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Abstract. This paper gives a short overview of specific logical appheacto
data extraction, data management, and reasoning aboutldaiarticular, we
survey theoretical results and formalisms that have betir@d and used in the
context of the Lixto Project at TU Wien, the DIADEM projectthe University
of Oxford, and the VADA project, which is currently being dad out jointly by
the universities of Edinburgh, Manchester, and Oxford. Y& svith a formal ap-
proach to web data extraction rooted in monadic second twgdi&rand monadic
Datalog, that gave rise to the Lixto data extraction sysiémthen present some
complexity results for monadic Datalog over trees and foatlRjuery evalua-
tion. We further argue that for value-creation and for oogadal reasoning over
data, we need existential quantifiers (or Skolem terms) i meads, and intro-
duce the Datalog family. We give an overview of important members of this
family and discuss related complexity issues.

1 Introduction

“The web is the largest database” is a sentence one nowadaygar quite frequently.
However, this statement is not really true. The web, inelgdhe deep web, is certainly
the largest data repository, but notlatabase In a database, data is homogeneously
formatted, and can be retrieved efficiently and uniformlg guery languages. Web
data, even when it is about the same type of items (say, usedicany other consumer
good) appears in a different format on many different welssiT here is, moreover, no
uniform query or retrieval mechanism. In order to be ableuerg such data, we thus
have to extract it from the different web sources, recasttd a single format, and, if
appropriate, store it into a single database. This procesaliedweb data extraction
and the programs that extract data from the web are caltagpers

The wrapping problem is often seen as a software and welmeegng task, but
has also been addressed by a substantial amount of sysiemedrresearch work, see
e.g. TSIMMIS [47], FLORID [38], DEBYE [36], WA4F [48], XWrapJ/], Lixto [4,5,
24] and Diadem [20], some of which led to commercial spinsoMoreover, in [23],
a logical theory of data extraction has been developed thaigiven rise to consider
monadic Datalog as a logical language for data extractidriclhwhas, in turn, been
at the base of a more practical logical language implemeintéige Lixto system. In
Section 2, which is a slightly shortened exposition of mateérom [24] (which in
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turn summarizes [23]), we will give a short survey of the tajiapproach to web data
extraction.

Web documents in HTML are essentially labeled trees, whemayntabels cor-
respond to formatting instructions for data presentatsucli as<table>, <td>, or
<headert, and so on) and where the actual data items reside at theelegdf Thus,
rather than imposing a logical structure on the data, theléah HTML take care of the
display format and make sure that a web page displayed inveskraneets the eye of
the beholder. However, XMi, a well-known language quite similar to HTML, allows
one to impose a tree-shaped logical structure on data. Faon@eptual point of view,
this generalizes the “flat” relational data format. Spegigdry language such as XP3th
XQueny, and XSLT have been designed for XML databases. With some minor addi-
tions, monadic Datalog can be used to simulate the core fagaf XPath [22], which
indicates that core XPath is not more complex than monadteldg This observa-
tion gave rise to complexity studies of XPath evaluation séhbasic results will be
summarized in Section 3.

Once data is extracted, one usually wants to combine it witbrextracted data and
corporate data from local databases. In addition, somaiclgareasoning and further
provisioning tasks have to be performed. All this togetkealleddata wrangling21].
Apparently, languages for data wrangling purposes shoeilabte to perform complex
data transformation, data exchange, data integration atalogiical reasoning tasks.
However, Datalog, let alone monadic Datalog, is not powerfinugh for performing
such tasks. In Section 4, we discuss that the crucial limitaif Datalog is the fact that
is not able to infer the existence of new objects, which atatieady in the extensional
database. We then proceed to introduce Datalagfamily of logical languages that
extend Datalog with key modeling features such as existeqtiantifiers in rule heads,
which in turn allows as to infer the existence of new objes. give an overview of
important members of this family and discuss related corifyléssues.

2 Logical Foundations of Web Data Extraction

2.1 Desiderata for Wrapping Languages

To allow for a foundational study of wrapping languages, wst fileed to establish
criteria that allow us to compare such languages. In [23]; fiesiderata were proposed
that a good wrapping language should satisfy. In particalach a language should

(i) have a solid and well-understood theoretical foundgtio
(i) provide a good trade-off between complexity and the banof practical wrappers
that can be expressed,
(iii) be easy to use as a wrapper programming language, and
(iv) be suitable for incorporation into visual tools.

4 https://www.w3.0rg/TR/1998/REC-xml-19980210
5 http:/iwww.w3c.org/TR/xpath/

5 https://www.w3.0org/XML/Query/

7 http:/lwww.w3.0rg/TR/xslt



Logic, Languages, and Rules for Web Data Extraction and d&é#ag over Data 3

The core notion that we base our wrapping approach on is fteat mformation
extraction functionwhich takes a labeled unranked tree (representing a Walnuert)
and returns a subset of its nodes. A wrapper is a program wiriplements one or
several such functions, and thereby assigns unary pregitatdocument tree nodes.
Based on these predicate assignments and the structueeioptlit tree, a new data tree
can be computed as the result of the information extractiongss in a natural way,
along the lines of the input tree, but using the new labelsanitting nodes that have
not been relabeled (by some form of tree minor computation).

