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Abstract
Given a Boolean Circuit with n inputs and n outputs, we want to decide if it represents a Unique
Sink Orientation (USO). USOs are useful combinatorial objects that serve as abstraction of many
relevant optimization problems. We prove that recognizing a USO is coNP-complete. However,
the situation appears to be more complicated for recognizing acyclic USOs. Firstly, we give a
construction to prove that there exist cyclic USOs where the smallest cycle is of superpolynomial
size. This implies that the straightforward representation of a cycle (i.e. by a list of vertices)
does not make up for a coNP certificate. Inspired by this fact, we investigate the connection of
recognizing an acyclic USO to PSPACE and we prove that the problem is PSPACE-complete.
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1 Introduction

Over the past 15 years, unique sink orientations (USO) have intensively been studied as
simple and appealing combinatorial models for many concrete optimization problems. After
their introduction by Stickney and Watson in the context of mathematical programming [16],
USOs had been forgotten for more than 20 years, before Szabó and Welzl rediscovered them
from a computational geometry angle [17]. Subsequently, the structural, algorithmic, and
combinatorial aspects of USOs were investigated; new applications were found, in particular
in the area of mathematical programming where the concept originally comes from. We refer
the interested reader to Foniok at al. [4] and the references therein.

A USO is an orientation of the n-dimensional hypercube graph, with the property that
every face of dimension d ∈ {0, 1, . . . , n} induces a subgraph with a unique sink. In particular,
there is a unique global sink, and the algorithmic problem is to find it.

In all known applications, the USO is given in succinct representation, i.e. there is an
oracle that returns for a given vertex the orientations of the incident edges, and the question
is how many oracle calls are necessary in order to find the global sink. The oracle itself can
typically be implemented by a polynomial-time algorithm.

For a concrete such application, consider the problem of finding the smallest enclosing
ball B(P ) of a set P of n affinely independent points in Rn−1. Every subset Q ⊆ P

naturally corresponds to a vertex of the hypercube, and we have a directed edge from Q to
Q ∪ {p}, p /∈ Q, if and only if p is outside of b(Q), the smallest ball that has all points of Q
on its boundary. This ball b(Q) is easy to compute by solving a system of linear equations,
so we have a polynomial-time oracle at our disposal. Moreover, the global sink S has the
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property that b(S) = B(P ), hence finding the global sink solves our geometric problem. The
USO approach also works for the more general problem of finding the smallest enclosing ball
of a set of balls [3], for general linear programs (LP) [8], and—this is the original application
by Stickney and Watson— for P-matrix linear complementarity problems (PLCP) [16].

None of these problems have known strongly polynomial-time algorithms (i.e. polynomial
in the real RAM model of computation); for PLCP, even weakly polynomial-time algorithms
are not known. This would change if we could find the sink of an n-dimensional USO with a
number of oracle calls that is polynomial in n.

Currently, we cannot, and it even seems somewhat stupid to further generalize problems
that are already difficult. On the other hand, for some of the above concrete problems,
the USO approach does yield the currently best known algorithms. Most notably, this is
the case for a relevant class of LP in the RAM model [8], and for PLCP in general [17].
This clearly shows the usefulness of the USO abstraction, and the elegant combinatorial
algorithms obtained in this abstraction [17].

Our contribution

In this paper, we study USO from a novel angle. While previous research mostly addresses the
algorithmic problem of finding the global sink in a USO, we deal with the more fundamental
problem of recognizing a USO, given in succinct representation. Concretely, we are interested
in the computational complexity of deciding whether a succinct oracle indeed specifies a
USO. In order to fit this problem into standard complexity theory, we assume that the oracle
is implemented by a succinct Boolean circuit that in turn forms the input for the decision
problem. Such a circuit has n input and n outputs, where n is the dimension of the USO; it
is customary to use Boolean circuits in describing graphs succinctly (cf. [5]). By succinct, we
mean that the size of the circuit is polynomial in n. We prove the following two main results.

1. It is coNP-complete to recognize USO, given in succinct Boolean circuit representation.
2. It is PSPACE-complete to recognize acyclic USO (AUSO), given in succinct Boolean

circuit representation.

Here, an AUSO is a USO without any directed cycles. These results may come as a surprise,
given that the algorithmic problem seems to be easier in the acyclic case: the best known
(randomized) algorithm for finding the sink in an AUSO requires only a subexponential number
of exp(2

√
n) oracle calls [6]. For general USO, the best randomized bound is O(1.438n) [18].

Our results in particular show that there are simple certificates for non-USOs, but
probably not for non-AUSOs. We explicitly show with a family of examples that the list of
vertices on a directed cycle is not an efficient certificate for a non-AUSO, because such a
list may have to be superpolynomially long. The construction works over an interesting and
easy-to-analyze subclass of USOs (flip matching orientations) and is of independent interest.

