
Autonomous Agent Multi-Agent Systems manuscript No.
(will be inserted by the editor)

Reducing Model Checking Commitments for Agent
Communication to Model Checking ARCTL and GCTL∗

Mohamed El Menshawy · Jamal Bentahar ·
Warda El Kholy · Rachida Dssouli

Received: date / Accepted: date

Abstract Social commitments have been extensively and effectively used to rep-
resent and model business contracts among autonomous agents having competing
objectives in a variety of areas (e.g., modeling business processes and commitment-
based protocols). However, the formal verification of social commitments and their
fulfillment is still an active research topic. This paper presents CTLC+ that modi-
fies CTLC, a temporal logic of commitments for agent communication that extends
CTL logic to allow reasoning about communicating commitments and their ful-
fillment. The verification technique is based on reducing the problem of model
checking CTLC+ into the problem of model checking ARCTL (the combination
of CTL with action formulae) and the problem of model checking GCTL∗ (a
generalized version of CTL∗ with action formulae) in order to respectively use
the extended NuSMV symbolic model checker and the CWB-NC automata-based
model checker as a benchmark. We also prove that the reduction techniques are
sound and the complexity of model checking CTLC+ for concurrent programs with
respect to the size of the components of these programs and the length of the for-
mula is PSPACE-complete. This matches the complexity of model checking CTL
for concurrent programs as shown by Kupferman et al. We finally provide two case
studies taken from business domain along with their respective implementations
and experimental results to illustrate the effectiveness and efficiency of the pro-
posed technique. The first one is about the NetBill protocol and the second one
considers the Contract Net protocol.

Keywords Social Commitments · Agent Communication · Verification · Reduction

1 Introduction

A society mainly evolves through communication among participating entities. In
such a society, people interact and exchange information with each other—despite

Mohamed El Menshawy E-mail: m elme@encs.concordia.ca · Jamal Bentahar E-mail: benta-
har@ciise.concordia.ca · Warda El Kholy E-mail: w elkh@encs.concordia.ca · Rachida Dssouli
E-mail: dssouli@ece.concordia.ca
Concordia University, Faculty of Engineering and Computer Science, Canada

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/211516907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 El-Menshawy et al.

differences in their languages—to satisfy their individual or social goals that they
cannot achieve alone. Such communication requires languages and mechanisms to
orchestrate and structure interactions among participants within dialogues.

Correspondingly, an agent-based model for an artificial society should provide
acute and adequate means to define a formal semantics for agent communication
languages (ACLs). Conventionally, formal semantics lays down the foundation
for a neat, concise and unambiguous meaning of agent messages, and provides
capabilities to verify if agent behaviors comply with the defined semantics and
also facilitates and improves the applicability of the proposed semantics.

In the early days of multi-agent research, a promising way to define ACLs’
semantics was widely inspired by Searle’s speech acts theory [45], which was par-
ticulary concerned by identifying actions performed by agents to satisfy their in-
tentions. This is called the mental approach that focuses on achieving a rational
balance between some concepts of agent communication such as beliefs, goals, de-

sires and intentions. Under this doctrine, it became apparent that a purely mental
semantics of ACLs in terms of pre- and post-conditions of agent’s mental states
would necessarily impose significant restrictions on the operational behavior of
agents. For example, in FIPA-ACL that uses this doctrine, the semantics of In-

form act, where the sender tells the receiver a proposition p, says that such act
can only be uttered if the sender believes the proposition p to be true in the pre-
condition part, called sincerity condition part. The problem with this approach is
that the addressee agents (or an external observer agent) cannot verify whether
the speaker agent violates the pre-conditions defined in such mental semantics or
not [49]. This problem is also known as the semantics verification problem [60]. Ac-
cordingly, such pure mental semantics cannot be used in open systems wherein the
interacting agents are heterogeneous [49]. Moreover, the semantics of this doctrine
makes ACLs not general enough to capture the interoperability among heteroge-
neous systems.

Therefore, there is a shift in multi-agent systems (MASs) community towards
social approaches to overcome the shortcomings and inconveniences incorporated
with mental approaches [47]. Commitments are employed in some of these so-
cial approaches, which successfully provide a powerful representation for modeling
and representing business contracts among autonomous agents having compet-
ing objectives in a variety of areas, such as modeling business processes [18,53,
54], developing artificial institutions [27], defining programming languages [59],
modeling service-oriented computing [51], developing web-based MASs [57], speci-
fying commitment-based protocols [3,17,40,66], and specifying business protocols
[20]. Commitments have also been analyzed in strategic logics such as ATL* where
agents can commit to specific strategies [1]. In Longman Dictionary, a commitment
is a promise to do something or to behave in a particular way. In such a definition,
commitment imposes loyalty, dedication or devotion towards a person or group
within a community. In broad terms, commitments are social (opposite to psycho-
logical commitments [46] or individual commitments [11]), objective and public
[16], and help represent the state of affairs in the course of multi-agent interac-
tions. Following social commitment-based approaches, an agent does not need to
reason about others’ intentions or any agents’ mental states.

Singh [48] and Castelfranchi [11] formally denoted social commitments by a
4-argument relation involving a proposition (or an action) p and three agents (i,
j, and ctxt): C(i, j, ctxt, p), which means i is committed towards j in the social

Reducing Model Checking Commitments for Agent Communication 3

context ctxt—which maybe an agent—to satisfy the proposition p or to do the
action p. The agent i that actively makes the social commitment is called the
committer (or debtor), the agent j to which the commitment is made is called
the committee (or creditor), and p is called the content of the commitment. The
context ctxt includes the norms that apply to the group wherein the commitment
is established and also resolves disputes between the debtor and creditor [48]. Such
context has been removed from the notation of commitments in later proposals
coming up from Singh and other researchers. Recently, some authors introduced a
different definition where there are a debtor, a creditor, an antecedent condition,
and a consequent condition (for example [14,64]). In this definition, a commitment
is said to be active when the antecedent condition is true. However, for the sake
of simplicity, particularly from the logical perspective, antecedent condition will
not be used in this paper, which means we assume that such a condition always
holds. More discussion is provided in Section 5.

