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Abstract. This paper gives a short overview of specific logical approaches to
data extraction, data management, and reasoning about data. In particular, we
survey theoretical results and formalisms that have been obtained and used in the
context of the Lixto Project at TU Wien, the DIADEM project atthe University
of Oxford, and the VADA project, which is currently being carried out jointly by
the universities of Edinburgh, Manchester, and Oxford. We start with a formal ap-
proach to web data extraction rooted in monadic second orderlogic and monadic
Datalog, that gave rise to the Lixto data extraction system.We then present some
complexity results for monadic Datalog over trees and for XPath query evalua-
tion. We further argue that for value-creation and for ontological reasoning over
data, we need existential quantifiers (or Skolem terms) in rule heads, and intro-
duce the Datalog± family. We give an overview of important members of this
family and discuss related complexity issues.

1 Introduction

“The web is the largest database” is a sentence one nowadays can hear quite frequently.
However, this statement is not really true. The web, including the deep web, is certainly
the largest data repository, but not adatabase. In a database, data is homogeneously
formatted, and can be retrieved efficiently and uniformly via query languages. Web
data, even when it is about the same type of items (say, used cars or any other consumer
good) appears in a different format on many different websites. There is, moreover, no
uniform query or retrieval mechanism. In order to be able to query such data, we thus
have to extract it from the different web sources, recast it into a single format, and, if
appropriate, store it into a single database. This process is calledweb data extraction,
and the programs that extract data from the web are calledwrappers.

The wrapping problem is often seen as a software and web-engineering task, but
has also been addressed by a substantial amount of system-oriented research work, see
e.g. TSIMMIS [47], FLORID [38], DEByE [36], W4F [48], XWrap [37], Lixto [4, 5,
24] and Diadem [20], some of which led to commercial spin-outs. Moreover, in [23],
a logical theory of data extraction has been developed that has given rise to consider
monadic Datalog as a logical language for data extraction, which has, in turn, been
at the base of a more practical logical language implementedin the Lixto system. In
Section 2, which is a slightly shortened exposition of material from [24] (which in
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turn summarizes [23]), we will give a short survey of the logical approach to web data
extraction.

Web documents in HTML are essentially labeled trees, where many labels cor-
respond to formatting instructions for data presentation (such as<table>, <td>, or
<header1>, and so on) and where the actual data items reside at the leaf level. Thus,
rather than imposing a logical structure on the data, the labels in HTML take care of the
display format and make sure that a web page displayed in a browser meets the eye of
the beholder. However, XML4, a well-known language quite similar to HTML, allows
one to impose a tree-shaped logical structure on data. From aconceptual point of view,
this generalizes the “flat” relational data format. Specialquery language such as XPath5,
XQuery6, and XSLT7 have been designed for XML databases. With some minor addi-
tions, monadic Datalog can be used to simulate the core fragment of XPath [22], which
indicates that core XPath is not more complex than monadic Datalog. This observa-
tion gave rise to complexity studies of XPath evaluation whose basic results will be
summarized in Section 3.

Once data is extracted, one usually wants to combine it with other extracted data and
corporate data from local databases. In addition, some cleaning, reasoning and further
provisioning tasks have to be performed. All this together is calleddata wrangling[21].
Apparently, languages for data wrangling purposes should be able to perform complex
data transformation, data exchange, data integration and ontological reasoning tasks.
However, Datalog, let alone monadic Datalog, is not powerful enough for performing
such tasks. In Section 4, we discuss that the crucial limitation of Datalog is the fact that
is not able to infer the existence of new objects, which are not already in the extensional
database. We then proceed to introduce Datalog±, a family of logical languages that
extend Datalog with key modeling features such as existential quantifiers in rule heads,
which in turn allows as to infer the existence of new objects.We give an overview of
important members of this family and discuss related complexity issues.

2 Logical Foundations of Web Data Extraction

2.1 Desiderata for Wrapping Languages

To allow for a foundational study of wrapping languages, we first need to establish
criteria that allow us to compare such languages. In [23], four desiderata were proposed
that a good wrapping language should satisfy. In particular, such a language should

(i) have a solid and well-understood theoretical foundation,
(ii) provide a good trade-off between complexity and the number of practical wrappers

that can be expressed,
(iii) be easy to use as a wrapper programming language, and
(iv) be suitable for incorporation into visual tools.

4 https://www.w3.org/TR/1998/REC-xml-19980210
5 http://www.w3c.org/TR/xpath/
6 https://www.w3.org/XML/Query/
7 http://www.w3.org/TR/xslt
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The core notion that we base our wrapping approach on is that of an information
extraction function, which takes a labeled unranked tree (representing a Web document)
and returns a subset of its nodes. A wrapper is a program whichimplements one or
several such functions, and thereby assigns unary predicates to document tree nodes.
Based on these predicate assignments and the structure of the input tree, a new data tree
can be computed as the result of the information extraction process in a natural way,
along the lines of the input tree, but using the new labels andomitting nodes that have
not been relabeled (by some form of tree minor computation).