The applications we advertise above reduce to digraphs that are guaranteed to be (A)USOs.
Still, the complexity of recognizing an (A)USO from a succinct description is interesting
from a theoretical viewpoint. In fact, similar theoretical results from the past include the
recognizability of a P-Matrix, which is proved coNP-complete in [2]. Even though from
applications (e.g. solving simple stochastic games [7]) we do get P-Matrices, the question of
recognizability is still relevant.

The study of computational problems on graphs that are represented in an exponentially
succinct way, through Boolean circuits, has been initiated by Galperin and Wigderson [5].
They proved that a number of trivial graph properties become NP-hard when the input
of the graph is given in such a succinct way. Subsequently, Papadimitriou and Yannakakis
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[13] proved that, under the same representation, problems that are NP-complete when the
graph is given explicitly become NEXP-hard. Finally, in [1], Balcázar et al. prove that it
is PSPACE-hard to decide several fundamental properties in succinct graphs, such as the
existence of an Eulerian circuit and of a path connecting two given nodes.

The paper is organized as follows. Firstly, we introduce the concepts and the notation
we use, in Section 2, together with three lemmas, from the work of Schurr and Szabó [15],
that we use in our constructions. In Section 3 we prove coNP-completeness of the USO
recognition problem. The coNP membership is implicit already in the work of Szabó and
Welzl [17], and hardness will follow by a simple reduction from SAT. Section 4 shows that the
canonical NO-certificate for the AUSO recognition problem—an explicit list of vertices on a
directed cycle—cannot be used to establish coNP membership. To this end, we explicitly
construct an n-dimensional USO with a unique directed cycle of length Ω(2n/3). Section 5
reveals the deeper reason for the failure of the cycle certificate, namely that the AUSO
recognition problem is PSPACE-complete. For PSPACE membership, we use standard
results from complexity theory and the theory of succinct graphs; our main contribution is
PSPACE hardness, proved via a reduction from satisfiability of quantified Boolean formulas.

2 Preliminaries

We use the notation [n] = {1, . . . n}, and [i : j], i < j, for [i : j] = {i, . . . , j}. Let
Qn = {0, 1}n, which we also interpret as the set of vertices of the n-dimensional hypercube.
Let ψ : Qn → Qn be a Boolean function. Moreover, let Cψ be a Boolean circuit with n

inputs and n outputs that represents ψ. There is an explicit ordering on the coordinates and
with xi and ψ(x)i we denote the ith coordinate of the corresponding bitstring, where the first
one is the rightmost. Here we use the term bitstring to refer to a ordered string of binary
bits. When the subscript is a set, e.g. x[k] or ψ(x){2,3}, we mean the bitstring resulting from
taking only the coordinates that appear in the subscript. Moreover, we use superscripts
to differentiate different functions or different bitstrings, e.g. x1, x2 represent two different
bitstrings and ψ1, ψ2 two different Boolean functions. With the notation xi we mean 1− xi.
Given two bitstrings x, y, with x · y we denote their concatenation. Given x ∈ Qn we define
the neighborhood of x as N (x) = {y ∈ Qn|x and y are at Hamming distance 1}.

Let I ∈ 2[n] and v ∈ Qn. A face of the hypercube, FI,v, is defined as the set of
vertices that are reached from v by flipping the coordinates defined by any subset of I, i.e.
FI,v = {u ∈ Qn|ui = vi,∀i /∈ I}. The dimension of the face is |I|. We call edges the faces of
dimension 1, e.g. F{i},x, and vertices the faces of dimension 0.

We say that ψ : Qn → Qn represents an orientation when ∀i ∈ [n] and ∀x ∈ Qn we have
that ψ(x)i 6= ψ(x′)i, where F{i},x = {x, x′}, i.e. the orientation of every edge is consistent
from both sides. Given an orientation ψ and a vertex x ∈ Qn, we call ψ(x) the outmap of
x and we call ψ, simply, the outmap. With Gψ = (Qn, En) we mean the digraph of the
hypercube where the edges are oriented according to the outmap. That means that the
edge on coordinate i is outgoing for vertex x if and only if ψ(x)i = 1 (cf. Figure 1). Given
an orientation ψ of Qn, a vertex x ∈ Qn and an incident edge F{i},x we say that the edge
is oriented backwards if ψ(x)i = xi and is oriented forwards if ψ(x)i = xi. For example,
consider vertex 001 in Figure 1: the incident edges on coordinates 1 and 3 are forwards
while the one on coordinate 2 is backwards. With ψUF we denote the orientation such that
ψUF(x) = x, for all x ∈ Qn. This is orientation is called uniform forwards (all edges are
forwards); similarly, the orientation defined by ψUB(x) = x, for all x ∈ Qn, is called uniform
backwards.