Singh [47] emphasized the need to define the semantics of ACLs in terms
of social notions by presenting many design advantages of following the social
commitment-based approach over the mental one regarding to ACL messages
meaning and agent construction in MASs. The author refined his seminal work
introduced in [47] with unifying normative concepts and commitments and hence
coming up with a rich descriptive ontology of commitments [48]. The strong key
point in this ontology is the set of actions called commitment actions—that can
be used to manipulate commitments—namely, create, discharge, cancel, release, del-

egate, and assign. However, for the purpose of model checking, which is the main
contribution of this paper, we restrict ourselves only to two actions (fulfillment
(or discharge) and violation). We leave the integration of the other actions to our
model checking approach to future work.

Singh [49] introduced four crucial criteria that should be satisfied to have a
well-defined social semantics for ACL messages:

1. Formal : the language must be formal to eliminate the possibility of ambiguity
in the meaning of ACL messages and allow agents to reason about them.

2. Declarative: the semantics should focus on what the message means instead of
how the message is exchanged.

3. Meaningful : the semantics should focus on the content of messages, not on their
representation as sequences of tokens.

4. Verifiable: we can check if the agents are acting according to the given seman-
tics.

Previous approaches have considered defining the semantics of ACL messages in
terms of social commitments by means of temporal logics [6–8,21,39,41,49], which
we call “logics of commitments”. However, the motivation is no longer just formally
representing and reasoning about social commitments and commitment actions,
but becomes the application of formal and automatic verification techniques, such
as model checking in order to verify commitments and commitment-based proto-
cols. It is unrealistic—in open environments (e.g., e-business and e-negotiation)—
to assume that all autonomous agents will behave according to the given protocols
as they may not behave as they are committed to. Furthermore, a formal veri-
fication is necessary to help protocol designers either detect unwanted and bad
agents’ behaviors to eliminate them or enforce desirable agents’ behaviors so that
such protocols comply with given specifications at design time.

4 El-Menshawy et al.

Several approaches have been widely recognized to address the above challenge.
Some approaches used: (1) local testing technique [57]; (2) static verification tech-
nique [13,40,55,66]; and (3) semi-automatic verification technique [63] to identify
the compliant and non-compliant agents at the end of the protocol. Although these
approaches have made significant progress, they have been criticized by Artikis and
Pitt [2] as they are inefficiently applicable in open environments especially with a
large state space. Other approaches have defined commitment-based protocols us-
ing existing computational logics to be more applicable in today’s economy such as
e-negotiation [5], cross-organizational business models [54] and business processes
[28]. Those protocols have been verified using different model checking techniques.
However, those techniques consist in reducing commitments and their actions to
simple abstract structures and types using informal translation-based approaches
to be able to use existing model checking tools. Such informal translation-based
approaches [5,21] have the problem of preventing verifying the real and concert
semantics of commitments and related concepts as defined in the underlying logics.
These approaches only provide partial solution to the problem of model checking
commitments as they reduce commitment modalities into domain variables. This
stops distinguishing among various modes of truth such as necessarily true and
true in the future. Furthermore, informal translation-based approaches use simple
variables [21,54,12], abstract processes [5,17] that do not account for the meanings
of commitments, so we are not checking the defined semantics of commitments.
Technically, the notion of commitments has the property of being referentially
opaque, which has an opaque context; so substituting the truth values of terms
into opaque context is not going to preserve meaning as argued in [61] where it
is shown that predicate logics fail in representing the notions of agent’s inten-
sions having opaque context. Moreover, there are no tools supporting the informal
translation-based approaches to perform the translation process before the ac-
tual verification process is undertaken. Thus, we believe that automatic, formal
translation-based approach is more suitable as it allows representing commitment
modality in other temporal modalities, which can reflect its meaning.

In order for these approaches to address all of the aforementioned challenges,
they should satisfy all Singh’s criteria within an intergraded framework. Such
motivation is recently achieved by means of two methods:

– By a direct method via either developing a proper model checker from scratch
or extending an existing model checker with new algorithms for the needed
temporal modalities as we did in a previous work for model checking CTLC
(an extension of computation tree logic (CTL) introduced by Clarke et al.
[15] with modalities for commitments and their fulfillment (i.e., discharge) and
violation) [22].

– By a formal reduction method into an existing model checker as we did in
another previous work for model checking CTLC [23]. We particulary trans-
formed the problem of model checking CTLC into the problem of model check-
ing CTLK (the combination of CTL with the logic of knowledge [43]) in which
the commitment modality is reduced to knowledge modality.

Since our previous proposals [22,23] have successfully painted the following picture:
the existing model checkers are feasible to verify the modalities of commitments
and their fulfillment and violation correctly without losing the intrinsic mean-
ing, the present paper advocates the second method (reduction technique), which

Reducing Model Checking Commitments for Agent Communication 5

is easy to implement and allows to compare different verification techniques with
respect to the same logic. We also aim at investigating the effectiveness, and sound-
ness of our approach along with analyzing its computational complexity that is
still missing in the existing approaches. In particular, we: (1) introduce CTLC+ by
redefining the social accessibility relation introduced in [22,23] to account for the
intuition that social commitments are conveyed through communication between
agents; (2) refine the semantics of commitments and their fulfillment defined first
in [22] (this refinement is designed for the particular purpose of model checking
and is functional to the verification at design time); (3) remove violation modality
presented in [21,22]; instead we show how to express weak and strong violations
as properties in our logic; (4) prove the soundness of the proposed reduction tech-
niques; and (5) analyze the space complexity of CTLC+ model checking for con-
current programs, which surprisingly is PSPACE-complete meaning our CTLC+

model checking has the same space complexity as model checking CTL [34] with
regard to concurrent programs.