Given a set of information extraction functions, one natural way to wrap an input
treet is to compute a new label for each noden (or filter outn) as a function of the pred-
icates assigned using the information extraction functions. The output tree is computed
by connecting the resulting labeled nodes using the (transitive closure of) the edge rela-
tion of t, preserving the document order oft. In other words, the output tree contains a
node if a predicate corresponding to an information extraction function was computed
for it, and contains an edge from nodev to nodew if there is a directed path fromv
to w in the input tree, bothv andw were assigned information extraction predicates,
and there is no node on the path fromv to w (other thanv andw) that was assigned
information extraction predicates. We do not formalize this operation here; the natural
way of doing this is obvious.

That way, we can take a tree, re-label its nodes, and declare some of them as irrele-
vant, but we cannot significantly transform its original structure. This coincides with the
intuition that a wrapper may change the presentation of relevant information, its pack-
aging or data model (which does not apply in the case ofWeb wrapping), but does not
handle substantial data transformation tasks. We believe that this captures the essence
of wrapping.

We assume unary queries in monadic second-order logic (MSO)over trees as the
expressiveness yardstick for information extraction functions. MSO over trees is well-
understood theory-wise [13, 16, 18, 50] (see also [51]) and is quite expressive. In fact, it
is considered by many as the language of choice for defining expressive node-selecting
queries on trees (see e.g. [23, 35, 46, 45]; [49] acknowledges the role of MSO but argues
for even strongerlanguages). In our experience, when considering a wrappingsystem
that lacks this expressive power, it is usually quite easy tofind real-life wrapping prob-
lems that cannot be handled (see also the related discussionon MSO expressiveness
and node-selecting queries in [35]).

In this section, we discussmonadic Datalogover trees, a simple form of the logic-
based language Datalog, as a wrapper programming language.Monadic Datalog satis-
fies desiderata (i) to (iv) raised above, and as we will argue,the core of the Elog lan-
guage inherits this property.8 A monadic Datalog program can compute asetof unary
queries (“information extraction functions”) at once. Each intensional predicate of a
program selects a subset of dom and can be considered to defineone information ex-
traction function. However, in general, not all intensional predicates define information
extraction functions. Some have to be declared as auxiliary.

8 Elog, on the other hand, supports visual features that allowto handle the most common tasks
very quickly and easily. Moreover, it contains features that render it strictly more expressive
than MSO.
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Fig. 1. (a) An unranked tree and (b) its representation using the binary relations “firstchild” (ւ)
and “nextsibling” (ց).

2.2 Tree Structures

Trees are defined in the normal way and have at least one node. We assume that the
children of each node are in some fixed order. Each node has a label taken from a finite
nonempty set of symbolsΣ, the alphabet9. We consider onlyunrankedfinite trees,
which correspond closely to parsed HTML or XML documents. Inan unranked tree,
each node may have an arbitrary number of children. An unranked ordered tree can be
considered as a structure

tur = 〈dom, root, leaf, (labela)a∈Σ , firstchild, nextsibling, lastsibling〉

where “dom” is the set of nodes in the tree, “root”, “leaf”, “lastsibling”, and the “labela”
relations are unary, while “firstchild” and “nextsibling” are binary. All relations are
defined according to their intuitive meanings. “root” contains exactly one node, the root
node. “leaf” consists of the set of all leaves. “firstchild(n1, n2)” is true iff n2 is the
leftmost child ofn1; “nextsibling(n1, n2)” is true iff, for somei, n1 andn2 are thei-th
and(i + 1)-th children of a common parent node, respectively, counting from the left
(see also Figure 1). labela(n) is true iff n is labeleda in the tree. Finally, “lastsibling”
contains the set of rightmost children of nodes. (The root node is not a last sibling, as
it has no parent.) Whenever the structuret may not be clear from the context, we state
it as a subscript of the relation names (as e.g. in domt, roott, . . . ). By default, we will
always assume trees to be represented using the schema (signature) outlined above, and
will refer to them asτur.

The document orderrelation≺ is a natural total ordering of dom used in several
XML-related standards. It is defined as the order in which theopening tags of document
tree nodes are first reached when reading an HTML or XML document (as a flat text
file) from left to right.

9 In this simple model, unrestricted sets of tags as well as string and attribute values are assumed
to be encoded as lists of character symbols modeled as subtrees in our document tree.
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2.3 Monadic Datalog

We assume the function-free logic programming syntax and semantics of theDatalog
language and refer to [1] for a detailed survey of Datalog.Monadic Datalog[12, 23]
is obtained from full Datalog by requiring all intensional predicates to be unary. By
unary query, we denote a function that assigns a predicate tosome elements of dom
(or, in other words, selects a subset of dom). For monadic Datalog, one obtains a unary
query by distinguishing one intensional predicate as thequery predicate. By signature,
we denote the (finite) set of all extensional predicates (with fixed arities) available to a
Datalog program. By default, we use the signatureτur for unranked trees.10

Example 1.The monadic Datalog program overτur

Italic(x)← labeli(x) (1)

Italic(x)← Italic(x0), firstchild(x0, x) (2)

Italic(x)← Italic(x0), nextsibling(x0, x) (3)

computes, given an unranked tree (representing an HTML parse tree), all nodes whose
contents are displayed in italic font (i.e., for which an ancestor node in the parse tree
corresponds to a well-formed piece of HTML of the form〈i〉 . . . 〈/i〉 and is thus labeled
“i”). The program uses the intentional predicate,Italic, as the query predicate.