I Definition 1. A unique sink orientation (USO) is an orientation of the hypercube where
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Figure 1 An example of a cyclic USO (the vertices participating in the cycle are highlighted
as discs). In the left part we give an illustration of the USO graph Gψ (we explicitly indicate the
vertices 000 and 001) and in the right part we give explicitly the Boolean function ψ : Q3 → Q3.
In this paper we draw USOs by depicting a number of faces (in this case the 2-dimensional faces)
and show the orientation of the edges that connect those. The numbers show the ordering of the
coordinates. An arc like the one with label 3 means that all edges on the 3rd coordinate are directed
likewise. The dashed arc (also on coordinate 3) means that the specific edge (in this case F{3},010)
is reversed w.r.t. to the the orientation suggested by the (non-dashed) arc labeled 3.

the subgraph induced by every non-empty face has a unique sink.

The existence of a unique sink implies the analogous unique source [17]. As the whole
hypercube is a face of itself that means that there is a unique sink (and source) for the
whole hypercube, which we call global. We say that ψ or Cψ represents a USO if the output
corresponds to the outmap of a USO and thus Gψ is a USO. The outmap of a USO is a
bijection [17]. If, in addition Gψ is acyclic, then we call it an acyclic USO (AUSO).

Finally, we give three lemmas from the work of Schurr and Szabó [15] that we use for our
constructions. We rephrase the lemmas to use the notation used in the current paper. The
first gives us tools to expand a USO to one with more coordinates. The interpretation we
use in this paper is that we can take a k1-dimensional USO and embed in every vertex an
k2-dimensional USO; the end-product is a (k1 + k2)-dimensional USO, which is acyclic if all
involved USOs are acyclic. Note that Lemma 2, as presented in [15], is slightly more general
than here; we direct the reader to [15] for full generality.

I Lemma 2 ([15], Lemma 3). Let k1, k2 ∈ N and let ψ : Qk1 → Qk1 represent a USO. Let
the Boolean functions ψu : Qk2 → Qk2 , for each u ∈ Qk1 , also represent USOs. Consider the
Boolean function ψ′ : Qn → Qn, where n = k1 + k2. Let x ∈ Qn; we define ψ′ by

ψ′(x) = ψ(x[k2+1:n]) · ψx[k2+1:n](x[k2]).

ψ′ represents a USO. Furthermore, if ψ and all ψu are acyclic, then so is ψ′.

The second lemma says that we are allowed to orient the edge that connects two neighboring
vertices x1, x2 any way we like and still have a USO, as long as the outmaps of the two
vertices are exactly the same in every coordinate that is not the one of the incident edge.

I Lemma 3 ([15], Corollary 6). Let ψ : Qn → Qn represent a USO. Let x1, x2 ∈ F{i},x1 ⊆ Qn,
such that ψ(x1)[1:n]\{i} = ψ(x2)[1:n]\{i}. Then, ψ′ : Qn → Qn with ψ′(x) = ψ(x), for all
x ∈ Qn except ψ′(x1)i = ψ(x1)i and ψ′(x2)i = ψ(x2)i also represents a USO.

The third gives lemma describe a constructive process to get an acyclic USO where we can
choose which vertex is the global sink and which vertex is the global source.

I Lemma 4 ([15], Corollary 4). For any two distinct x, y ∈ Qn, there exists a ψ : Qn → Qn,
with ψ(x) = 0n and ψ(y) = 1n, such that ψ represents an acyclic USO.
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3 Recognizing USOs

In this section we prove that recognizing a USO is coNP-complete. The computational
problem is USO-recognizability: We are given a Boolean circuit Cψ such that ψ : Qn → Qn
and the question is if ψ represents a USO. Note that a coNP upper bound for this problem
is already known by [17]: A pair of vertices x, y ∈ Qn such that ψi(x) = ψi(y), ∀i ∈ I, where
I = {i ∈ [n]|xi 6= yi}, constitutes a short NO certificate.

I Theorem 5. USO-recognizability is coNP-complete.