+ +
Fig. 1 A schematic view of our approach

Figure 6 gives an overview of our approach, which consists of three parts. In
the first part, we introduce CTLC+, which is a new branching-time temporal logic
of commitments including CTL temporal modalities and modalities for commit-
ments and their fulfillment using the formalism of interpreted systems. This logic
addresses some limitations in our previous commitment logics [7,8,22] (this aspect
will be detailed in Sections 2.2 and 5). Other commitment actions such as assign,
delegate, and withdraw considered in [7,8] from the semantic perspective are not
included in this paper for the purpose of being focused on just a subset of these
actions, particularly for the purpose of model checking and its computational com-
plexity. Because these actions are needed to take full advantage of the notion of
social commitments [18,21,41,48], they will be investigated in our future work.

In the second part, we reduce the problem of model checking CTLC+ into: (1)
the problem of model checking ARCTL, the combination of CTL with action for-
mulae [42]; and (2) the problem of model checking GCTL∗, an extension of CTL∗

by allowing formulae to constrain actions as well as propositions [10]. The first
reduction allows a direct use of the extended version of the NuSMV model checker
introduced in [35]. The second reduction makes using the CWB-NC model checker1

possible. Two reasons have motivated the election of the extended NuSMV and
CWB-NC tools: (1) their models are characterized by labeled transitions with ac-

1 http://www.cs.sunysb.edu/cwb/

6 El-Menshawy et al.

tions and during the transformation of our model, these labeled transitions are
used to capture the accessibility relations; and (2) they use different model check-
ing techniques namely, Ordered Binary Decision Diagrams (OBDDs) implemented in
extended NuSMV and Alternating Büchi Tableau Automata (ABTA) implemented
in CWB-NC, which gives us the possibility to compare these two techniques with
respect to the verification of commitments and their fulfillment. In this part, we
also analyze the complexity of model checking CTLC+.

To check the effectiveness of our approach—in the third part—we implement
our reduction tools on top of the model checkers (extended NuSMV and CWB-NC)
and then report the experimental results of verifying two case studies–widely used
to clarify commitment-based protocols: (1) the NetBill protocol; and (2) Contract
Net protocol against some desirable properties expressed in our logic.

The remainder of this paper is organized as follows. In Section 2, we briefly
summarize the formalism of interpreted systems [25] introduced to model MASs
and define the syntax and semantics of CTLC+. Reducing the problem of model
checking CTLC+ into the problem of model checking ARCTL and GCTL∗ and the
theorems that prove the soundness of our reduction techniques along with com-
plexity analysis of model checking CTLC+ are presented in Section 3. In Section
4, we present two case studies widely studied in agent interactions, the NetBill
protocol and Contract Net protocol along with the implementation of our reduc-
tion techniques on top of extended NuSMV and CWB-NC. We discuss relevant
literature and conclude in Sections 5 and 6 respectively.

2 Interpreted Systems and CTLC+

In this section, we present the first part of our approach, which is mainly related
to extend the formalism of interpreted systems introduced by Fagin et al. [25] and
modify the temporal logic CTLC introduced in our previous work [22].

2.1 Interpreted Systems

The formalism of interpreted systems provides a mainstream framework to model
MASs and to explore their fundamental classes such as synchronous and asyn-
chronous. It is also used to express MAS properties in the temporal logic CTL
along with the logic of knowledge (or epistemic logic). We advocate this formalism
for many reasons summarized as follows:

1. It allows us to abstract from the details of the components and to focus only
on modeling key characteristics of the agents and the evolution of their social
commitments, which is missing in existing agent communication models.

2. It is a useful tool for ascribing autonomous [36,37] and social behaviors of
interacting agents within open MASs [23].

3. It supports the interoperability between global (system) and local (agent) mod-
els [23,25].

The formalism of interpreted systems provides a useful framework to locally model
autonomous and heterogeneous agents who interoperate within a global system via

Reducing Model Checking Commitments for Agent Communication 7

sending and receiving messages. The concept of local states offers a flexible ab-
straction for the agents. Technically, local states can be singletons, corresponding
to a very high-level description of the agents. However, local states are allowed to
have a more complex structure. For instance, local states could be a combination
of singletons and a set of variables as we will show later in this paper.

Interpreted systems. Consider a set A = {1, . . . , n} of n agents and at any
given time each agent in the system is in a particular local state. Intuitively, each
local state of an agent represents the complete information about the system that
the agent has at its disposal at a given moment. We associate a nonempty and
countable set Li of local states for each agent i ∈ A. To account for the temporal
evolution of the system, the formalism of interpreted systems associates with each
agent i the set Acti of local actions. As in interleaved interpreted systems [36], to
model synchronous communication among interacting agents, it is assumed that
null ∈ Acti for each agent i, where null refers to the silence action (i.e., the fact
of doing nothing). The action selection mechanism is given by the notion of local
protocol Pi : Li → 2Acti for each i ∈ A. That is Pi is a function giving the set of
enabled actions that may be performed by i in a given local state. As in [25], we
represent the instantaneous configuration of all agents in the system at a given
time via the notion of global state.

Definition 1 ([25]) Let G be the set of all global states and let g = (l1, . . . , ln)
be a global state, i.e., g ∈ G where each element li ∈ Li represents a local state of
agent i, thus the set of all global states G = L1× . . .×Ln is the Cartesian product
of all local states of n agents.