Monadic second-order logic (MSO) extends first-order logicby quantification over
set variables, i.e., variables ranging over sets of nodes, which coexist with first-order
quantification of variables ranging over single nodes. A unary MSOqueryis defined by
an MSO formulaϕ with one free first-order variable. Given a treet, it evaluates to the
set of nodes{x ∈ dom | t � ϕ(x)}. The following holds for arbitrary finite structures:

Proposition 2 (Folklore).Each monadic Datalog query is MSO-definable.

Here, our main measure of query evaluation cost iscombined complexity, i.e. where
both the database and the query (or program) are considered variable. Later, we will
also be interested indata complexity, where the query (or program) is fixed and only
the database is considered variable.

Proposition 3. (see e.g. [23])Monadic Datalog (over arbitrary finite structures) is NP-
complete w.r.t. combined complexity.

2.4 Monadic Datalog over Trees

By restricting our structures to trees, monadic Datalog acquires a number of additional
nice properties. First,

10 Note that our tree structures contain some redundancy (e.g., a leaf is a nodex such that
¬(∃y)firstchild(x, y)), by which (monadic) Datalog becomes as expressive as itssemipositive
generalization. Semipositive Datalog allows to use the complements of extensional relations
in rule bodies.
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Theorem 4 ([23]).Overτur, monadic Datalog hasO(|P|·|dom|) combined complexity
(where|P| is the size of the program and|dom| the size of the tree).

This follows from the fact that all binary relations inτur have bidirectional func-
tional dependencies; for instance, each node has at most onefirst child and is the first
child of at most one other node. Thus, given a programP , an equivalent ground pro-
gram can be computed in timeO(|P| · |dom|), while round programs can be evaluated
in linear time [44].

A unary query over trees is MSO-definable exactly if it is definable in monadic
Datalog.

Theorem 5 ([23]).Each unary MSO-definable query overτur is definable in monadic
Datalog overτur.

(The other direction follows from Proposition 2.) Judging from our experience with
the Lixto system, real-world wrappers written in monadic Datalog are small. Thus, in
practice, we do not trade the complexity compared to MSO (forwhich query evaluation
is known to be PSPACE-complete) for considerably expanded program sizes.

Each monadic Datalog program over trees can be efficiently rewritten into an equiv-
alent program using only very restricted syntax. This motivates a normal form for
monadic Datalog over trees.

Definition 6. A monadic Datalog programP overτur is in Tree-Marking Normal Form
(TMNF) if each rule ofP is of one of the following three forms:

(1) p(x)← p0(x),

(2) p(x)← p0(x0), B(x0, x).

(3) p(x)← p0(x), p1(x).

where the unary predicatesp0 andp1 are either intensional or ofτur andB is eitherR
orR−1, whereR is a binary predicate fromτur. ✷

In the next result, the signature for unranked trees may extend τur to include the
“child” relation – likely to be the most common form of navigation in trees.

Theorem 7 ([23]).For each monadic Datalog programP overτur ∪ {child}, there is
an equivalent TMNF program overτur which can be computed in timeO(|P|).

From the above discussion, we conclude that monadic Dataloghas the expressive
power of our yardstick MSO (on trees), can be evaluated efficiently, and is agood(easy
to use) wrapper programming language. Indeed,

– The existence of the normal form TMNF demonstrates that rules in monadic Data-
log never have to be long or intricate.

– The monotone semantics makes the wrapper programming task quite modular and
intuitive. Differently from an automaton definition that usually has to be understood
entirely to be certain of its correctness, adding a rule to a monadic Datalog program
usually does not change its meaning completely, butaddsto the functionality.
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– Wrappers defined in monadic Datalog only need to specify queries, rather than the
full source trees on which they run. This is important to practical wrapping, because
this way changes in parts of documents not immediately relevant to the objects to
be extracted do not break the wrapper. (That is, such wrappers areschema-less.)

Thus, monadic Datalog over trees as a framework for Web information extraction
satisfies the first three of our desiderata stated at the beginof this section (efficient eval-
uation, appropriate expressiveness, and suitability as a practical wrapper programming
language). Only the fourth desideratum – the visual specification of wrappers – is not
addressed here; we refer the interested reader to [5, 24]

3 The Complexity of XPath Query Evaluation

We have seen in Theorem 4 that monadic Datalog over trees defined by unary relations
and the binary relations “firstchild”, “nextsibling”, and “lastsibling” can be solved in
time linear in the size of the program and linear in the size ofthe tree. Relations such as
“child” play an important role in various query languages ontrees, such as XPath (and
thus, XQuery and XSLT); there, they are calledaxes.