Proof. We describe a reduction from SAT to the complement of our problem. Let φ denote
a SAT formula with n variables. By φ(x) we mean the evaluation of φ on x ∈ {0, 1}n, which
returns 0 for false and 1 for true. Based on φ we construct the Boolean circuit Cψ, with
ψ : Qn+1 → Qn+1. The function is such that on input x ∈ Qn we have ψ(x · 0) = x · 0 and
ψ(x · 1) = x · φ(x). It is easy to see that x ∈ Qn is satisfying for φ if and only if the pair
x · 0, x · 1 violates the USO property. J

Note that the proof above really is about whether ψ represents a valid orientation. Fur-
thermore, we observe that the hardness proof above also works for completely unimodal
numberings (CUN). We define these, in the spirit of [19], as bijective functions of the form
χ : Qn → [0 : 2n − 1], such that every face F of the hypercube has a unique local minimum
vertex xF ∈ F (which means that xF attains the minimum value of χ over N (xF )∩F ). The
search problem with CUNs is to find the vertex that attains the value 0. These numberings
have been extensively studied, see e.g. [9, 19]. Of course, we can represent χ by a succinct
Boolean circuit Cχ with n input and n output bits, such that the output is the binary
representation of an integer number. Then, the computational problem of deciding if a given
circuit represents a CUN can be proved coNP-hard by slightly modifying the reduction above.
Moreover, CUNs have short NO certificates (i.e. two vertices that are both local minima of
the same face) and thus recognizing if a given circuit represents a CUN is coNP-complete.
Note that CUNs induce AUSOs by directing every edge from the larger to smaller values
[19]. However, as we will see in Section 5, recognizing AUSOs is PSPACE-complete.

4 Long Cycles in USO

In this section, we present the construction of a cyclic USO that has a unique cycle of
superpolynomial size (number of involved vertices). This demonstrates that we cannot expect
a coNP upper bound for cyclicity in USOs by listing the set of vertices that participate in a
cycle. This intuition is verified in the next section with Theorem 12, where we prove that it
is actually PSPACE-hard to decide the cyclicity of a USO. At first, we introduce a special
class of USOs.

I Definition 6. Consider the family of orientations that arises when we start with GψUF ,
choose a matching, and reverse the orientation of the edges of the matching. Call this
flip-matching orientations (FMO).

Note that when we talk about FMOs in the construction below we mean the graph of the
hypercube with the edges directed according to an FMO. Such orientations can be seen to
be USOs, as a corollary of Lemma 3 [15]. This fact has also been shown by Matoušek, in
[12], who used FMOs to provide

(
n
e

)2n−1 as a lower bound on the number of distinct USOs.
In the following, we explain some notation regarding cycles in orientations of the hypercube.

Let x ∈ Qn. With |x| we denote the Hamming weight of x, i.e. the number of ones in the
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bitstring x. Note that a forward (backward) edge increases (decreases) Hamming weight by 1.
Let ψ : Qn → Qn be an orientation and consider Gψ = (Qn, En). Let c = {v1, . . . , vk} ⊆ Qn
be a k-cycle in Gψ, that is a cycle over k vertices. Cycles are represented by the set of
participating vertices, which we present in order of appearance; the last vertex in the sequence
c has an outgoing edge to the first one.

Next, we observe that in an FMO every vertex that participates in a cycle must have an
incident backward edge. Let c ⊆ Qn be a cycle in an FMO and let v ∈ c be a vertex on the
cycle. Assume that v has no backward edge attached. Let v′ be the next vertex on c; we
have that |v′| = |v|+ 1 because the edge v → v′ is forwards. The vertices that follow v′ on
the cycle have Hamming weight at least |v|, because a lower Hamming weight would imply
that there are two consecutive backward edges, which is not allowed by our graph being an
FMO. Then we conclude that v is reached with a forward edge from a vertex of Hamming
weight at least |v|, which is of course not possible. We have proved the following.

I Lemma 7. Let G = (Qn, En) be an FMO. Let c ⊆ Qn be a cycle in G. Then, every vertex
in c has an incident backward edge. It follows that edges on c alternate between forwards and
backwards and that reversing a backward edge cannot create any new cycles.

Following, we describe our lower bound construction. It is an inductive construction that
builds an FMO of dimension n from an FMO of dimension n− 3. Note that in the resulting
FMO we want exactly one cycle. For this we use Lemma 7 on the FMOs of dimension n− 3,
in order to turn their unique cycles into paths and construct an FMO of dimension n that
contains a unique cycle. The base cases are FMOs that contain a unique cycle of size 2n for
n = 3, 4, 5; those are easy to construct, as an example see the 3-dimensional cyclic FMO in
Figure 1 (at least 3 dimensions are needed for a USO to be cyclic and 6 is the smallest size
for a cycle in a USO).

Let Gn−3 = (Qn−3, En−3) be the resulting graph after the lth induction step. Let
c = {v1, v2, . . . , vk} be the unique cycle, of size 6 ≤ |c| = k, that is contained in Gn−3. We
name the vertices v1, . . . , vk in order of appearance on the cycle. We assume that the first
edge of the cycle (v1, v2) ∈ En−3 is forwards. In our construction we will use three variants
of Gn−3 w.r.t. Lemma 7 (thus turning the cycle into a path):

1. Gn−3
1 is derived from Gn−3 by reversing the backward edge (vk, v1) ∈ En−3;

2. Gn−3
2 is derived from Gn−3 by reversing the backward edge (vk−2, vk−1) ∈ En−3;

3. Gn−3
3 is derived from Gn−3 by reversing all the backward edges

except (vk−2, vk−1), (vk, v1) ∈ En−3.

