14 research outputs found

    Bi-Lipschitz Bijection between the Boolean Cube and the Hamming Ball

    Full text link
    We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming ball of equal volume. More precisely, we show that for all even n there exists an explicit bijection f from the n-dimensional Boolean cube to the Hamming ball of equal volume embedded in (n+1)-dimensional Boolean cube, such that for all x and y it holds that distance(x,y) / 5 <= distance(f(x),f(y)) <= 4 distance(x,y) where distance(,) denotes the Hamming distance. In particular, this implies that the Hamming ball is bi-Lipschitz transitive. This result gives a strong negative answer to an open problem of Lovett and Viola [CC 2012], who raised the question in the context of sampling distributions in low-level complexity classes. The conceptual implication is that the problem of proving lower bounds in the context of sampling distributions will require some new ideas beyond the sensitivity-based structural results of Boppana [IPL 97]. We study the mapping f further and show that it (and its inverse) are computable in DLOGTIME-uniform TC0, but not in AC0. Moreover, we prove that f is "approximately local" in the sense that all but the last output bit of f are essentially determined by a single input bit

    The Complexity of Recognizing Unique Sink Orientations

    Get PDF
    Given a Boolean Circuit with n inputs and n outputs, we want to decide if it represents a Unique Sink Orientation (USO). USOs are useful combinatorial objects that serve as abstraction of many relevant optimization problems. We prove that recognizing a USO is coNP-complete. However, the situation appears to be more complicated for recognizing acyclic USOs. Firstly, we give a construction to prove that there exist cyclic USOs where the smallest cycle is of superpolynomial size. This implies that the straightforward representation of a cycle (i.e. by a list of vertices) does not make up for a coNP certificate. Inspired by this fact, we investigate the connection of recognizing an acyclic USO to PSPACE and we prove that the problem is PSPACE-complete

    A Unified Method for Placing Problems in Polylogarithmic Depth

    Get PDF
    In this work we consider the term evaluation problem which is, given a term over some algebra and a valid input to the term, computing the value of the term on that input. In contrast to previous methods we allow the algebra to be completely general and consider the problem of obtaining an efficient upper bound for this problem. Many variants of the problems where the algebra is well behaved have been studied. For example, the problem over the Boolean semiring or over the semiring (N,+,*). We extend this line of work. Our efficient term evaluation algorithm then serves as a tool for obtaining polylogarithmic depth upper bounds for various well-studied problems. To demonstrate the utility of our result we show new bounds and reprove known results for a large spectrum of problems. In particular, the applications of the algorithm we consider include (but are not restricted to) arithmetic formula evaluation, word problems for tree and visibly pushdown automata, and various problems related to bounded tree-width and clique-width graphs

    The Orthogonal Vectors Conjecture for Branching Programs and Formulas

    Get PDF
    In the Orthogonal Vectors (OV) problem, we wish to determine if there is an orthogonal pair of vectors among n Boolean vectors in d dimensions. The OV Conjecture (OVC) posits that OV requires n^{2-o(1)} time to solve, for all d=omega(log n). Assuming the OVC, optimal time lower bounds have been proved for many prominent problems in P, such as Edit Distance, Frechet Distance, Longest Common Subsequence, and approximating the diameter of a graph. We prove that OVC is true in several computational models of interest: - For all sufficiently large n and d, OV for n vectors in {0,1}^d has branching program complexity Theta~(n * min(n,2^d)). In particular, the lower and upper bounds match up to polylog factors. - OV has Boolean formula complexity Theta~(n * min(n,2^d)), over all complete bases of O(1) fan-in. - OV requires Theta~(n * min(n,2^d)) wires, in formulas comprised of gates computing arbitrary symmetric functions of unbounded fan-in. Our lower bounds basically match the best known (quadratic) lower bounds for any explicit function in those models. Analogous lower bounds hold for many related problems shown to be hard under OVC, such as Batch Partial Match, Batch Subset Queries, and Batch Hamming Nearest Neighbors, all of which have very succinct reductions to OV. The proofs use a certain kind of input restriction that is different from typical random restrictions where variables are assigned independently. We give a sense in which independent random restrictions cannot be used to show hardness, in that OVC is false in the "average case" even for AC^0 formulas: For all p in (0,1) there is a delta_p > 0 such that for every n and d, OV instances with input bits independently set to 1 with probability p (and 0 otherwise) can be solved with AC^0 formulas of O(n^{2-delta_p}) size, on all but a o_n(1) fraction of instances. Moreover, lim_{p - > 1}delta_p = 1

    A taxonomy of problems with fast parallel algorithms

    Get PDF
    The class NC consists of problems solvable very fast (in time polynomial in log n) in parallel with a feasible (polynomial) number of processors. Many natural problems in NC are known; in this paper an attempt is made to identify important subclasses of NC and give interesting examples in each subclass. The notion of NC1-reducibility is introduced and used throughout (problem R is NC1-reducible to problem S if R can be solved with uniform log-depth circuits using oracles for S). Problems complete with respect to this reducibility are given for many of the subclasses of NC. A general technique, the “parallel greedy algorithm,” is identified and used to show that finding a minimum spanning forest of a graph is reducible to the graph accessibility problem and hence is in NC2 (solvable by uniform Boolean circuits of depth O(log2 n) and polynomial size). The class LOGCFL is given a new characterization in terms of circuit families. The class DET of problems reducible to integer determinants is defined and many examples given. A new problem complete for deterministic polynomial time is given, namely, finding the lexicographically first maximal clique in a graph. This paper is a revised version of S. A. Cook, (1983, in “Proceedings 1983 Intl. Found. Comut. Sci. Conf.,” Lecture Notes in Computer Science Vol. 158, pp. 78–93, Springer-Verlag, Berlin/New York)

    Reducing model checking commitments for agent communication to model checking ARCTL and GCTL*

    Get PDF
    Social commitments have been extensively and effectively used to represent and model business contracts among autonomous agents having competing objectives in a variety of areas (e.g., modeling business processes and commitment-based protocols). However, the formal verification of social commitments and their fulfillment is still an active research topic. This paper presents CTLC+ that modifies CTLC, a temporal logic of commitments for agent communication that extends computation tree logic (CTL) logic to allow reasoning about communicating commitments and their fulfillment. The verification technique is based on reducing the problem of model checking CTLC+ into the problem of model checking ARCTL (the combination of CTL with action formulae) and the problem of model checking GCTL* (a generalized version of CTL* with action formulae) in order to respectively use the extended NuSMV symbolic model checker and the CWB-NC automata-based model checker as a benchmark. We also prove that the reduction techniques are sound and the complexity of model checking CTLC+ for concurrent programs with respect to the size of the components of these programs and the length of the formula is PSPACE-complete. This matches the complexity of model checking CTL for concurrent programs as shown by Kupferman et al. We finally provide two case studies taken from business domain along with their respective implementations and experimental results to illustrate the effectiveness and efficiency of the proposed technique. The first one is about the NetBill protocol and the second one considers the Contract Net protocol
    corecore