There are two main modes of navigation in trees, horizontal and vertical. For hor-
izontal navigation, one can distinguish between navigating among sibling nodes and
among nodes – intuitively – further left or right in the tree (the “following” axis in
XPath). The most natural axis relations are thusChild, Child∗, Child+, Nextsibling,
Nextsibling∗, Nextsibling+, andFollowing, where

Following(x, y) := ∃z1, z2 Child∗(z1, x) ∧ Nextsibling+(z1, z2) ∧ Child∗(z2, y).

Note that if we consider complexity rather than expressiveness, we do not need to
deal with relations such asFirstchild in addition; we may assume a unary predicate
Firstsibling such that

Firstchild(x, y)⇔ Child(x, y) ∧ Firstsibling(y).

A natural question is to ask for the complexity of monadic Datalog programs over these
axes, or, to start with a more basic problem, conjunctive queries (which can be seen
as Datalog programs containing only a single nonrecursive rule). Note that conjunc-
tive queries over trees also have natural applications in computational linguistics, term
rewriting, and data integration [27].

In the case that all individual rules are acyclic (conjunctive queries), it is known
from [23] that monadic Datalog over arbitrary axes can be evaluated in linear time.
However, not all Elog programs consists only of acyclic rules. As already observed
in Proposition 3, while full Datalog is EXPTIME-complete (see, e.g., [14]), monadic
Datalog over arbitrary finite structures is in NP (actually,NP-complete). For a lower
bound on trees, it is known [41] that already Boolean conjunctive queries over structures
of the form〈(Pi)i, child, child∗〉 are NP-hard w.r.t. combined complexity.

A detailed study of the tractability frontier of conjunctive queries over trees is pre-
sented in [27]. As observed, the subset-maximal polynomialcases of axis sets are
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– {child+, child∗},
– {child, nextsibling, nextsibling+, nextsibling∗}, and
– {following}.

That is, for each class of conjunctive queries over a subset of one of these three sets
and over unary relations, the query evaluation problem is polynomial (with respect to
combined complexity). We have the dichotomy that for all other cases of conjunctive
queries using our axis relations (e.g.Child andChild+), the problem is NP-complete.
Obviously, the complexity of monadic Datalog over a given set of axes is always the
same as that of conjunctive queries over the same axes.

The special case that queries are acyclic is also worth studying, since the probably
most important node-selecting query language on trees, XPath, is naturally tree-shaped.
All XPath engines available in 2002 took exponential time inthe worst case to process
XPath [25]. However,

Theorem 8 ([25]).XPath 1 is in PTIME w.r.t. combined complexity.

This result is based on a dynamic programming algorithm which, in an improved
form [25], yielded the first XPath engine guaranteed to run inpolynomial time.

Most people use only the most common features of XPath, so it is worthwhile to
study restrictive fragments of this language. In [25], theCore XPathhas been intro-
duced, the navigational fragment of XPath, which includes both horizontal and vertical
tree navigation with axes, node tests, and boolean combinations of condition predicates.
As shown there, Core XPath can be evaluated in time linear in the size of the database
and linear in the size of the query. However,

Theorem 9 ([26]).Core XPath is P-hard w.r.t. combined complexity.

This property – shared by XPath, of which Core XPath is a strict fragment – renders
it highly unlikely that query evaluation is massively parallelizable (= in the complexity
classNC, c.f. citeGHR95) or that algorithms exist that take less than a polynomial
amount of space for query processing. Interestingly, if we remove negation in condition
predicates, the complexity of Core XPath is reduced to LOGCFL, a parallel complexity
class inNC2 [26].

Theorem 10 ([26]).Positive Core XPath is LOGCFL-complete w.r.t. combined com-
plexity.

This generalizes to a very large fragment of full XPath (called pXPath), from which
besides negation only few very minor features have to be removed to obtain that

Theorem 11 ([26]).pXPath is LOGCFL-complete w.r.t. combined complexity.

Further results on the complexity of various fragments of XPath 1 can be found
in [26]. Positive Core XPath queries correspond to acyclic positive queries over axis
relations. Interestingly, each conjunctive query over axis relations can be mapped to
an equivalent acyclic positive query, however there are no polynomial translations for
doing this [27]. Thus,
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Corollary 12. For ever conjunctive query over trees, there is an equivalent positive
Core XPath query.

Of course, when talking about conjunctive queries over trees, we assume that all
binary relations in the signature are relations from our setof axes.

Finally, Core XPath queries can be mapped to monadic Datalogin linear time. The
slightly curious fact here is that this remains true in the presence of negation in Core
XPath (for which no analogous language feature exists in Datalog.)

Theorem 13 ([19]).Each Core XPath query can be translated into an equivalent TMNF
query in linear time.