Given a set of information extraction functions, one ndtway to wrap an input
treet is to compute a new label for each nodéor filter outn) as a function of the pred-
icates assigned using the information extraction funstidime output tree is computed
by connecting the resulting labeled nodes using the (timasilosure of) the edge rela-
tion of ¢, preserving the document orderiofin other words, the output tree contains a
node if a predicate corresponding to an information exiwmadunction was computed
for it, and contains an edge from noddo nodew if there is a directed path from
to w in the input tree, both andw were assigned information extraction predicates,
and there is no node on the path franto w (other thanv andw) that was assigned
information extraction predicates. We do not formalize thyjperation here; the natural
way of doing this is obvious.

That way, we can take a tree, re-label its nodes, and dedare of them as irrele-
vant, but we cannot significantly transform its originalisture. This coincides with the
intuition that a wrapper may change the presentation ofagleinformation, its pack-
aging or data model (which does not apply in the casé/elb wrapping, but does not
handle substantial data transformation tasks. We belleafethis captures the essence
of wrapping.

We assume unary queries in monadic second-order logic (MS&)trees as the
expressiveness yardstick for information extraction fioms. MSO over trees is well-
understood theory-wise [13, 16, 18, 50] (see also [51]) amglite expressive. In fact, it
is considered by many as the language of choice for definipgessive node-selecting
queries on trees (see e.g. [23, 35, 46, 45]; [49] acknowkettgerole of MSO but argues
for even strongefanguages). In our experience, when considering a wrapgisgm
that lacks this expressive power, it is usually quite eadintbreal-life wrapping prob-
lems that cannot be handled (see also the related discussiMSO expressiveness
and node-selecting queries in [35]).

In this section, we discusaonadic Datalogver trees, a simple form of the logic-
based language Datalog, as a wrapper programming langMagedic Datalog satis-
fies desiderata (i) to (iv) raised above, and as we will artheecore of the Elog lan-
guage inherits this properfyA monadic Datalog program can computsetof unary
queries (“information extraction functions”) at once. BEdntensional predicate of a
program selects a subset of dom and can be considered to daénaformation ex-
traction function. However, in general, not all intensibpr@dicates define information
extraction functions. Some have to be declared as auxiliary

8 Elog, on the other hand, supports visual features that abowandle the most common tasks
very quickly and easily. Moreover, it contains featured tieader it strictly more expressive
than MSO.
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Fig. 1. (a) An unranked tree and (b) its representation using tharpirelations “firstchild” ()
and “nextsibling” (\).

2.2 Tree Structures

Trees are defined in the normal way and have at least one nagas$dme that the
children of each node are in some fixed order. Each node hagktéken from a finite
nonempty set of symbol&, the alphab&t We consider onlyjunrankedfinite trees,
which correspond closely to parsed HTML or XML documentsaimunranked tree,
each node may have an arbitrary number of children. An ur@dokdered tree can be
considered as a structure

tur = (dom root, leaf, (label,).c, firstchild, nextsibling lastsibling

where “dom” is the set of nodes in the tree, “root”, “leaf’astsibling”, and the “labgl
relations are unary, while “firstchild” and “nextsiblingte binary. All relations are
defined according to their intuitive meanings. “root” cangexactly one node, the root
node. “leaf” consists of the set of all leaves. “firstclfilg, ny)” is true iff ny is the
leftmost child ofny; “nextsibling(n, ns)” is true iff, for somei, n, andn, are thei-th
and(i + 1)-th children of a common parent node, respectively, cogrftiom the left
(see also Figure 1). lahgh) is true iff n is labeleda in the tree. Finally, “lastsibling”
contains the set of rightmost children of nodes. (The rodiens not a last sibling, as
it has no parent.) Whenever the structtireay not be clear from the context, we state
it as a subscript of the relation names (as e.g. in dooot, .. .). By default, we will
always assume trees to be represented using the schenasgmutlined above, and
will refer to them asy.

The document orderelation < is a natural total ordering of dom used in several
XML-related standards. It is defined as the order in whiclojmening tags of document
tree nodes are first reached when reading an HTML or XML docurtes a flat text
file) from left to right.