We use the notation li(g) to represent the local state of agent i in the global
state g. I ⊆ G is a set of initial global states for the system. As in [25], the
global evolution function is defined as follows: τ : G × ACT → G, where ACT =
Act1 × . . . × Actn and each component a ∈ ACT is a “joint action”, which is a
tuple of actions (one for each agent). In addition, the local evolution function τi

that determines the transitions for an individual agent i between its local states is
defined as follows: τi : Li ×Acti → Li, where if τi(li(g), null) = li(g

′) for two given
global states g and g′, then li(g) = li(g

′).
In this paper, we extend the interpreted system formalism to account for com-

munication that occurs during the execution of MAS. This extension allows us to
provide an intuitive semantics for social commitments that are established through
communication between interacting agents. Thus, we associate with each agent
i ∈ A a countable set V ari of local variables that we use to represent communi-
cation channels through which messages are sent and received. Each local state
li ∈ Li of agent i is associated with different values obtained from different as-
signments to variables in V ari. We denote the value of a variable x in the set
V ari at local state li(g) by lxi (g). Thus, if li(g) = li(g

′), then lxi (g) = lxi (g′) for all
x ∈ V ari. The idea is that, as in distributed systems, for two agents i and j to
communicate, they should share a communication channel, which is represented
by shared variables between i and j. In this perspective, a communication channel
between i and j does exist iff V ari ∩ V arj 6= ∅. For a variable x ∈ V ari ∩ V arj ,
lxi (g) = lxj (g′) means the values of x in li(g) for i and in lj(g

′) for j are the same.
This intuitively represents the existence of a communication channel between i (in
g) and j (in g′) through which the variable x has been sent by one of the two agents
to the other, and as a consequence of this communication, i and j will have the

8 El-Menshawy et al.

same value for this variable (see Figure 2). It is worth noting that shared variables
only motivate the existence of communication channels, not the establishment of
communication. This aspect is addressed next.

The semantics of our modal language is interpreted using a model generated
from the interpreted system formalism. In fact, this model, as in [25], moves away
from Kripke models while still benefiting from most of its technical apparatus.

Definition 2 (Models) A model MC=(S, I, Rt, {∼i→j | (i, j) ∈ A2},V) that be-
longs to the set of all models M is a tuple, where:

– S ⊆ L1 × . . .× Ln is a set of reachable2 global states for the system.
– I ⊆ S is a set of initial global states for the system.
– Rt ⊆ S × S is a transition relation defined by (s, s′) ∈ Rt iff there exists a joint

action (a1, . . . , an) ∈ACT such that τ(s, a1, . . . , an)=s′.
– For each pair (i, j) ∈ A2, ∼i→j⊆ S×S is a social accessibility relation defined by

s ∼i→j s′ iff 1) li(s) = li(s
′) and 2) V ari∩V arj 6= ∅ such that ∀x ∈ V ari∩V arj

we have lxi (s) = lxj (s′) and ∀y ∈ V arj−V ari we have lyj (s) = lyj (s′). We also

assume that for any pair i, j ∈ A, we have that for any s ∈ S, ∼i→j (s) 6= ∅
where ∼i→j (s) is the set of accessible states from s, i.e., ∼i→j (s) = {s′ ∈
S | s ∼i→j s′}.

– V : S → 2Φp is a valuation function where Φp is a set of atomic propositions.

The social accessibility relation ∼i→j from a global state s to another global state s′

(s ∼i→j s′) captures the intuition that there is a communication channel between
i and j (V ari ∩ V arj 6= ∅) and s′ is a resulting state from this communication
initiated by i at s. The channel is thus filled in by i in s, and in s′ j receives
the information (i.e., the channel’s content), which makes the values of all shared
variables the same for i and j (lxi (s) = lxj (s′) ∀x ∈ V ari ∩ V arj). As i is the agent
who initiates the communication, the source and target (or resulting) states s and
s′ are indistinguishable for i (li(s) = li(s

′)). And as j is the receiver, s and s′ are
indistinguishable with regard to the variables that have not been communicated
by i, i.e., unshared variables (lyj (s) = lyj (s′) ∀y ∈ V arj−V ari). Finally, as our focus
in this paper is agent communication, we assume the existence of communication
channels between any two agents in any state, which motivates the assumption
that ∼i→j (s) 6= ∅. This social accessibility relation formalized in terms of relations
over the states of a model differs from the ones presented in [22,23] in terms of
considering shared and unshared variables. We illustrate this idea in Figure 2.

In fact, our modeling can be seen as an abstraction of message-passing systems

described in [25]. Specifically, in message-passing systems, process’s local state con-
tains information including internal actions that can change the value of a variable
and the messages that it has sent and received. So each agent can directly control
and manage communication channels by means of its actions. Furthermore, our ex-
tension of the interpreted system formalism by using variables for communication
is, to some extent, related to the modular interpreted systems approach proposed in
[29] where variables are also used for communication purposes. Specifically, mod-
ular interpreted systems include a component In, which represents interaction
alphabet and two interaction functions: (1) outi that illustrates the influence that
an action of an agent i may have on the external world; and (2) ini that illustrates

2 S contains only states that are reachable from I by means of Rt.

Reducing Model Checking Commitments for Agent Communication 9

i j i j1 2 3 4ij 1 2 3 4 1 2 3 4ij 1 2 3 41 2
x ' 3 j x ' 3 j x ' 4 j x ' 4 j

Fig. 2 An example of social accessibility relation ∼i→j . In the example above, the shared and
unshared variables for agents are composed as follows. Agent i: V ari = {x1, x2, x3, x4}. Agent
j: V arj = {x1, x2, x′3, x′4}. In the figure x1 and x2 are shared variables (i.e., they represent the
communication channel), and x3, x4, x′3 and x′4 are unshared variables, which may represent
communication channels with other agents. Notice that the values of the variables x1 and x2

for j in the state s′ are changed to be equal to the values of these variables for agent i, which
illustrates the massage passing through the channel. On the other hand, the values of the
variables in V ari are unchanged as li(s) = li(s

′).

the influences of other agents on the agent i depending on its local state. However,
unlike modular interpreted systems, our extension is not meant to focus on the
influences of agents through interaction, but on the existence of a communication
channel through which two agents can communicate. While communication is the
first class citizen in our perspective, the direct interactions are modeled by means
of social commitments.

Modeling complex and open systems such as MASs using the formalism of in-
terpreted systems is typically conducted by using logic-based formalisms as formal
tools to express desirable properties [25,36,37].