4 Datalog±: A Family of Logical Languages

It is generally agreed that Datalog is a powerful language with several different appli-
cations. We have already discussed that the monadic fragment of Datalog gives rise to a
good wrapping language that can be used for web data extraction purposes. Moreover,
Datalog has been used as an inference engine for knowledge processing within several
software tools, and has gained popularity in the context of,e.g., source code querying
and program analysis, and modeling distributed systems.

Although Datalog is a powerful rule-based formalism, it is not able to infer the
existence of new objects that are not already in the extensional database. For a number
of applications, however, it would be desirable that a Datalog extension could be able to
express the existence of certain values that are not necessarily from the domain of the
extensional database. This can be achieved by allowing existentially quantified variables
in rule heads. Let us give a couple of brief examples of such applications.

Data Exchange.When data needs to be transposed or copied from one relational
database to another one, the problem of heterogeneous schemas often arises. Imagine,
for example, company ACME stores data about their employeesin a relation EmpACME
with schema(Emp#,Name,Address, Salary), while the FOO corporation does not
store employees’ addresses, but only phone numbers, keeping their employee data in
a relation EmpFOO having schema(Emp#,Name,Phone, Salary). Imagine ACME
is acquired by FOO and the ACME employee data ought to be transferred into the
FOO database, although the phone numbers of the ACME employees are not (currently)
known. This could be achieved by a rule of the form:

EmpACME(e, n, a, s)→ ∃p EmpFOO(e, n, p, s),

where phone numbers are simply existentially quantified. Inpractice, each phone num-
ber is stored by a different (labeled)null value, representing a globally existentially
quantified variable (i.e., a kind of Skolem constant). Thereare currently advanced data
management systems such as Clio [43] that effectively manage such data-exchange
mappings, handle such existential nulls, and allow one to query relations with nulls. In
database theory, a rule of the above form is actually called atuple-generating depen-
dency (TGD), while in the KR community is known asexistential rule; henceforth, we
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adopt the term TGD. In addition to TGDs,equality-generating dependencies (EGDs)
are often used. They cover the well-known key constraints and functional dependen-
cies that have been studied for a long time [1]. For example, we may impose that every
ACME employee has only one phone number stored. This may be expressed as a Data-
log rule with an equality in the head:

EmpFOO(e, n, p, s),EmpFOO(e, n′, p′, s′)→ p = p′.

The data exchange literature insists onfinite target relationsbecause it is assumed that
these relations are actually stored. It is thus important inthis context to restrict our
syntax to make sure that only afinite number of different null valueswill be invented.

Ontology Querying. Description logics (DLs)[3] are used to formalize so-called onto-
logical knowledge about relationships between objects, entities, and classes in a certain
application domain. For example, we could express that every person has exactly one
father who, moreover, is himself a person, by the following DL clauses, where Person
is a set of objects whose initial value is specified in the formof an extensional relation,
calledconcept, and where HasFather is a binary relation, a so-calledrole in DL termi-
nology:(i) Person⊑ ∃HasFather,(ii) ∃HasFather− ⊑ Person,(iii) (funct HasFather).
In an appropriate extension of Datalog, the same can be expressed as:

Person(x)→ ∃y HasFather(x, y),

HasFather(x, y)→ Person(y),

HasFather(x, y),HasFather(x, y′)→ y = y′.

Note that here the relation Person, which is supplied in the input with an initial value,
is actually modified. Therefore, we no longer require (as in standard Datalog) that ex-
tensional relation symbols cannot occur in rule heads.

DLs usually rely on classical first-order (FO) semantics, and so arbitrary models
(finite or infinite) are considered. In the above example, models with infinite chains of
ancestors are perfectly legal. Rather than “materializing” such models, i.e., computing
and storing them, we are interested in reasoning and query answering. For example,
whenever the initial value of Person is nonempty, then the Boolean conjunctive query

∃x∃y∃z (HasFather(x, y) ∧ HasFather(y, z))

will evaluate totrue, while the query

∃x∃y (HasFather(x, y) ∧HasFather(y, x))

will evaluate tofalse, because it is false in some models.

To sum up, as we have briefly tried to sketch, some applications as the ones dis-
cussed above could possibly profit from appropriate forms ofDatalog extended by the
possibility of using rules with existential quantifiers in their heads (TGDs), and by sev-
eral additional features (such as, for example, equality, negation, disjunction, etc.).
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Unfortunately, already for setsΣ of TGDs alone, most basic reasoning and query
answering problems are undecidable. In particular, checking whether a Boolean con-
junctive query evaluates to true w.r.t. a databaseD and a setΣ of TGDs is undecid-
able [6]. Worse than that, undecidability holds even in casebothΣ andq arefixed, and
onlyD is given as input [7]. It is thus important to single out largeclasses of formalisms
for rule setsΣ that

(i) are based on Datalog, and thus enable a modular rule-based style of knowledge
representation,

(ii) are syntactical fragments of first-order logic so that answering a Boolean queryq
underΣ for an input databaseD is equivalent to the classical entailment check
D ∧Σ |= q,

(iii) are expressive enough for being useful in real applications in the above mentioned
areas,

(iv) have decidable query answering, and
(v) have good query answering complexity properties in caseΣ andq are fixed. This

type of complexity is calleddata complexity, and is an important measure, because
we can realistically assume that the extensional databaseD is the only really large
object in the input.