9 In this simple model, unrestricted sets of tags as well #sgstind attribute values are assumed
to be encoded as lists of character symbols modeled as sslitreur document tree.
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2.3 Monadic Datalog

We assume the function-free logic programming syntax anthaéics of theDatalog
language and refer to [1] for a detailed survey of DataMgnadic Datalog[12, 23]
is obtained from full Datalog by requiring all intensionakegicates to be unary. By
unary query, we denote a function that assigns a predicaternt® elements of dom
(or, in other words, selects a subset of dom). For monadialDgtone obtains a unary
query by distinguishing one intensional predicate agjthery predicateBy signature
we denote the (finite) set of all extensional predicatesh(¥ixed arities) available to a
Datalog program. By default, we use the signatiefor unranked tree¥’

Example 1.The monadic Datalog program oveJy

Italic(z) + label(x) (1)
Italic(z) + Italic(zo), firstchild(xg, ) 2
Italic(x) « Italic(x(), nextsiblindz, x) 3)

computes, given an unranked tree (representing an HTMlegges), all nodes whose
contents are displayed in italic font (i.e., for which an estor node in the parse tree
corresponds to a well-formed piece of HTML of the foff. . . (/i) and is thus labeled

“i"). The program uses the intentional predicdtalic, as the query predicate.

Monadic second-order logic (MSO) extends first-order Idyiguantification over
set variables, i.e., variables ranging over sets of nodbe&hacoexist with first-order
quantification of variables ranging over single nodes. AryMiSO queryis defined by
an MSO formulap with one free first-order variable. Given a trget evaluates to the
set of nodegx € dom| ¢t F ¢(z)}. The following holds for arbitrary finite structures:

Proposition 2 (Folklore). Each monadic Datalog query is MSO-definable.

Here, our main measure of query evaluation cosbisbined complexity.e. where
both the database and the query (or program) are considari&bble. Later, we will
also be interested idata complexitywhere the query (or program) is fixed and only
the database is considered variable.

Proposition 3. (see e.g. [23]Monadic Datalog (over arbitrary finite structures) is NP-
complete w.r.t. combined complexity.

2.4 Monadic Datalog over Trees

By restricting our structures to trees, monadic Datalogiaeg a number of additional
nice properties. First,

10 Note that our tree structures contain some redundancy, @.lgaf is a node: such that
—(3y)firstchild(x, y)), by which (monadic) Datalog becomes as expressive agiitspositive
generalization. Semipositive Datalog allows to use themements of extensional relations
in rule bodies.
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Theorem 4 ([23]).Overmyr, monadic Datalog ha®(|P|-|dom}) combined complexity
(where|P| is the size of the program anidom the size of the tree).

This follows from the fact that all binary relations #yr have bidirectional func-
tional dependencies; for instance, each node has at mogirsinehild and is the first
child of at most one other node. Thus, given a progfanan equivalent ground pro-
gram can be computed in tin@(|P| - |dom), while round programs can be evaluated
in linear time [44].

A unary query over trees is MSO-definable exactly if it is deffile in monadic
Datalog.

Theorem 5 ([23]).Each unary MSO-definable query ovey is definable in monadic
Datalog overryy.

(The other direction follows from Proposition 2.) Judgingrf our experience with
the Lixto system, real-world wrappers written in monadidddag are small. Thus, in
practice, we do not trade the complexity compared to MSOwftch query evaluation
is known to be PSPACE-complete) for considerably expandegrpm sizes.

Each monadic Datalog program over trees can be efficientlsitten into an equiv-
alent program using only very restricted syntax. This nai&ég a normal form for
monadic Datalog over trees.

Definition 6. A monadic Datalog prograf overryy is in Tree-Marking Normal Form
(TMNF) if each rule ofP is of one of the following three forms:

(1) p(z) < po(z),
(2) p(x) + po(wo), B(wo, ).
(3) p(x) < po(x), pi(x).

where the unary predicatggs andp, are either intensional or of;r and B is eitherR?
or R—', whereR is a binary predicate fromyr. |

In the next result, the signature for unranked trees maynexigr to include the
“child” relation — likely to be the most common form of navigan in trees.

Theorem 7 ([23]).For each monadic Datalog prograf® overryr U {child}, there is
an equivalent TMNF program oveyyr which can be computed in tinge(|P|).

From the above discussion, we conclude that monadic Datesghe expressive
power of our yardstick MSO (on trees), can be evaluated effttj, and is gyood(easy
to use) wrapper programming language. Indeed,

— The existence of the normal form TMNF demonstrates thasrnlenonadic Data-
log never have to be long or intricate.

— The monotone semantics makes the wrapper programming tétekngodular and
intuitive. Differently from an automaton definition thatusly has to be understood
entirely to be certain of its correctness, adding a rule t@aaulic Datalog program
usually does not change its meaning completelydolatsto the functionality.
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— Wrappers defined in monadic Datalog only need to specifyigsigtather than the
full source trees on which they run. This is important to ficat wrapping, because
this way changes in parts of documents not immediately aeleto the objects to
be extracted do not break the wrapper. (That is, such wragpeschema-lesy

Thus, monadic Datalog over trees as a framework for Web rim@dion extraction
satisfies the first three of our desiderata stated at the lbéthis section (efficient eval-
uation, appropriate expressiveness, and suitability aactipal wrapper programming
language). Only the fourth desideratum — the visual spetifio of wrappers — is not
addressed here; we refer the interested reader to [5, 24]