2.2 CTLC+ Logic

The syntax of CTLC+ logic, which is a combination of branching time CTL in-
troduced by Clarke et al. [15] with modalities for social commitments and their
fulfillment, is defined as follows:

Definition 3 (Syntax of CTLC+)

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | E(ϕ U ϕ) | EGϕ | Ci→jϕ | Fu(Ci→jϕ)

where:

– p ∈ Φp is an atomic proposition;
– E is the existential quantifier on paths;
– X, G, and U are CTL path modal connectives standing for “next”, “globally”,

and “until” respectively;
– The Boolean connectives ¬ and ∨ are defined in the usual way; and
– The modal connectives Ci→j and Fu stand for “commitment” and “fulfillment

of commitment” respectively.

10 El-Menshawy et al.

In this logic, Ci→jϕ is read as “agent i commits towards agent j that ϕ”, or
equivalently as “ϕ is committed to by i towards j”, or simply as “ϕ is committed
to” when i and j are understood from the context. Fu(Ci→jϕ) is read as “the
commitment Ci→jϕ is fulfilled”. The constants > (true) and ⊥ (false), and other
Boolean connectives ∧, →, and ↔ are defined as abbreviations in the standard
way. Other temporal modalities are given by their usual abbreviations (see for ex-
ample [15]). In particular, EFϕ ≡ E(> U ϕ), AXϕ ≡ ¬EX¬ϕ, AGϕ ≡ ¬EF¬ϕ, and
A(ϕ U ψ) ≡ ¬E((¬ψ) U (¬ϕ∧¬ψ))∧¬EG¬ψ, where F stands for future. Further-
more, we assume that the underlying time domain in our model MC is discrete,
i.e., the present moment refers to the current state, the next moment corresponds
to the immediate successor state in a given path and a transition corresponds to
the advance of a single time-unit. As a modal logic, the time modalities of our logic
capture the abstraction view of timelines. Thus, for example if agent i commits to
send goods to agent j within k days (i.e., time unit is day), this would be expressed
as Ci→j EF≤k sendGoods, where EF≤kp , p∨EXp∨EXEXp . . .∨EX . . . EX︸ ︷︷ ︸

k times

p3.

This formulation is motivated by the fact that we are interested in model checking
at the design time, so the model should be completely known as the one result-
ing, for example, from compiling commitment machines into FSMs [64]. Thus, it
is worth noting that our modeling of commitments does not consider persistency
and only focuses on commitments for agent communication.
Computation paths. A computation path π = (s0, s1, . . .) in MC is an infinite
sequence of global states in S such that for all i ≥ 0, (si, si+1) ∈ Rt. π(k) is the
kth global state of the path π. The set of all paths is denoted by Π, whilst Π(si)
is the set of all paths starting at the given state si ∈ S.

Definition 4 (Satisfaction) Given the model MC , the satisfaction of a CTLC+

formula ϕ in a global state s, denoted by (MC , s) |= ϕ is recursively defined as
follows:

(MC , s) |= p iff p ∈ V(s),
(MC , s) |= ¬ϕ iff (MC , s) 2 ϕ,
(MC , s) |= ϕ ∨ ψ iff (MC , s) |= ϕ or (MC , s) |= ψ,
(MC , s) |= EXϕ iff there exists a path π starting at s such that (MC , π(1)) |= ϕ,
(MC , s) |= E(ϕUψ) iff there exists a path π starting at s such that for some k ≥ 0,

(MC , π(k)) |= ψ and (MC , π(j)) |= ϕ for all 0 ≤ j < k,
(MC , s) |= EGϕ iff there exists a path π starting at s such that (MC , π(k)) |= ϕ

for all k ≥ 0,
(MC , s) |= Ci→jϕ iff for all global states s′ ∈ S such that s ∼i→j s′, we have

(MC , s′) |= ϕ,
(MC , s) |= Fu(Ci→jϕ) iff there exists s′ ∈ S such that (MC , s′) |= Ci→jϕ and s′ ∼i→j s.

For the propositions, Boolean connectives and temporal modalities, the relation
|= is defined in the standard manner (see for example [15]). The state formula
Ci→jϕ is satisfied in the model MC at s iff the content ϕ holds in every accessible
state obtained by the accessibility relation ∼i→j . In the specific context of agent
communication, which is the focus of this paper, when i commits towards j that ϕ,
∼i→j captures the intuition that for a commitment to take place, a communication

3 The operator EF≤k is also used in the real-time CTL logic (RTCTL) introduced in [24].

Reducing Model Checking Commitments for Agent Communication 11

channel should exist between the communicating agents (shared variables), and
the accessible state s′ is indistinguishable from the current state s for i since i

is the agent who is committing; however, for j who is receiving the commitment,
the two states are different as new information are obtained from i through the
communication channel and this is why in the accessible state, j has the same
values as i has for the shared variables (i.e. the content of the communication
channel). Furthermore, the accessible state is not completely different from the
current state for j as some information are still the same, and this is why for the
unshared variables, the current and accessible states for j are indistinguishable
(see Figure 2).

The state formula Fu(Ci→jϕ) is satisfied in the model MC at s iff there exists
a state s′ satisfying the commitment (called here the commitment state) from which
the current state (i.e., s) is “seen” via the accessability relation ∼i→j . The idea
behind this semantics is to say that a commitment is fulfilled when we reach an
accessible state from the commitment state. The commitment is fulfilled because
its content holds in this accessible state. Unlike the semantics proposed in [5,21–
23] in which the state s should not only be accessible but also reachable from
the commitment state s′, in our semantics, the reachability condition is omitted.
In fact, being reachable from the commitment state is not a part of the meaning
of fulfilling a commitment, but a condition that can be checked as a property as
follows:

AG
(¬E(¬Ci→jϕ U (¬Ci→jϕ ∧ Fu(Ci→jϕ)))

)

The property is a condition saying that in all states of every computation, it is
not the case that there is a computation where fulfilling a commitment occurs
in its future without such a commitment has been established before. What is
more interesting is that this property, which guarantees that a commitment can-
not be fulfilled without being active (i.e. established or created), is satisfied in
every model, so valid (the validity proof is given later in this section). The main
advantage of having a property that can be checked (or proved as validity) instead
of adding it as a part of the semantics is to simplify such a semantics, which means
making its model checking simpler. This is extremely important as far as time and
space complexity of model checking is an issue.