In what follows we report on languages that fulfill these criteria. We dubbed the
family of such languages Datalog±, because, as already explained, they add features
to Datalog, and on the other hand make some syntactic restrictions in order to fulfill
desiderata (iv) and (v). In the rest of the paper, we focus on the key feature of existential
quantification, or, in other words, on languages that are based on TGDs.

4.1 Acyclicity

Recall that for data exchange purposes, it is important to ensure that the target instance
is finite since it is actually stored. However, executing an arbitrary set of TGDs on an
input database, in general, we are forced to build an infiniteinstance due to the presence
of the existentially quantified variables. Consider, for example, the setΣ of TGDs:

Person(x) → ∃y HasFather(x, y) HasFather(x, y) → Person(y),

which states that each person has a father who is also a person. Assuming now that
the input database isD = {Person(Bob)}, stating that Bob is a person, after executing
Σ on D we obtain an infinite instance. Indeed, from the first TGD we conclude that
the atom HasFather(Bob, z1) holds, wherez1 is a (labeled) null value, while from the
second TGD we obtain that Person(z1) holds. But then we can infer that also the atoms
HasFather(z1, z2) and Person(z2) hold, wherez2 is a fresh labeled null value, and it
is apparent that this inference process is infinite. The inference algorithm that we have
just described is known in the literature as thechase procedure(or simply chase) [1].

It is clear that a TGD-based language is suitable for data exchange purposes if, in
addition to the desiderata (i) - (v) discussed above, ensures the termination of the chase.
Several languages with this property have been proposed; see, e.g., [15, 17, 32, 40]. The
general idea underlying all these languages is to pose an acyclicity condition on a graph
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R[1]

P[1]

R[2]

P[2]

Fig. 2. Position Graph.

that encodes how terms are propagated during the execution of the chase procedure.
The two most basic formalisms in this family of languages arethe classes ofacyclic
(a.k.a. non-recursive) andweakly-acyclicsets of TGDs.

Acyclic Sets of TGDs.The definition of this class relies on the notion of the predi-
cate (dependency) graph, which encodes how predicates depend to each other. More
precisely, thepredicate graphof a setΣ of TGDs is a directed graphG = (V,E),
whereV consists of all the relation symbols inΣ, andE is defined as follows: for each
σ ∈ Σ, for each relationR in the body ofσ, and for each relationP in the head ofσ,11

(R,P ) ∈ E; no other edges occur inE. We say thatΣ is acyclic ifG is acyclic.
It is not difficult to see that the chase always terminates under acyclic sets of TGDs.

This immediately implies the decidability of our main reasoning task, that is, query
answering. Given a Boolean conjunctive queryq, to decide whether a databaseD and
an acyclic setΣ of TGDs entailsq, we simply need to compute the chase instanceC
w.r.t.D andΣ, and then check whetherC satisfiesq. We know that:

Theorem 14 ([39]).Query answering under acyclic sets of TGDs is in AC0 w.r.t. data
complexity, and NEXPTIME-complete w.r.t. combined complexity.12

Notice that to explicitly compute the chase under acyclic sets of TGDs takes polyno-
mial time in the size of the database. Thus, to obtain the AC0 upper bound w.r.t. the data
complexity, we need a more refined approach. This is done by unfolding the given set
of TGDs (using a resolution-based procedure [28]) in order to construct a (finite) union
of conjunctive queries, which is then evaluated over the input database. This allows us
to conclude the AC0 upper bound stated in the above theorem.

Weakly-Acyclic Sets of TGDs.It is clear that acyclic sets of TGDs do not capture plain
Datalog. Nevertheless, an acyclicity-based class exists,called weakly-acyclic sets of
TGDs, that captures both acyclic sets of TGDs and Datalog. This formalism has been
proposed as the main language for data exchange purposes [17]. Weak-acyclicity relies
on a slightly more involved graph notion, called position (dependency) graph, which en-
codes how terms are propagated from one position to another during the chase. Instead
of giving the rather long definition, let us explain the key idea via a simple example.

11 For a TGD of the formb → h, b is called the body, whileh is called the head.
12 Here, the data complexity is calculated by fixing the set of TGDs and the query, while in the

combined complexity we assume that everything is part of theinput.
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Example 15.Consider the setΣ consisting of the TGDs

R(x, y)→ ∃z R(x, z) R(x, y)→ P (x, y).