3 The Complexity of XPath Query Evaluation

We have seen in Theorem 4 that monadic Datalog over treesddfinunary relations
and the binary relations “firstchild”, “nextsibling”, andastsibling” can be solved in
time linear in the size of the program and linear in the sizéheftree. Relations such as
“child” play an important role in various query languagest@es, such as XPath (and
thus, XQuery and XSLT); there, they are calkedes

There are two main modes of navigation in trees, horizomtdheertical. For hor-
izontal navigation, one can distinguish between navigaimong sibling nodes and
among nodes — intuitively — further left or right in the trabg “following” axis in
XPath). The most natural axis relations are ti@rld, Child*, Child™, Nextsibling
Nextsibling, Nextsibling", andFollowing, where

Following(z, y) := 3z1, 22 Child*(z1, z) A Nextsibling (1, z2) A Child* (22, ).

Note that if we consider complexity rather than expressgsnwe do not need to
deal with relations such &srstchild in addition; we may assume a unary predicate
Firstsibling such that

Firstchild(z, y) < Child(z, y) A Firstsibling(y).

A natural question is to ask for the complexity of monadicddad programs over these
axes, or, to start with a more basic problem, conjunctiveigagwhich can be seen
as Datalog programs containing only a single nonrecursile.rNote that conjunc-

tive queries over trees also have natural applicationsimpetational linguistics, term

rewriting, and data integration [27].

In the case that all individual rules are acyclic (conjuwetiueries), it is known
from [23] that monadic Datalog over arbitrary axes can bduatad in linear time.
However, not all Elog programs consists only of acyclic sulas already observed
in Proposition 3, while full Datalog is EXPTIME-completess e.g., [14]), monadic
Datalog over arbitrary finite structures is in NP (actuaiMp-complete). For a lower
bound on trees, itis known [41] that already Boolean cortjuagjueries over structures
of the form{((P;),, child, child*) are NP-hard w.r.t. combined complexity.

A detailed study of the tractability frontier of conjunaigueries over trees is pre-
sented in [27]. As observed, the subset-maximal polynocaisés of axis sets are
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— {child*, child*},
— {child, nextsibling nextsibling", nextsibling }, and
— {following}.

That is, for each class of conjunctive queries over a sulfset® of these three sets
and over unary relations, the query evaluation problem Igrimanial (with respect to
combined complexity). We have the dichotomy that for allestbases of conjunctive
queries using our axis relations (e@hild andChild™), the problem is NP-complete.
Obviously, the complexity of monadic Datalog over a givehafeaxes is always the
same as that of conjunctive queries over the same axes.

The special case that queries are acyclic is also worth stgdsince the probably
most important node-selecting query language on treeghXBaaturally tree-shaped.
All XPath engines available in 2002 took exponential tim¢hie worst case to process
XPath [25]. However,

Theorem 8 ([25]).XPath 1 is in PTIME w.r.t. combined complexity.

This result is based on a dynamic programming algorithm kyhiic an improved
form [25], yielded the first XPath engine guaranteed to rupdlynomial time.

Most people use only the most common features of XPath, sowbrthwhile to
study restrictive fragments of this language. In [25], @are XPathhas been intro-
duced, the navigational fragment of XPath, which includethhorizontal and vertical
tree navigation with axes, node tests, and boolean conibirsatf condition predicates.
As shown there, Core XPath can be evaluated in time linedrersize of the database
and linear in the size of the query. However,

Theorem 9 ([26]).Core XPath is P-hard w.r.t. combined complexity.

This property — shared by XPath, of which Core XPath is atdnagment — renders
it highly unlikely that query evaluation is massively pagifrable (= in the complexity
classNC, c.f. citeGHR95) or that algorithms exist that take lessthapolynomial
amount of space for query processing. Interestingly, if @eave negation in condition
predicates, the complexity of Core XPath is reduced to LOG@mparallel complexity
class inNG; [26].

Theorem 10 ([26]).Positive Core XPath is LOGCFL-complete w.r.t. combined-com
plexity.

This generalizes to a very large fragment of full XPath @dbXPath), from which
besides negation only few very minor features have to be vethto obtain that

Theorem 11 ([26]).pXPath is LOGCFL-complete w.r.t. combined complexity.

Further results on the complexity of various fragments oaP1 can be found
in [26]. Positive Core XPath queries correspond to acyadtisifive queries over axis
relations. Interestingly, each conjunctive query ovesaiations can be mapped to
an equivalent acyclic positive query, however there arealpnmmial translations for
doing this [27]. Thus,
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Corollary 12. For ever conjunctive query over trees, there is an equiviapersitive
Core XPath query.

Of course, when talking about conjunctive queries overstraes assume that all
binary relations in the signature are relations from ouo$eixes.