Example 1 Let us assume the models depicted in the Figure 3. The state s1 inMC1

is labeled with the commitment from i to j to bring about EXp because: (1) there
is only one accessible state s2; and (2) the formula EXp is true at s2. The other
models are the same but with different commitment contents. According to the
semantics of fulfillment, the state s2 in MC1 is also labeled with the fulfillment of
the commitment because: (1) s2 is accessible from s1; and (2) such a commitment
has been established at s1.

Furthermore, our logic does not include an additional operator for violation as
in [5,21]; instead weak and strong violations can be expressed as follows:

¬AG(Ci→jϕ → AF (Fu(Ci→jϕ))) ≡ EF (Ci→jϕ ∧ EG(¬Fu(Ci→jϕ)))
and

¬AG(Ci→jϕ → EF (Fu(Ci→jϕ))) ≡ EF (Ci→jϕ ∧AG(¬Fu(Ci→jϕ)))

12 El-Menshawy et al.

Ci→	j EXp

EXp

Fu(Ci→	j EXp)

Ci→	j EXp

p

∼i→	j

∼i→	j

s1 s3

Ci→	j EFp

EFp

Fu(Ci→	j EFp)

Ci→	j EFp
p

∼i→	j

∼i→	j

sk

Ci→	j EF
≤3P

EF≤3P

Fu(Ci→	j EF
≤3P)

Ci→	j EF
≤3P

∼i→	j

∼i→	j

p

MMMMC1

s2

s1

s1

s2

s2

s3 s4 s5

MMMMC3

MMMMC2

Fig. 3 Illustration of the semantics of commitment and its fulfillment

The weak violation takes place when there is a computation so that in its future a
commitment is established but from the moment where the commitment is active
there is a possible computation where globally the fulfillment never happens. The
strong violation comes out when after having the commitment, the fulfillment does
not occur in all states of every possible computation. The following proposition is
a direct result from the semantics.

Proposition 1 When the commitment is fulfilled, then there is no way to violate it in

the future and vice versa.

Lemma 1 The social accessibility relation ∼i→j is serial, transitive, and Euclidean.

Proof

– ∼i→j is serial: this follows from the assumption that for any pair i, j ∈ A, we
have that for any s ∈ S, ∼i→j (s) 6= ∅.

– ∼i→j is transitive: assume s ∼i→j s′ and s′ ∼i→j s′′, for any pair i, j ∈ A,
according to the definition of ∼i→j , it is the case that s ∼i→j s′′ as li(s) =
li(s

′) = li(s
′′), V ari ∩ V arj 6= ∅, lxi (s) = lxi (s′) = lxj (s′′) ∀x ∈ V ari ∩ V arj , and

lyj (s) = lyj (s′) = lyj (s′′) ∀y ∈ V arj − V ari.

– ∼i→j is Euclidean: assume s ∼i→j s′ and s ∼i→j s′′, for any pair i, j ∈ A,
according to the definition of ∼i→j , we have s′ ∼i→j s′′ as li(s

′) = li(s) = li(s
′′),

V ari ∩ V arj 6= ∅, lxi (s′) = lxi (s) = lxj (s′′) ∀x ∈ V ari ∩ V arj , and lyj (s′) = lyj (s) =

lyj (s′′) ∀y ∈ V arj − V ari. ¤

According to this observation, we can immediately conclude that the logic of com-
mitments that deals with agent communication via social commitments is at least
as strong as KD45n (where n is the number of agents) which is to be expected.
From Lemma 1, we obtain the following straightforward corollary.

Corollary 1 The social accessibility relation ∼i→j is shift reflexive, i.e. if s ∼i→j s′

then s′ ∼i→j s′.

Reducing Model Checking Commitments for Agent Communication 13

Proposition 2 The following validity holds:

|= Fu(Ci→jϕ) ⊃ Ci→jϕ

Proof

¿From the semantics of fulfillment in a state s, there is a state s′ satisfying the
commitment Ci→jϕ and from which s is accessible. As ∼i→j is transitive (Lemma
1), all the states accessible from s are also accessible from s′. From the semantics
of Ci→jϕ, all those accessible states from s′ and thus from s satisfy ϕ; so the result.
¤

Proposition 2 says that if the commitment is fulfilled, the commitment appears
in the same state as its fulfillment. It is worth noticing that the property expressed
in this proposition is not commonly accepted in the literature about the seman-
tics of commitment actions, for example [50,59,66], according to which when a
commitment is fulfilled, the commitment does not hold anymore in the same state
where its content holds. Nevertheless, for the purpose of the reduction-based model
checking we propose in this paper, this property is needed and it allows us having
the following proposition (Proposition 3) saying “the commitment should be ac-
tive when it comes time to its fulfillment”, which is very important as it implies
the impossibility of fulfilling a nonexisting commitment (see Figure 4).

Fig. 4 Link between commitment and its fulfillment. s′ is the state of activating the com-
mitment and s is the state of fulfilling the commitment. Notice that the commitment Ci→jϕ
activated in s′ is still active in s as the accessibility relation is shift reflexive.

Proposition 3 The following validity holds:

|= AG(¬E(¬Ci→jϕ U ¬Ci→jϕ ∧ Fu(Ci→jϕ)))

Proof

Let us assume the opposite is true, which means: EF (E(¬Ci→jϕ U ¬Ci→jϕ ∧
Fu(Ci→jϕ))). According to the semantics of until, ¬Ci→jϕ U ¬Ci→jϕ∧Fu(Ci→jϕ)
is satisfied in a path if it has ¬Ci→jϕ ∧ Fu(Ci→jϕ) in its future. However, from
Proposition 2, this cannot be the case; so the result. ¤

As our objective in this paper is to investigate the practical problem of model
checking commitments for communicating agents, the completeness issue will not
be considered, so that the paper is more focussed on the implementation part of
the verification problem and its computational complexity.