The position graph ofΣ is shown in Figure 2. We have an edge fromR[1] to itself
since in the first TGD the variablex is propagated from the first position of the relation
R in the body to the first position of the relationR in the head. Now, observe that at
the same time, during the execution of the chase, a null valuewill be generated at the
second position ofR; this is encoded by the dashed edge, calledspecial, fromR[1] to
R[2]. The other two (normal) edges are present due to the second TGD.

A normal edge(π, π′) keeps track of the fact that a term may propagate fromπ to
π′ during the chase. A special edge(π, π′′) keeps track of the fact that propagation of
a value fromπ to π′ also creates a new value at positionπ′′. Thus, if there is a cycle in
the dependency graph that goes via a special edge, then it is likely that the generation
of a null value at certain position will cause the generationof some other null value at
the same position, and thus the chase is infinite. A setΣ of TGDs is weakly-acyclic if
there is no cycle in its position graph that involves a special edge. We know that:

Theorem 16 ([10, 39]).Query answering under weakly-acyclic sets of TGDs is PTIME-
complete w.r.t. data complexity, and 2EXPTIME-complete w.r.t. combined complexity.

The upper bounds are shown by simply constructing the chase instanceC, and then
evaluate the input query overC. Notice that the PTIME-hardness is immediately inher-
ited from the fact that weakly-acyclic sets of TGDs capture plain Datalog.

4.2 Guardedness

Although (weakly-)acyclic sets of TGDs are good languages for data exchange, they are
not suitable for modeling ontological knowledge. Even the very simple knowledge that
each person has a father who is also a person goes beyond weakly-acyclic sets of TGDs.
Thus, we need classes of TGDs that do not guarantee the termination of the chase, but
still query answering is decidable. In other words, we need languages that allow us to
develop methods for reasoning about infinite models withoutexplicitly building them.

Guarded TGDs.A prime example of such a formalism is the class ofguardedTGDs,
inspired by the guarded-fragment of first-order logic. A TGDis called guarded it has
an atom in its body that contains all the body-variables [7].The reason why we can
answer queries under guarded TGDs, even if the chase procedure is infinite, is because
the chase instance is tree-like, or, in more formal terms, has bounded tree-width. We
know that:

Theorem 17 ([7]).Query answering under guarded TGDs is PTIME-complete w.r.t.
data complexity, and 2EXPTIME-complete w.r.t. combined complexity.

A core fragment of guarded TGDs, which, despite its simplicity, captures features of
the most widespread tractable description logics such as DL-Lite, is the class oflinear
TGDs. A TGD is called linear if it has only one atom in its body [8]. As expected, this
allows us to show that the complexity of query answering is lower:



14 Georg Gottlob, Christoph Koch, and Andreas Pieris

Theorem 18 ([8, 33]).Query answering under linear TGDs is in AC0 w.r.t. data com-
plexity, and PSPACE-complete w.r.t. combined complexity.

Weakly-Guarded Sets of TGDs.As for acyclic sets of TGDs, we can define a weak
version of guarded TGDs, calledweakly-guarded, that captures both guarded TGDs
and plain Datalog [7]. The key idea is to relax guardedness insuch a way that a variable
x in the body can be unguarded as long as, during the construction of the chase,x is
unified only by constants that already appear in the input database. This seemingly mild
relaxation gives rise to a highly expressive language. We know that:

Theorem 19 ([7]).Query answering under weakly-guarded sets of TGDs is EXPTIME-
complete w.r.t. data complexity, and 2EXPTIME-complete w.r.t. combined complexity.

It is interesting, and somehow surprising, that query answering under this class of
TGDs is provably intractable even w.r.t. the data complexity. What is even more inter-
esting is the fact that by allowing negation of a very mild form, in particular, stratified
negation, weakly-guarded sets of TGDs are powerful enough to capture every database
property that can be checked in exponential time, even without assuming an order in
the input database. In other words, every Boolean queryQ that can be evaluated in ex-
ponential time in data complexity, it can be expressed as a pair (Σ,Ans), whereΣ is a
weakly-guarded set of TGDs and Ans a0-ary relation, such that the following holds:D
satisfiesQ iff D andΣ entails the atomic query Ans, for every databaseD.

Theorem 20 ([31]).Weakly-guarded sets of TGDs with stratified negation capture EX-
PTIME, even without assuming ordered databases.

4.3 Stickiness

Although guardedness is a well-accepted decidability paradigm, with desirable model-
theoretic and complexity properties, it is not powerful enough for capturing knowledge
that is inherently non-tree-like. Consider, for example, the following TGDs:

Elephant(x)→ ∃y HasAncestor(x, y),Elephant(y),

Mouse(x)→ ∃y HasAncestor(x, y),Mouse(y),

Elephant(x),Mouse(y)→ BiggerThan(x, y),

which essentially state that elephants are bigger than mice. It is clear that the first two
TGDs are guarded (in fact, linear). However, the third TGD, although it looks simple
and harmless, destroys the tree-likeness of the chase instance. Indeed, due to the first
two TGDs, the chase will invent infinitely many null values that represent elephants
and mice; letE andM be the sets of null values that represent elephants and mice,
respectively. Then, the third TGD, will force the chase to compute the cartesian product
of E andM , and store it in the binary relation BiggerThan. Therefore,the extension
of BiggerThan in the chase instanceC stores an infinite bipartite graph, which in turn
implies that the tree-width ofC is infinite. This immediately implies that the above set
of TGDs cannot be rewritten as a set of guarded TGDs.
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(a) 