Note that the three graphs above are all FMOs. We obtain each of these graphs by reversing
edges that were backwards in Gn−3 to forwards. The fact that the edges described in the
first two items are backwards can be seen by Lemma 7.

Now we describe how to proceed with the induction at the l + 1th step and eventually
construct Gn. Consider the set of faces F = {F[n−3],x·0n−3 |x ∈ Q3}. These are the faces that
appear as ellipsoids in Figure 2. We embed the orientation Gn−3

ψUF
in all the faces of F , with

three exceptions: In face F[n−3],110·0n−3 we embed Gn−3
1 , in face F[n−3],101·0n−3 we embed

Gn−3
2 and in face F[n−3],011·0n−3 we embed Gn−3

3 . The edges at the extra 3 coordinates follow
the forward uniform orientation, except the following three edges that we orient backwards:
F{n−2},010·v2 , F{n−1},100·vk

, F{n},001·vk−2 . See Figure 2 for an illustration of the cycle in Gn.

I Theorem 8. There exist cyclic n-dimensional FMOs that contain a unique cycle of size
Ω(2 n

3 ).
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Figure 2 The ellipsoids represent the (n− 3)-dimensional faces in F . The black edges (with filled
arrows) are forwards and the red edges (with non-filled arrows) are backwards. The dotted arcs
represent a sequence of edges that starts with a forward one and ends with a backward one. Finally,
we show only some of the vertices to illustrate the construction. A vertex with label i denotes vi,
the ith vertex on the cycle. The faces that contain the graphs Gn−3

1 , Gn−3
2 , Gn−3

3 are labeled. To
see the cycle one can follow the Latin numbers I,. . . ,VI.

Proof. Our construction, as we presented it above, satisfies the claimed theorem. Consider
Gn = (Qn, En) and c ⊆ Qn the cycle in Gn. By induction, the faces where we embed the
variants of Gn−3 are FMOs. The other (n− 3)-dimensional faces in F contain the uniform
orientation. The three new coordinates also obey the uniform orientation except the three
edges that we reversed. All of the reversed edges are incident to vertices that do not have
other backward edges incident. Thus, Gn is an FMO.

The existence of cycle c in Gn can be witnessed in Figure 2. Furthermore, there are
no backward edges other than the ones that are incident to c. Thus, by Lemma 7, there
is no other cycle and c is the unique cycle in Gn. Finally, let C(n) denote the size of the
cycle in our construction at dimension n. Then, we have the following recursive formula:
C(n) = 2C(n− 3) + 6 = Ω(2 n

3 ) J

5 Recognizing Acyclic USOs

We start the section with the formal definitions of the two computational problems of interest:

AUSO-Accessibility: The input is a Boolean circuit Cψ, such that ψ : Qm → Qm, and
two vertices s, t ∈ Qm. The answer to an instance is YES if and only if ψ represents an
acyclic USO such that there is a directed path from s to t in Gψ.
USO-Cyclicity: The input is a Boolean circuit Cψ, such that ψ : Qm → Qm. The answer
to an instance is YES if and only if ψ represents a USO such that there is a directed
cycle in Gψ.

Both these problems can be seen to be in PSPACE. Firstly, as we argued in Section 3, we
can check if ψ represents a USO in coNP(the relationship coNP⊆ PSPACE is well-known).
Then, the standard argument, that has been used to show that accessibility and cyclicity in
directed graphs given by succinct representations, are in PSPACE (see e.g. [1, 13]) suffices
in our case too. By this argument, we decide the existence of a cycle in the following way:
we fix a vertex (non-deterministically) and pick the next vertex from the set of neighbors
that can be accessed by an outgoing edge (also non-deterministically). If we reach the same
vertex then we conclude that there is a directed cycle (formally here what we need to decide
is the non-existence of a cycle; we are using the fact that all deterministic classes are closed
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(a) Base case for q1 is ∃.

1
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(b) Base case for q1 is ∀.

Figure 3 An illustration of the two base cases of the inductive construction.

under complement). Similarly, to decide the existence of an s− t path, we fix vertex s and
perform the same process; if we reach t then we conclude that there is an s− t path. These
processes use only polynomial space (actually linear, only one vertex needs to be stored in
memory) and they give non-deterministic PSPACE upper bounds, which is the same as
deterministic PSPACE by Savitch’s Theorem [14].

We are ready to present our first theorem which shows that it is PSPACE-hard, and
thus by the above argument PSPACE-complete, to decide the problem AUSO-Accessibility.

