25,700 research outputs found

    Logic, Languages, and Rules for Web Data Extraction and Reasoning over Data

    Get PDF
    This paper gives a short overview of specific logical approaches to data extraction, data management, and reasoning about data. In particular, we survey theoretical results and formalisms that have been obtained and used in the context of the Lixto Project at TU Wien, the DIADEM project at the University of Oxford, and the VADA project, which is currently being carried out jointly by the universities of Edinburgh, Manchester, and Oxford. We start with a formal approach to web data extraction rooted in monadic second order logic and monadic Datalog, which gave rise to the Lixto data extraction system. We then present some complexity results for monadic Datalog over trees and for XPath query evaluation. We further argue that for value creation and for ontological reasoning over data, we need existential quantifiers (or Skolem terms) in rule heads, and introduce the DatalogĀ± family. We give an overview of important members of this family and discuss related complexity issues

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Time-Aware Probabilistic Knowledge Graphs

    Get PDF
    The emergence of open information extraction as a tool for constructing and expanding knowledge graphs has aided the growth of temporal data, for instance, YAGO, NELL and Wikidata. While YAGO and Wikidata maintain the valid time of facts, NELL records the time point at which a fact is retrieved from some Web corpora. Collectively, these knowledge graphs (KG) store facts extracted from Wikipedia and other sources. Due to the imprecise nature of the extraction tools that are used to build and expand KG, such as NELL, the facts in the KG are weighted (a confidence value representing the correctness of a fact). Additionally, NELL can be considered as a transaction time KG because every fact is associated with extraction date. On the other hand, YAGO and Wikidata use the valid time model because they maintain facts together with their validity time (temporal scope). In this paper, we propose a bitemporal model (that combines transaction and valid time models) for maintaining and querying bitemporal probabilistic knowledge graphs. We study coalescing and scalability of marginal and MAP inference. Moreover, we show that complexity of reasoning tasks in atemporal probabilistic KG carry over to the bitemporal setting. Finally, we report our evaluation results of the proposed model

    Modular Web Queries ā€” From Rules to Stores

    Get PDF
    Even with all the progress in Semantic technology, accessing Web data remains a challenging issue with new Web query languages and approaches appearing regularly. Yet most of these languages, including W3C approaches such as XQuery and SPARQL, do little to cope with the explosion of the data size and schemata diversity and richness on the Web. In this paper we propose a straightforward step toward the improvement of this situation that is simple to realize and yet effective: Advanced module systems that make partitioning of (a) the evaluation and (b) the conceptual design of complex Web queries possible. They provide the query programmer with a powerful, but easy to use high-level abstraction for packaging, encapsulating, and reusing conceptually related parts (in our case, rules) of a Web query. The proposed module system combines ease of use thanks to a simple core concept, the partitioning of rules and their consequences in flexible ā€œstoresā€, with ease of deployment thanks to a reduction semantics. We focus on extending the rule-based Semantic Web query language Xcerpt with such a module system though the same approach can be applied to other (rule-based) languages as well

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Reactive Rules for Emergency Management

    Get PDF
    The goal of the following survey on Event-Condition-Action (ECA) Rules is to come to a common understanding and intuition on this topic within EMILI. Thus it does not give an academic overview on Event-Condition-Action Rules which would be valuable for computer scientists only. Instead the survey tries to introduce Event-Condition-Action Rules and their use for emergency management based on real-life examples from the use-cases identified in Deliverable 3.1. In this way we hope to address both, computer scientists and security experts, by showing how the Event-Condition-Action Rule technology can help to solve security issues in emergency management. The survey incorporates information from other work packages, particularly from Deliverable D3.1 and its Annexes, D4.1, D2.1 and D6.2 wherever possible

    Twelve Theses on Reactive Rules for the Web

    Get PDF
    Reactivity, the ability to detect and react to events, is an essential functionality in many information systems. In particular, Web systems such as online marketplaces, adaptive (e.g., recommender) systems, and Web services, react to events such as Web page updates or data posted to a server. This article investigates issues of relevance in designing high-level programming languages dedicated to reactivity on the Web. It presents twelve theses on features desirable for a language of reactive rules tuned to programming Web and Semantic Web applications
    • ā€¦
    corecore