  T(x,yyyy,z)  → ∃w  S(x,w)

    R(x,yyyy), P(yyyy,z) → ∃w        T(x,y,w)

(b) 

× 

  T(x,y,z)  → ∃w   S(y,w)

    R(x,y), P(y,z) → ∃w  T(x,y,w)

  T(x,y,z)  → ∃w  S(x,w)

    R(x,y), P(y,z) → ∃w  T(x,y,w)

Fig. 3. Stickiness and Marking.

Sticky Sets of TGDs.The class ofstickysets of TGDs, introduced in [10], is a formalism
that allows us to capture non-tree-like knowledge as the onecaptured by the above
example. The key property of stickiness can be described as follows: during the chase,
terms that are unified with variables that appear more than once in the body of a TGD
(i.e., join variables) are always propagated (or “stick”) to the inferred atoms. This is
illustrated in Figure 3(a); the first set of TGDs is sticky, while the second is not. The
formal definition is based on an inductive marking procedurethat marks the variables
that may violate the semantic property of the chase described above. Roughly, during
the base step of this procedure, a variable that appears in the body of a TGDσ but not in
the head-atom ofσ is marked. Then, the marking is inductively propagated fromhead
to body as shown in Figure 3(b). Finally, a finite set of TGDsΣ is stickyif no TGD in
Σ contains two occurrences of a marked variable. We know that:

Theorem 21 ([10]).Query answering under sticky sets of TGDs is in AC0 w.r.t. data
complexity, and EXPTIME-complete w.r.t. combined complexity.

Weakly-Sticky Sets of TGDs.As one might expect, a weak version of stickiness, which
captures both sticky sets of TGDs and plain Datalog, can be defined. The principle
under this more expressive language is the same as for weakly-acyclic and weakly-
guarded sets of TGDs. Intuitively, we can relax the stickiness condition in such a way
that variables that can be unified with finitely many null values during the construction
of the chase are not taken into account. It is known that:

Theorem 22 ([10]).Query answering under weakly-sticky sets of TGDs is PTIME-
complete w.r.t. data complexity, and 2EXPTIME-complete w.r.t. combined complexity.

4.4 Further Applications

As already discussed at the beginning of the section, data exchange and ontological rea-
soning, are applications that could possibly profit from Datalog± languages that extend
Datalog with existential quantifiers in rule heads. Let us conclude by briefly describing
other applications that could profit from languages as the ones discussed above.
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RDF and Semantic Web.One of the distinctive features of Semantic Web data is the
existence of vocabularies with predefined semantics: theRDF Schema (RDFS)13 and
theOntology Web Language (OWL)14, which can be used to derive logical conclusions
from RDF graphs. Thus, it would be desirable to have an RDF query language equipped
with reasoning capabilities to deal with these vocabularies. Besides, it has also been
recognised that navigational capabilities are of fundamental importance for data models
with an explicit graph structure such as RDF, and, more generally, it is also agreed that a
general form of recursion is a central feature for a graph query language. Thus, it would
also be desirable to have an RDF query language with such functionalities. We strongly
believe that Datalog± languages are well-suited for this purpose. In fact, steps towards
this direction have been already made in the recent works [2,30].

Conceptual Modeling.It has been observed that graphical conceptual modeling for-
malisms, and in particular UML and ER diagrams, can be faithfully translated into
TGDs and EGDs. In fact, core fragments of the above formalisms can be captured via
guarded TGDs (with some additional features such as equality) [9, 29]. This is quite
beneficial since it provides logical semantics to the above formalism, which in turn al-
lows us to formally study relevant problems such as consistency, i.e., whether a given
diagram admits at least one model.

Object-Oriented Deductive Databases.It has been shown that formalisms introduced
for object-oriented databases can be embedded into Datalog±, which in turn allows us
to exploit existing query answering algorithms. For example, F-Logic Lite, introduced
in [11], is a small but expressive subset of F-Logic [34] thatcan be captured by weakly-
guarded sets of TGDs [7].

Ontology-Based Multidimensional Contexts.Data quality assessment and data clean-
ing are context dependent activities, and thus, context models for the assessment of the
quality of a database have been proposed. A context takes theform of a possibly vir-
tual database or a data integration system into which the database under assessment is
mapped, for additional analysis, processing, and quality data extraction. The work [42]
extends contexts with dimensions, and hence, multidimensional data quality assessment
becomes possible. At the core of multidimensional contextswe have ontologies that are
modeled using Datalog±, and, in particular, weakly-sticky sets of TGDs.
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