Finally, Core XPath queries can be mapped to monadic Datalligear time. The
slightly curious fact here is that this remains true in thesgnce of negation in Core
XPath (for which no analogous language feature exists imlDgt)

Theorem 13 ([19]).Each Core XPath query can be translated into an equivaleriiFM
query in linear time.

4 Datalogt: A Family of Logical Languages

It is generally agreed that Datalog is a powerful languagh several different appli-

cations. We have already discussed that the monadic fragrhBatalog gives rise to a

good wrapping language that can be used for web data exingmtirposes. Moreover,
Datalog has been used as an inference engine for knowledgessing within several

software tools, and has gained popularity in the contex¢ @f,, source code querying
and program analysis, and modeling distributed systems.

Although Datalog is a powerful rule-based formalism, it @t mble to infer the
existence of new objects that are not already in the extaak@atabase. For a number
of applications, however, it would be desirable that a afaixtension could be able to
express the existence of certain values that are not neitg$sam the domain of the
extensional database. This can be achieved by allowinteexially quantified variables
in rule heads. Let us give a couple of brief examples of sugiicgtions.

Data Exchange.When data needs to be transposed or copied from one relationa
database to another one, the problem of heterogeneous aslodtan arises. Imagine,
for example, company ACME stores data about their employeserelation EmpACME
with schema(Emp+#, Name, Address, Salary), while the FOO corporation does not
store employees’ addresses, but only phone numbers, keth@it employee data in

a relation EmpFOO having scheniBmp#, Name, Phone, Salary). Imagine ACME

is acquired by FOO and the ACME employee data ought to befaapd into the
FOO database, although the phone numbers of the ACME engsaye not (currently)
known. This could be achieved by a rule of the form:

EmpACMEe, n,a, s) — 3p EmpFOQe, n,p, s),

where phone numbers are simply existentially quantifiegréctice, each phone num-
ber is stored by a different (labeledyll valug representing a globally existentially
quantified variable (i.e., a kind of Skolem constant). Theeecurrently advanced data
management systems such as Clio [43] that effectively mneusagh data-exchange
mappings, handle such existential nulls, and allow one @grelations with nulls. In
database theory, a rule of the above form is actually callegke-generating depen-
dency (TGD)while in the KR community is known axistential rule henceforth, we
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adopt the term TGD. In addition to TGDsgquality-generating dependencies (EGDs)
are often used. They cover the well-known key constraintsfanctional dependen-
cies that have been studied for a long time [1]. For exampéemay impose that every
ACME employee has only one phone number stored. This mayfressed as a Data-
log rule with an equality in the head:

EmpFOQe, n, p, s), EmpFOQe, n’,p’,s") — p=p'.

The data exchange literature insistsfimite target relationdecause it is assumed that
these relations are actually stored. It is thus importarthis context to restrict our
syntax to make sure that onlyfiaite number of different null valuesill be invented.

Ontology Querying. Description logics (DLEJ] are used to formalize so-called onto-
logical knowledge about relationships between objecti#ties) and classes in a certain
application domain. For example, we could express thatygwerson has exactly one
father who, moreover, is himself a person, by the followingdauses, where Person
is a set of objects whose initial value is specified in the fofran extensional relation,
calledconceptand where HasFather is a binary relation, a so-catiedin DL termi-
nology: (i) PersonC JHasFather(ii) 3HasFather = Person(iii) (funct HasFather.

In an appropriate extension of Datalog, the same can be ssgui@s:

Persofiz) — Jy HasFathefr, ),
HasFathex, y) — Persofy),
HasFathe(r, y), HasFathelr, v') — y = v/'.

Note that here the relation Person, which is supplied intpet with an initial value,
is actually modified. Therefore, we no longer require (agamdard Datalog) that ex-
tensional relation symbols cannot occur in rule heads.

DLs usually rely on classical first-order (FO) semanticg] ao arbitrary models
(finite or infinite) are considered. In the above example, e®dith infinite chains of
ancestors are perfectly legal. Rather than “materializiugh models, i.e., computing
and storing them, we are interested in reasoning and quesyeaing. For example,
whenever the initial value of Person is nonempty, then thel®m conjunctive query

J23y3z (HasFatheir, y) A HasFathey, z))
will evaluate totrue, while the query
Jzdy (HasFathe(z, y) A HasFathefy, x))

will evaluate tofalse because it is false in some models.

To sum up, as we have briefly tried to sketch, some applicatisnthe ones dis-
cussed above could possibly profit from appropriate formi3atflog extended by the
possibility of using rules with existential quantifiers fretr heads (TGDs), and by sev-
eral additional features (such as, for example, equaligation, disjunction, etc.).
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Unfortunately, already for setS' of TGDs alone, most basic reasoning and query
answering problems are undecidable. In particular, cimgckihether a Boolean con-
junctive query evaluates to true w.r.t. a datab&sand a set™’ of TGDs is undecid-
able [6]. Worse than that, undecidability holds even in dasé >’ andq arefixed and

only D is given as input[7]. Itis thus important to single out laojgsses of formalisms
for rule setsY' that

(i) are based on Datalog, and thus enable a modular ruledlsgke of knowledge
representation,

(ii) are syntactical fragments of first-order logic so thasaering a Boolean queky
under X’ for an input databas® is equivalent to the classical entailment check
DAY Eq,

(iii) are expressive enough for being useful in real appidees in the above mentioned
areas,

(iv) have decidable query answering, and

(v) have good query answering complexity properties in casndgq are fixed. This
type of complexity is calledata complexityand is an important measure, because

we can realistically assume that the extensional databasehe only really large
object in the input.