I Theorem 9. AUSO-Accessibility is PSPACE-complete.

The proof is by reduction from the problem of deciding the satisfiability of a Quantified
Boolean Formula (QBF) which is the standard PSPACE-complete problem. The input to
the latter is a CNF formula Φ with n variables v1, . . . , vn and a set of n quantifiers q1, . . . , qn
that can be either ∃ or ∀. The construction is presented in an inductive fashion, where the
induction is on the number of variables of the QBF formula. The base case is a 3-dimensional
acyclic USO and then for each variable we add 3 coordinates when the next quantifier is
existential and 4 coordinates when it is universal. All in all, the result of the construction is
ψ : Qm → Qm which represents an acyclic USO and such that m ≤ 4(n− 1) + 3 = 4n− 1.
For this purpose, we describe the construction of Gψ; then, the question to be decided is if
there exists a directed path from 0m to 1m.

We have a set of vertices, called active and denoted with AV ⊂ Qm. We call an edge F{i},x
active when F{i},x ⊂ AV. We denote with gray color the active edges in the illustrations
for the base case (cf. Figure 3) and the faces that contain active edges in the illustrations
for the inductive steps (cf. Figure 4). With AV l we denote the set of active vertices after
the lth inductive step. The size of AV is 4 for the base case and it triples at each induction
step (|AV l| = 3|AV l−1|). The orientations of the active edges depend on an evaluation of Φ
for a given assignment that can be obtained by the coordinates of the active vertices. This
process will be explained at a later step. We are ready now to describe our construction.
The 3-dimensional base cases are presented in Figure 3.

Let Gl = (Qk, Ek), with k < 4l, be the graph after the lth induction step and let ql+1 be ∃.
We introduce three extra coordinates. At coordinate (k+1) and (k+2) all edges are forwards.
At coordinate (k+3) all edges are backwards except the edges F{k+3},000·1k and F{k+3},010·0k

which are reversed. Then, we embed Gl in the faces F0 = F[k],0k+3 , F ′0 = F[k],1·0k+2 and
F1 = F[k],111·0k . The rest of the faces in F∃ = {F[k−3],y·0k−3 |y ∈ Q3} are all oriented
according to ψUB (backwards uniform) in the first k coordinates (cf. Figure 4a).

For the other case, let ql+1 be ∀. Introduce four extra coordinates. At coordinate (k + 1)
we have that the edges in face F[k+2],0k+4 are backwards and every other edge is forwards. At
coordinate (k + 2) all edges are backwards except edge F{k+2},0000·1k which is reversed. At
coordinate (k+3) all edges are forwards. At coordinate (k+4) all edges are backwards except
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the edge F{k+4},0110·0k which is reversed. Then, we embed Gl in the faces F0 = F[k],0k+4 ,
F ′0 = F[k],0010·0k and F1 = F[k],1111·0k . The rest of the faces in F∀ = {F[k−4],y·0k−4 |y ∈ Q4}
are all oriented according to ψUB in the first k coordinates (cf. Figure 4b).

The graph Gn = (Qm, Em) is the end product of our reduction (after the nth induction
step). Note that Gn is not an FMO and neither will be the graph we construct in the proof
of the next theorem. We still have to describe the orientation of the active edges in Gn. Let
v ∈ AV. The orientation of the active edge adjacent to v, say e ∈ Em, is decided by the
following simple algorithm:

Let x ∈ Qn be the assignment for the variables of the input QBF which we build based
on the coordinates of v. Initialize j = 3 and x1 = vj .
For i = 2 to n repeat:

If qi is ∃ then set j ← j + 3 and xi ← vj−1.
If qi is ∀ then set j ← j + 4 and xi ← vj .

If Φ(x) = 1 then e is forwards, otherwise it is backwards.

For example, consider the following simple QBF: Φ = (v1 ∨ v2 ∨ v3), q1 = q3 = ∃ and
q2 = ∀. This gives rise to a USO over Q10. We give the vertex v = 1001111000 as input to
the algorithm above (the bold bits are the ones that the algorithm will extract). This is
translated to the 3-length bitstring x = 010 which means that variable v2 is set to true and
the other two to false and thus Φ(x) = 1 and the corresponding active edge is forwards.
I Claim 10. Gn is an acyclic USO.

Proof. It can be seen by Lemma 3 that both base cases of the construction are 3-dimensional
USOs, regardless of the orientation of the active edges. In addition, they are acyclic because
at coordinate 3 every edge is forwards. Then, we argue that for every step of the induction
the graph remains an acyclic USO. Consider the l + 1th step of the induction and let ql+1
be ∃. Moreover, let Gl+1 = (Qk+3, Ek+3) and consider F∃. It holds that every face in F∃
is an acyclic USO: for F0,F ′0,F1 it holds by induction and in every other face we have the
backwards uniform orientation.

