep just the first cycle’s input symbolic, but for cycles
2 – 9 we provide arbitrary concrete lookups. When we do this
we generate a symbolic problem that is 8, 737 lines of STP
input and requires just 0.5 seconds to solve. Both strategies
return concrete stimulus that hits the coverage goal. Note that
high-level knowledge about the design, i.e., that it is one-
input-one-output, was required to make this simplification and
understand why it should succeed.

Our second example is based on the sort of architecture and
challenges one expects in a microprocessor. The Verilog is split
into three modules, u1 – u3, that are strung together to form
a pipeline; the pipeline takes one 42-bit input each cycle that
is comprised of a 10-bit “opcode” and a 32-bit data payload.
u1 models the front-end of a microprocessor as a high flop
count device with regular, but non-fixed latency that fetches
and buffers instructions before staging them for execution. The
update function for this state is very complicated and depends
on most of the microprocessor. We have modeled u1 via a
large RAM that gets updated randomly each cycle and use
the data from the RAM to determine a small skew in pushing
the inputs to u2, which models a scheduler. The scheduler
is mainly distinguished from the front-end by having a less
predictable latency for any given instruction. u2 is therefore
comprised of a buffer that gets sorted each cycle based on the
contents of the RAM from u1. The keys for sorting are given
by the 10-bit opcode of each input. Execution, u3, corresponds
to arithmetic or a cache lookup, and we have modeled it as a
relatively simple Boolean function of a 32-bit register which
is updated with a new random value every cycle. The whole
design is about 200 lines of Verilog, but uses loops, arrays,
negative clock edges, and other behavioral constructs.

Consider a coverage goal that is mostly concerned with
execution and that is only somewhat sensitive to latency, e.g.,
a cache load hit mostly depends on the address of the load
instruction rather than on its latency in reaching the cache.
However, most of the logic that gets used before execution is
determining the latency of the load. Therefore, what we want
in a strategy is a way of disregarding the latency aspect and
instead use the solver’s power just to resolve the address for
us. If we just use symbolic simulation on our design for 10
cycles, the result is a 72, 795 input file for STP requiring over
two hours to solve, after which we let it time-out. Now, in a
real system a more sophisticated mechanism would be needed,
but in our case we can use high-level knowledge of the design
to create a strategy that distinguishes the top 10-bits, used to
control latency, from the bottom 32-bits, corresponding with
address. That is, we make the upper 10-bits some arbitrary
value, and leave the lower 32-bits symbolic. This simple

strategy produces a symbolic problem that has 10, 028 lines of
input, is solved in 10 seconds, and yields exactly the stimulus
we need. That is, a sequence of 42-bit values such that the
first one output from u3 has an address matching that cycle’s
randomly determined “coverage value”.

V. RW C

Recent improvements in simulation-based RTL verification
are largely concerned with pushing forward the constrained-
random paradigm e.g., see [1]–[4]. These advances have been
crucial in making constrained-randoms the most important,
effective method through which functional verification now
takes place. Far less has been done toward improving directed
testing methods, and as far as we know our work is the first
to specifically address the deficiency in languages for crafting
directed tests. Ho et al. [5] describe an automatic method for
generating targeted stimulus which has been very successful,
but due to capacity limits of the underlying formal engines it
cannot be relied upon to discharge all of the testing obligations
after constrained-randoms level off. Software-oriented testing
methods such as [15], [16] have also been very successful, but
the primary mechanism through which they work, enumerating
path constraints, does not appear to be easily applied to hard-
ware and languages such as Verilog. Proof-based verification
methods are widely used for certain classes of problems,
e.g., see [17], but have not been able to unseat testing from
its preeminent position. The reFLect [9] language utilizes
reflection extensively, including to reason about embedded
RTL languages. However, the intended application of reFLect is
primarily theorem-proving. Finally, we note that strategies of
a different sort occur widely in rewriting/program evaluation,
although these are used for a very different purpose. A general
strategy language that can be used to control rewriting in
Maude is defined in [18].