In what follows we report on languages that fulfill theseeania. We dubbed the
family of such languages Datalégbecause, as already explained, they add features
to Datalog, and on the other hand make some syntactic rstiscin order to fulfill
desiderata (iv) and (v). In the rest of the paper, we focufierkey feature of existential
quantification, or, in other words, on languages that aredbas TGDs.

4.1 Acyclicity

Recall that for data exchange purposes, it is important soienthat the target instance
is finite since it is actually stored. However, executing driteary set of TGDs on an
input database, in general, we are forced to build an infing&ance due to the presence
of the existentially quantified variables. Consider, foamyple, the set’ of TGDs:

Persoifiz) — JyHasFathefr, y) HasFatherr,y) — Persoffy),

which states that each person has a father who is also a pé&ssmming now that
the input database ® = {PersoiiBob)}, stating that Bob is a person, after executing
X7 on D we obtain an infinite instance. Indeed, from the first TGD waatode that
the atom HasFatheBob, z1) holds, wherez; is a (labeled) null value, while from the
second TGD we obtain that Pergen) holds. But then we can infer that also the atoms
HasFathelzq, z2) and Persofx,) hold, wherez, is a fresh labeled null value, and it
is apparent that this inference process is infinite. Therémiee algorithm that we have
just described is known in the literature as tase proceduréor simply chase) [1].

Itis clear that a TGD-based language is suitable for dathaxge purposes if, in
addition to the desiderata (i) - (v) discussed above, esghestermination of the chase.
Several languages with this property have been proposede sg, [15,17, 32,40]. The
general idea underlying all these languages is to pose afictycondition on a graph
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R[1]-—*R[2]
A1 2]

Fig. 2. Position Graph.

that encodes how terms are propagated during the execttitve @ehase procedure.
The two most basic formalisms in this family of languagestaeeclasses oécyclic
(a.k.a. non-recursive) andeakly-acyclicsets of TGDs.

Acyclic Sets of TGDsThe definition of this class relies on the notion of the predi-
cate (dependency) graph, which encodes how predicatesdlépeach other. More
precisely, thepredicate graphof a setX’ of TGDs is a directed grapty = (V, E),
whereV consists of all the relation symbols ¥, andE is defined as follows: for each
o € ¥, for each relation? in the body ofo, and for each relatio® in the head ofr,*
(R, P) € E; no other edges occur ifi. We say that” is acyclic if G is acyclic.

Itis not difficult to see that the chase always terminatesuadyclic sets of TGDs.
This immediately implies the decidability of our main reagw task, that is, query
answering. Given a Boolean conjunctive queryo decide whether a databaBeand
an acyclic set’ of TGDs entailsg, we simply need to compute the chase instafice
w.r.t. D andY, and then check whethéf satisfies;. We know that:

Theorem 14 ([39]).Query answering under acyclic sets of TGDs is inyA€x.t. data
complexity, and NEXPTIME-complete w.r.t. combined corifyl&?

Notice that to explicitly compute the chase under acyclis 66 TGDs takes polyno-
mial time in the size of the database. Thus, to obtain thg égper bound w.r.t. the data
complexity, we need a more refined approach. This is done fplding the given set
of TGDs (using a resolution-based procedure [28]) in ordeonstruct a (finite) union
of conjunctive queries, which is then evaluated over theimiatabase. This allows us
to conclude the Agupper bound stated in the above theorem.

Weakly-Acyclic Sets of TGD# is clear that acyclic sets of TGDs do not capture plain
Datalog. Nevertheless, an acyclicity-based class exisited weakly-acyclic sets of
TGDs, that captures both acyclic sets of TGDs and Datalot fbhmalism has been
proposed as the main language for data exchange purpo$ed/Bak-acyclicity relies
on a slightly more involved graph notion, called positioagegndency) graph, which en-
codes how terms are propagated from one position to anotingrgdthe chase. Instead
of giving the rather long definition, let us explain the kegadvia a simple example.

1 For a TGD of the formb — h, b is called the body, whilé is called the head.
12 Here, the data complexity is calculated by fixing the set oDDE@nd the query, while in the
combined complexity we assume that everything is part ofrthet.
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Example 15.Consider the seX’ consisting of the TGDs
R(z,y) —» 3z R(x,z)  R(z,y) = P(z,y).