We interpret the construction in two steps: First, the faces in F ∃ are put on a 3-
dimensional acyclic USO whose orientation is defined above by the orientation of the extra
coordinates (k + 1, k + 2, k + 3), before reversing the edges F{k+3},000·1k and F{k+3},010·0k .
The result is an acyclic USO by Lemma 2. In the next step we reverse the aforementioned
edges. The result is a USO by Lemma 3. Moreover, reversing these edges does not create any
cycles. The orientation in the face F[k]∪{k+3},0k+3 remains acyclic after reversing F{k+3},000·1k

because the orientations in faces F0 and F ′0 are identical (and a cycle in the former face
would imply that the latter faces are cyclic; this is the reason we orient F ′0 this way). A
similar argument applies to reversing the edge F{k+3},010·0k within the face F[k]∪{k+3},010·0k .
All the edges at coordinates k + 1 and k + 2 are forwards and thus a cycle can only involve
the k + 3th coordinate, which is not possible by the arguments above.

The situation is symmetrical when ql+1 is ∀ and Gl+1 = (Qk+4, Ek+4). First, we argue
about the set of faces F∀. Then, why reversing the edge F{k+2},0000·1k does not create any
cycles within the face F[k]∪{k+2},0k+4 and reversing the edge F{k+4},0110·0k does not create
any cycles within the face F[k]∪{k+4},0110·0k . The argument is exactly the same as above.
Remember that at the k + 2th coordinate all edges are backwards and at the k + 3th all
edges are forwards. Then, we conclude that reversing the edge F{k+2},0000·1k does not create
any cycle in Gl+1, since all the edges at the k + 1th and the k + 4th coordinate that are
incident to the face F[k],0k+4 are backwards. Furthermore, we conclude that reversing the
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(a) Gl+1 with ql+1 is ∃. The k-dimensional faces in F∃ appear as 2-faces here.

k + 1
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k + 3

k + 4

F0

F ′
0

F1

(b) Gl+1 with ql+1 is ∀. The k-dimensional faces in F∀ appear as 2-faces here.

Figure 4 An illustration of the steps of the inductive construction. The active faces (faces that
contain active edges) are filled with gray color. The reversed edges are depicted as dashed.
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edge F{k+4},0110·0k does not create any cycle in Gl+1, since in the face F[k+4]\{k+3},0100·0k

all edges at the k + 1th coordinate are forwards and at the k + 2th are backwards. J

I Claim 11. 0m is connected to 1m in Gn if and only if the input QBF is satisfiable.

Proof. First, note that at the base case 03 is connected to 13 if and only if there is at least
one forward active edge in the case q1 is ∃ and if and only if both active edges are forwards
in the case q1 is ∀.

Then, consider the l + 1th step of the induction and let the quantifier ql+1 be ∃ and
Gl = (Qk+3, Ek+3). There is a directed path from 0k+3 to 1k+3 if and only if at least one
of the following is true: Either there is a directed path from 0k+3 to 000 · 1k or there is
a directed path from 111 · 0k to 1k+3. This is because the k + 3th coordinate is directed
backwards for all edges except the two we reversed during the construction (F{k+3},000·1k

and F{k+3},010·0k). If there is a directed path from 0k+3 to 000 · 1k, then there is one from
0k+3 to 1k+3 through the edge F{k+3},000·1k . Otherwise, there is an edge from any vertex
x1 ∈ F0 to a vertex x2 ∈ F[k],010·0k ∩N (x1), from there to the vertex 010 · 0k and finally to
111 · 0k through edge F{k+3},010·0k . Thus, if there is a path from 111 · 0k to 1k+3 then there
is a path from 0k+3 to 1k+3.

Following, we consider the case that ql+1 is ∀ and Gl = (Qk+4, Ek+4). Then, there is a
directed path from 0k+4 to 1k+4 if and only if there is a directed path from 0k+4 to 0000 · 1k
and one from 1111 · 0k to 1k+4. Note at the k + 4th coordinate all edges are backwards,
except F{k+4},0110·0k and thus a path from 0k+4 to 1k+4 has to go through vertex 0110 · 0k.
The only way this is possible is if there is a path from 0k+4 to 0000 · 1k and from there
through the edge F{k+2},0000·1k to face F ′0 and, finally, from there a path to face F[k],0110·0k .
From the latter the vertex 1110 · 0k is accessible and finally the vertex 1111 · 0k. A directed
path from 1111 · 0k to 1k+4 completes the path from 0k+4 to 1k+4.

Thus, we have shown the existence of which paths is mandatory, for the existence of a
directed path from the all-zero to the all-one vertex in both cases. It remains to explain that
these paths exist if and only if the input QBF is satisfiable.