14 El-Menshawy et al.

3 Model Checking CTLC+ using Reduction

Model checking is a formal and automatic technique used to verify finite state
concurrent systems. It was independently developed by Clarke and Emerson, and
by Sifakis and Queille in the early of 1980s. Their work over the years has led to the
creation of new logics for specification, new verification algorithms and techniques,
and new model checking tools which are available today. Verifying MASs has
become an important subfield on its own. In this section, we proceed to present our
reduction techniques to model checking (the second part in our approach). In these
techniques, we reduce the problem of model checking CTLC+ into the problem of
model checking ARCTL and into the problem of model checking GCTL∗. Before
that, we define the problem of model checking CTLC+: in a nutshell, given a MAS
represented as an interpreted system MC and a formula ϕ in CTLC+ describing
a property, the problem of model checking CTLC+ can be defined as establishing
whether or not MC |= ϕ, i.e., ∀s ∈ I : (MC , s) |= ϕ.

3.1 Reducing CTLC+ into ARCTL

We briefly review ARCTL logic (an extension of CTL with action formulae) [42].
We then show how the problem of model checking CTLC+ can be reduced to the
problem of ARCTL model checking. ARCTL logic mixes state formulae and action
formulae by restricting path formulae to paths whose actions satisfy a given action
formula. The syntax of ARCTL is defined by the following BNF grammar [42]:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EαXϕ | Eα(ϕ U ϕ) | EαGϕ

α ::= b | ¬α | α ∨ α

where ϕ is a state formula, α is an action formula, p ∈ Φp is an atomic proposition,
and b ∈ Φb is an atomic action proposition.

Definition 5 (Model of ARCTL) A model MA = (SA, IA, Act, TR, VS , VAct) is a
tuple where SA is a nonempty set of states; IA ⊆ SA is a set of initial states; Act is
a set of actions; TR ⊆ SA×Act×SA is a labeled transition relation; VS : SA → 2ΦP

is a function assigning to each state a set of atomic propositions to interpret this
state; and VAct : Act → 2Φb is a function assigning to each action a set of atomic
action propositions to interpret this action.

The semantics of this logic [42] is given by defining the α-restriction of MA =
(SA, IA, Act, TR, VS , VAct) as followsMα

A = (SA, IA, Act, TRα, VS , VAct) where TRα

is a transition relation such that (s, a, s′) ∈ TRα iff (s, a, s′) ∈ TR and a |= α

wherein |= is defined as follows:

– a |= b iff b ∈ VAct(a);
– a |= ¬α iff not (a |= α) and;
– a |= α ∨ α′ iff a |= α or a |= α′.

The motivation behind the α-restriction is to focus each time on specific transi-
tions whose labels satisfy a given action formula, so all the other transitions are
disregarded. This is useful when a formula has to be checked because only relevant
transitions should be considered.

Reducing Model Checking Commitments for Agent Communication 15

Pecheur and Raimondi [42] have considered finite and infinite paths to define
the semantics of ARCTL. However, we only consider the general case of infinite
paths. Πα(s) is the set of paths (called α-paths) whose actions satisfy a given action
formula α and starting at s. Now, we define the satisfaction relation (Mα

A, s) |= ϕ,
or concisely s |= ϕ, as follows (we omit the semantics of Boolean connectives and
propositional atoms):

s |= EαXϕ iff there exists a path π ∈ Πα(s) and π(1) |= ϕ,
s |= Eα(ϕ U ψ) iff there exists a path π ∈ Πα(s) such that for some k ≥ 0, π(k) |= ψ

and π(j) |= ϕ for all 0 ≤ j ≤ k-1,
s |= EαGϕ iff there exists a path π ∈ Πα(s) such that π(k) |= ϕ for all k ≥ 0.

The reduction process is defined as follows: given a CTLC+ model MC = (S, I, Rt,

{∼i→j | (i, j) ∈ A2},V) and a CTLC+ formula ϕ, we have to define an ARCTL
model Mα

A = F (MC) and an ARCTL formula F (ϕ) using a transformation func-
tion F such that MC |= ϕ iff F (MC) |= F (ϕ). The model F (MC) is defined as
an ARCTL model Mα

A = (SA, IA, Act, TRα, VS , VAct) as follows:

– SA = S; IA = I; VS = V,
– the set Φb is defined as follows: Φb = {ε, α1→1, α1→2, . . . , αn→n}∪ {β1→1, β1→2,

. . . , βn→n}, and then Act = {αo, α11, α12, . . . , αnn} ∪ {β11, β12, . . . , βnn} where
αo and αij are the actions labeling transitions respectively defined from the
transition relation Rt and the accessibility relation ∼i→j , while βij is the action
labeling transitions added when there exists a transition labeled with αij and
needed to define transformation of the formula Fu(Ci→jϕ),

– the function VAct is then defined as follows:
1. VAct(α

o) = {ε}, i.e., ε is the atomic action proposition forming αo,
2. VAct(α

ij) = {αi→j} for 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e., αi→j is the atomic
action proposition forming αij ,

3. VAct(β
ij) = {βi→j} for 1 ≤ i ≤ n and 1 ≤ j ≤ n, i.e., βi→j is the atomic

action proposition forming βij .
– the labeled transition relation TRα combines the temporal labeled transition

Rt and the accessibility relation ∼i→j under the following conditions: for states
s, s′ ∈ S,

1. (s, α0, s′) ∈ TRε if (s, s′) ∈ Rt,
2. (s, αij , s′) ∈ TRαi→j if s ∼i→j s′,
3. (s, βij , s′) ∈ TRβi→j if (s′, αij , s) ∈ TRαi→j .

From the definition of F (MC), it is clear that F (S) = SA. Let us now define the
transformation of a CTLC+ formula ϕ (i.e., F (ϕ)) by induction on the form of ϕ.