The position graph o is shown in Figure 2. We have an edge frd®i] to itself
since in the first TGD the variableis propagated from the first position of the relation
R in the body to the first position of the relatidd in the head. Now, observe that at
the same time, during the execution of the chase, a null waill&e generated at the
second position oR; this is encoded by the dashed edge, caligecial from R[1] to
R|[2]. The other two (normal) edges are present due to the secobd TG

A normal edgg, ') keeps track of the fact that a term may propagate froto
7' during the chase. A special edge ©"’) keeps track of the fact that propagation of
a value fromr to 7 also creates a new value at positigh Thus, if there is a cycle in
the dependency graph that goes via a special edge, therkitlis that the generation
of a null value at certain position will cause the generatibsome other null value at
the same position, and thus the chase is infinite. AA5ef TGDs is weakly-acyclic if
there is no cycle in its position graph that involves a sgexige. We know that:

Theorem 16 ([10, 39])Query answering under weakly-acyclic sets of TGDs is PTIME-
complete w.r.t. data complexity, and 2EXPTIME-complet& wombined complexity.

The upper bounds are shown by simply constructing the cinatenice”, and then
evaluate the input query ovér. Notice that the PTIME-hardness is immediately inher-
ited from the fact that weakly-acyclic sets of TGDs captuegpDatalog.

4.2 Guardedness

Although (weakly-)acyclic sets of TGDs are good languagedata exchange, they are
not suitable for modeling ontological knowledge. Even thepsimple knowledge that
each person has a father who is also a person goes beyongveegklic sets of TGDs.
Thus, we need classes of TGDs that do not guarantee the tgromirof the chase, but
still query answering is decidable. In other words, we needliages that allow us to
develop methods for reasoning about infinite models witleapticitly building them.

Guarded TGDs.A prime example of such a formalism is the clasgjobrdedTGDs,
inspired by the guarded-fragment of first-order logic. A T@ralled guarded it has
an atom in its body that contains all the body-variables THe reason why we can
answer queries under guarded TGDs, even if the chase pnacisdafinite, is because
the chase instance is tree-like, or, in more formal terms,daunded tree-width. We
know that:

Theorem 17 ([7]). Query answering under guarded TGDs is PTIME-complete.w.r.t
data complexity, and 2EXPTIME-complete w.r.t. combinadmexity.

A core fragment of guarded TGDs, which, despite its simfpliciaptures features of
the most widespread tractable description logics such a&il®., is the class ofinear
TGDs. A TGD is called linear if it has only one atom in its bo@y].[As expected, this
allows us to show that the complexity of query answeringvesio
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Theorem 18 ([8, 33]).Query answering under linear TGDs is in A@.r.t. data com-
plexity, and PSPACE-complete w.r.t. combined complexity.

Weakly-Guarded Sets of TGD#s for acyclic sets of TGDs, we can define a weak
version of guarded TGDs, callagleakly-guardedthat captures both guarded TGDs
and plain Datalog [7]. The key idea is to relax guardednesadh a way that a variable
x in the body can be unguarded as long as, during the constnuatithe chasey is
unified only by constants that already appear in the inpaisete. This seemingly mild
relaxation gives rise to a highly expressive language. Véavdhat:

Theorem 19 ([7]).Query answering under weakly-guarded sets of TGDs is EXETIM
complete w.r.t. data complexity, and 2EXPTIME-completé wombined complexity.

It is interesting, and somehow surprising, that query anisgeunder this class of
TGDs is provably intractable even w.r.t. the data compje¥Xithat is even more inter-
esting is the fact that by allowing negation of a very mildnfigiin particular, stratified
negation, weakly-guarded sets of TGDs are powerful enoaighpture every database
property that can be checked in exponential time, even withesuming an order in
the input database. In other words, every Boolean q@etiyat can be evaluated in ex-
ponential time in data complexity, it can be expressed asrg faAns), whereX' is a
weakly-guarded set of TGDs and An§-ary relation, such that the following holds:
satisfieq)) iff D andX entails the atomic query Ans, for every database

Theorem 20 ([31]).Weakly-guarded sets of TGDs with stratified negation cagX-
PTIME, even without assuming ordered databases.

4.3 Stickiness

Although guardedness is a well-accepted decidabilitygigra, with desirable model-
theoretic and complexity properties, it is not powerful eglo for capturing knowledge
that is inherently non-tree-like. Consider, for examphe, tollowing TGDs:

Elephantr) — 3y HasAncestdrr, y), Elephanty),
Mousez) — Jy HasAncestdrx, y), Mous€y),
Elephantz), Mousgy) — BiggerThariz, y),

which essentially state that elephants are bigger than.rticeclear that the first two
TGDs are guarded (in fact, linear). However, the third TGEhaugh it looks simple

and harmless, destroys the tree-likeness of the chasedestmndeed, due to the first
two TGDs, the chase will invent infinitely many null valuesthepresent elephants
and mice; letF and M be the sets of null values that represent elephants and mice,
respectively. Then, the third TGD, will force the chase tmpaoite the cartesian product

of £ and M, and store it in the binary relation BiggerThan. Therefthe, extension

of BiggerThan in the chase instan€estores an infinite bipartite graph, which in turn
implies that the tree-width af’ is infinite. This immediately implies that the above set
of TGDs cannot be rewritten as a set of guarded TGDs.
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R(z,y), Ay.2) — Fw Tz,y,w) R(z,y), Ay,2) = Fw T(z,y,w)