For the forward case of the claim assume that the input QBF is satisfiable. Then, there
exists an assignment of the variables of Φ whose quantifier is existential such that, for any
assignment of the rest of the variables, Φ is satisfiable. This means that for every step of the
induction that corresponds to an existential quantifier there exists a directed path either
from 0k+3 to 000 · 1k in F0 or from 111 · 0k to 1k+3 in F1 (since the corresponding active
edges are forwards). For an inductive step that corresponds to a universal quantifier we have
that there are directed paths both from 0k+4 to 0000 · 1k in F0 and from 1111 · 0k to 1k+4 in
F1. By the inductive construction this means there is a directed path in Gn from 0m to 1m.

Reversely, assume that there is a directed path from the vertex 0m to the vertex 1m in
Gn. Again, by inductive reasoning. If ql+1 is ∃ then there is a path in at least one of F0 and
F1; this means that Φ is satisfiable for at least one of the two possible assignments. If ql+1
is ∀ then there are both the paths in F0 and F1; this means that Φ is satisfiable for both
possible assignments. J

In the next step we prove that USO-Cyclicity is PSPACE-hard based on the PSPACE-
hardness of AUSO-Accessibility. This implies PSPACE-completeness by the arguments we
gave in the beginning of this section.

I Theorem 12. USO-Cyclicity is PSPACE-complete.

Proof. The reduction is from QBF. In a first step, we reduce to an instance of AUSO-
Accessibility as in the proof of Theorem 9. Then we have Gψ which is an AUSO (we use this

STACS 2015



352 The Complexity of Recognizing Unique Sink Orientations

s

t
t

tss

n+ 2

n+ 1

s

t

Figure 5 An illustration of the construction. The ellipsoids represent n-dimensional USOs. The
face F[n],10·0n contains the orientation of the AUSO-Accessibility instance.

trick since the formal definition of AUSO-Accessibility does not guarantee that the input to
the problem represents an AUSO). Based on Gψ we define Gψ′ , where ψ′ : Qn+2 → Qn+2.
All the edges at coordinates n+ 1 and n+ 2 are forwards except F{n+1},00·s and F{n+2},01·t
which are reversed. We have now defined the orientation of the edges at the two extra
coordinates and we turn our attention to the first n ones. In face F[n],10·0n we embed Gψ
which is an AUSO. Let Gψ′′ be the AUSO graph that results by applying Lemma 4 with
ψ′′(s) = 0n and ψ′′(t) = 1n. We embed Gψ′′ in faces F[n],00·0n , F[n],01·0n and F[n],11·0n . It
follows that Gψ′ is a USO from the above argument and the fact that reversing the edges is
safe by Lemma 3. An illustration of the construction can be found in Figure 5.
I Claim 13. There is a cycle in Gψ′ if and only if there is a directed path from s to t in Gψ.
By construction, there is a path from vertex 10 · t to 01 · t through 11 · t. Note that since
11 · t is the source of the face F[n],11·0n a path from any vertex of the face F[n],10·0n to 11 · t
has to go through vertex 10 · t. In F[n],01·0n there is path from 01 · t (which is the source of
the face) to 01 · s (which is the sink of the face). From the latter there is a path to vertex
00 · s (which is the sink of the face F[n],00·0n and thus no other vertex of the same face is
accessible from it) and finally to 10 · s. In addition, note that the desired cycle is the only
one that will use both coordinates n+ 1 and n+ 2 (if it exists). There is no other cycle that
involves only one of the two extra coordinates. This is because the existence of such a cycle
would imply that the orientations embedded in F[n],00·0n , F[n],01·0n and F[n],11·0n are cyclic
(we have also seen this argument in the proof of Claim 10). The claim follows. J

The reductions described in this section give as a result a directed graph. However, the
graph of the hypercube is obviously of exponential size and we are interested in a Boolean
circuit that succinctly describes it. As we have already argued, this is done by actually
describing the outmap of the USO. The size of such a circuit depends only on n, the number
of variables of the QBF. It is discussed in [1] that the techniques used by Ladner in [10] can
be used to construct such a circuit in polynomial time. Nonetheless, in our case, and because
the graph is very structured, it is not too hard to explicitly describe the construction of the
actual circuits for Theorems 9 and 12. The description is a bit tedious and, due to the lack
of space, we postpone it to the full version of the current paper. We remark that for the
proof of Theorem 9 the circuit contains internally another circuit that, given an assignment
x of the n variables of Φ, returns the evaluation Φ(x). The latter is used in the algorithm
described in the proof of Theorem 9 to decide the orientation of the active edges. It is known
that such evaluations can be performed in polynomial time (see e.g. [11]) and thus such a
circuit is easy to obtain.
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