Automated methods handle much of the work in RTL logic
verification, but what these methods do not handle can turn
into a bottleneck when engineers lack the tools to discharge
testing obligations themselves. Therefore, improving the way
engineers create directed tests can have a direct impact on
the time it takes to finish verifying a design. In this paper
we presented a novel language to aid in the creation of
directed tests for RTL logic verification, mitigating many
tedious aspects currently involved in creating such tests. Our
language makes symbolic simulation and the input stimulus
context a first-class object and supports advanced constraint
solving mechanisms such as SAT and SMT solving. We have
demonstrated a number of directed testing examples where
these features are useful. In the future we plan to build an
easier to use tool, do more extensive case studies, and look
at other strategy language features that may be helpful for
creating directed tests. We are also interested in the possibility
of an interactive symbolic simulator for this task.

A

We gratefully acknowledge the help of Sean Keller, Elliott
Fleming and Nirav Dave, all of whom provided detailed com-

ments and discussion on earlier drafts. We are also thankful
for discussions with Vijay Ganesh and for his help with STP.

R
[1] H. Kim, H. Jin, K. Ravi, P. Spacek, J. Pierce, B. Kurshan, and

F. Somenzi, “Application of Formal Word-Level Analysis to Constrained
Random Simulation,” in CAV ’08: Proceedings of the 20th interna-
tional conference on Computer Aided Verification. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 487–490.

[2] N. Kitchen and A. Kuehlmann, “Stimulus Generation for Constrained
Random Simulation,” in ICCAD 2007. IEEE/ACM International Confer-
ence on Computer-Aided Design, Nov. 2007, pp. 258–265.

[3] I. Wagner, V. Bertacco, and T. Austin, “Microprocessor Verification
via Feedback-Adjusted Markov Models,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 6,
pp. 1126–1138, June 2007.

[4] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv, “Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification,” Design & Test of Computers, IEEE,
vol. 21, no. 2, pp. 84–93, Mar-Apr 2004.

[5] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long, “Smart Simulation Using Collaborative Formal
and Simulation Engines,” in ICCAD ’00: Proceedings of the 2000
IEEE/ACM international conference on Computer-aided design. Pis-
cataway, NJ, USA: IEEE Press, 2000, pp. 120–126.

[6] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[7] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth, “A
Metalanguage for Interactive Proof in LCF,” in POPL ’78: Proceedings
of the 5th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. New York, NY, USA: ACM, 1978, pp. 119–130.

[8] M. Kaufmann, J. S. Moore, and P. Manolios, Computer-Aided Reason-
ing: An Approach. Norwell, MA, USA: Kluwer Academic Publishers,
2000.

[9] J. Grundy, T. F. Melham, and J. W. O’Leary, “A reflective functional
language for hardware design and theorem proving,” J. Funct. Program.,
vol. 16, no. 2, pp. 157–196, 2006.

[10] J. Meseguer, “Conditional Rewriting Logic as a Unified Model of
Concurrency,” Theor. Comput. Sci., vol. 96, no. 1, pp. 73–155, 1992.

[11] J. Meseguer and G. Roşu, “The Rewriting Logic Semantics Project,”
Theoretical Computer Science, vol. 373, no. 3, pp. 213–237, 2007.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott, All About Maude - A High-Performance Logical Framework,
ser. LNCS. Springer, 2007, vol. 4350.

[13] V. Ganesh and D. L. Dill, “A Decision Procedure for Bit-Vectors and
Arrays,” in CAV, ser. Lecture Notes in Computer Science, W. Damm
and H. Hermanns, Eds., vol. 4590. Springer, 2007, pp. 519–531.

[14] Arvind, R. S. Nikhil, D. L. Rosenband, and N. Dave, “High-level
Synthesis: An Essential Ingredient for Designing Complex ASICs,” in
ICCAD. IEEE Computer Society / ACM, 2004, pp. 775–782.

[15] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated
Random Testing,” in PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation. New
York, NY, USA: ACM, 2005, pp. 213–223.

[16] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs,” in OSDI, R. Draves and R. van Renesse, Eds. USENIX
Association, 2008, pp. 209–224.

[17] D. M. Russinoff, “A Case Study in Fomal Verification of Register-
Transfer Logic with ACL2: The Floating Point Adder of the AMD
AthlonTM Processor,” in FMCAD, ser. Lecture Notes in Computer
Science, W. A. H. Jr. and S. D. Johnson, Eds., vol. 1954. Springer,
2000, pp. 3–36.

[18] S. Eker, N. Martı́-Oliet, J. Meseguer, and A. Verdejo, “Deduction,
strategies, and rewriting,” Electr. Notes Theor. Comput. Sci., vol. 174,
no. 11, pp. 3–25, 2007.