Tay,2) — Fw S(y,w) T(zy,2) — Fw S(z,w)

X

(2)
(b)

R(z,y), Ay,2) = Fw T(z,y,w)

Tw.g.2) — 3w S(zw)

Fig. 3. Stickiness and Marking.

Sticky Sets of TGDsI he class ostickysets of TGDs, introduced in [10], is a formalism
that allows us to capture non-tree-like knowledge as thecamtured by the above
example. The key property of stickiness can be describedllasvs: during the chase,
terms that are unified with variables that appear more thae anthe body of a TGD
(i.e., join variables) are always propagated (or “sticld)tlhe inferred atoms. This is
illustrated in Figure 3(a); the first set of TGDs is sticky,il@ithe second is not. The
formal definition is based on an inductive marking procedbet marks the variables
that may violate the semantic property of the chase destabeve. Roughly, during
the base step of this procedure, a variable that appears boty of a TGD» but notin
the head-atom of is marked. Then, the marking is inductively propagated frwad
to body as shown in Figure 3(b). Finally, a finite set of TGDss stickyif no TGD in
X7 contains two occurrences of a marked variable. We know that:

Theorem 21 ([10]).Query answering under sticky sets of TGDs is inyACx.t. data
complexity, and EXPTIME-complete w.r.t. combined coniiglex

Weakly-Sticky Sets of TGDASs one might expect, a weak version of stickiness, which
captures both sticky sets of TGDs and plain Datalog, can fieete The principle
under this more expressive language is the same as for waakbfic and weakly-
guarded sets of TGDs. Intuitively, we can relax the stickineondition in such a way
that variables that can be unified with finitely many null edduring the construction
of the chase are not taken into account. It is known that:

Theorem 22 ([10]). Query answering under weakly-sticky sets of TGDs is PTIME-
complete w.r.t. data complexity, and 2EXPTIME-completé wombined complexity.

4.4 Further Applications

As already discussed at the beginning of the section, dateagige and ontological rea-
soning, are applications that could possibly profit fromdbad* languages that extend
Datalog with existential quantifiers in rule heads. Let usatade by briefly describing
other applications that could profit from languages as tlesaliscussed above.
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RDF and Semantic WelOne of the distinctive features of Semantic Web data is the
existence of vocabularies with predefined semanticsRIRE Schema (RDF&) and
the Ontology Web Language (OWt4, which can be used to derive logical conclusions
from RDF graphs. Thus, it would be desirable to have an RDIFigaaguage equipped
with reasoning capabilities to deal with these vocabutariBesides, it has also been
recognised that navigational capabilities are of fundaaiémportance for data models
with an explicit graph structure such as RDF, and, more glyeit is also agreed that a
general form of recursion is a central feature for a grapmglamguage. Thus, it would
also be desirable to have an RDF query language with suclidmadities. We strongly
believe that Datalog languages are well-suited for this purpose. In fact, steywands
this direction have been already made in the recent worl&[2,

Conceptual Modeling.It has been observed that graphical conceptual modelinrg for
malisms, and in particular UML and ER diagrams, can be failftranslated into
TGDs and EGDs. In fact, core fragments of the above formalisam be captured via
guarded TGDs (with some additional features such as egu8it29]. This is quite
beneficial since it provides logical semantics to the abowmmélism, which in turn al-
lows us to formally study relevant problems such as consiste.e., whether a given
diagram admits at least one model.

Object-Oriented Deductive Databasds$.has been shown that formalisms introduced
for object-oriented databases can be embedded into Dataldgjch in turn allows us
to exploit existing query answering algorithms. For exaenptLogic Lite, introduced

in [11], is a small but expressive subset of F-Logic [34] tteat be captured by weakly-
guarded sets of TGDs [7].

Ontology-Based Multidimensional ContexfSata quality assessment and data clean-
ing are context dependent activities, and thus, contexietsddr the assessment of the
quality of a database have been proposed. A context takdsriieof a possibly vir-
tual database or a data integration system into which thebdat under assessment is
mapped, for additional analysis, processing, and quadity éxtraction. The work [42]
extends contexts with dimensions, and hence, multidinoeastata quality assessment
becomes possible. At the core of multidimensional contertsave ontologies that are
modeled using Dataldg and, in particular, weakly-sticky sets of TGDs.

AcknowledgementsThis work has been supported by the EPSRC Programme Grant
EP/M025268/ “VADA: Value Added Data Systems — Principled anchitecture”.
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