– F (p) = p, if p is an atomic proposition,
– F (¬ϕ) = ¬F (ϕ), and F (ϕ ∨ ψ) = F (ϕ) ∨F (ψ),
– F (EXϕ) = EεXF (ϕ), and F (E(ϕ U ψ)) = Eε(F (ϕ) U F (ψ)),
– F (EGϕ) = EεGF (ϕ), and F (Ci→jϕ) = Aαi→j XF (ϕ),
– F (Fu(Ci→jϕ)) = Eβi→j

XF (Ci→jϕ).

Thus, this reduction allows us to model check CTLC+ formulae by model checking
their reductions in ARCTL using the extended NuSMV tool introduced in [35].
Figure 5 illustrates the reduction process of the fulfillment formula. The following
theorem proves the soundness of our reduction from CTLC+ to ARCTL.

16 El-Menshawy et al.

� � �� � � � � �� � �� � � � � � � � �� � �� � �� � � � � �� � �
Fig. 5 An example of the reduction process from CTLC+ to ARCTL.

Theorem 1 (Soundness of F) Let MC and ϕ be respectively a CTLC+ model and

formula and let F (MC) and F (ϕ) be the corresponding model and formula in ARCTL.

We have MC |= ϕ iff F (MC) |= F (ϕ).

Proof

We prove this theorem by induction on the structure of the formula ϕ. All the
cases are straightforward once the following two cases are analyzed:

– ϕ = Ci→jψ. We have (MC , s) |= Ci→jψ iff (MC , s′) |= ψ for every s′ ∈ S such
that s ∼i→j s′. Consequently, (MC , s) |= Ci→jψ iff (Mαi→j

A , s′) |= F (ψ) for ev-

ery s′ ∈ SA such that (s, αij , s′) ∈ TRαi→j . As ∼i→j is shift reflexive, we obtain
an infinite path π ∈ Παi→j (s) such that π(1) = s′ and (Mαi→j

A , π(1)) |= F (ψ)
(see Figure 5). By semantics of Aαi→j X in ARCTL, we obtain (Mαi→j

A , s) |=
Aαi→j XF (ψ).

– ϕ = Fu(Ci→jψ). We have (MC , s′) |= Fu(Ci→jψ) iff (MC , s) |= Ci→jψ for
a state s ∈ S such that s ∼i→j s′. Consequently, (MC , s′) |= Fu(Ci→jψ) iff
(Mαi→j

A , s) |= F (Ci→jψ) for a state s ∈ SA such that (s, αij , s′) ∈ TRαi→j . As

∼i→j is shift reflexive, we obtain s′ ∼i→j s′ and so (s′, αij , s′) ∈ TRαi→j . Con-

sequently, (s′, βij , s′) ∈ TRβi→j . There is then an infinite path π ∈ Πβi→j (s′)
such that π(1) = s′ and (Mβi→j

A , π(1)) |= F (Ci→jψ) (see Figure 5). By seman-

tics of Eβi→j
X in ARCTL, we obtain (Mβi→j

A , s′) |= Eβi→j
X F (Ci→jψ), so we

are done. ¤

3.2 Reducing CTLC+ into GCTL∗

As in the reduction of CTLC+ into ARCTL, we start with briefly reviewing Gen-
eralized CTL∗ (GCTL∗), a logic that extends CTL∗ by allowing formulae to con-
strain actions as well as states [10]. We then show how the problem of model
checking CTLC+ can be reduced to the problem of model checking GCTL∗. The
syntax of GCTL∗ is defined by the following BNF grammar [10]:

S ::= p | ¬S | S ∨ S | E P
P ::= θ | ¬P | S | P ∨ P | X P | P U P

where p ∈ Φp, Φp is a set of atomic propositions and θ ∈ Φb, Φb is a set of atomic
action propositions. In this syntax, there are two kind of formulae: state formulae
S and path formulae P. State formulae are those that hold on a given state, while
path formulae express temporal properties of paths. State formulae constitute the
formulae of GCTL∗.

Reducing Model Checking Commitments for Agent Communication 17

Definition 6 (Model of GCTL∗) A model MG = (SG, Ac, lS , lAc,→, IG) is a
tuple where SG is a nonempty set of states; Ac is a set of actions; lS : SG → 2Φp

is a state labeling function; lAc : Ac → 2Φb is an action labeling function; →⊆
SG ×Ac× SG is a transition relation; and IG ⊆ SG is a set of initial states.

Intuitively, SG contains the states that the system may enter, and Ac the atomic
actions that the system may perform. In this sense, the labeling functions lS and
lAc indicate which atomic propositions hold on a given state and action respec-
tively. The GCTL∗ semantics follows a standard convention in temporal logic,
such as CTL∗ [10]. A state satisfies Aϕ (resp. Eϕ) if every path (resp. some paths)
emanating from the state satisfies ϕ. A path satisfies a state formula if the initial
state in the path does, while a path satisfies θ if the path contains at least one
transition and the label of the first transition on the path satisfies θ. X represents
the “next-time operator” and has the usual semantics. ϕ U ψ holds of a path if ϕ

remains true until ψ becomes true.
The reduction process from the problem of model checking CTLC+ to the

problem of model checking GCTL∗ that allows a direct use of CWB-NC is defined
as follows: given a CTLC+ model MC = (S, I, Rt, {∼i→j | (i, j) ∈ A2},V) and
a CTLC+ formula ϕ, we have to define a GCTL∗ model MG = H (MC) and a
GCTL∗ formula H (ϕ) using a transformation function H such that MC |= ϕ

iff H (MC) |= H (ϕ). The model H (MC) is defined as a GCTL∗ model MG =
(SG, Ac, lS , lAc,→, IG) as follows:

– SG = S; IG = I; lS = V,
– to define the set Ac, let us first define the set of atomic action propositions Φb =
{ε, α1→1, α1→2, . . . , αn→n} ∪ {β1→1, β1→2, . . . , βn→n}, then Ac = {αo, α11, α12,

. . . , αnn}∪{β11, β12, . . . , βnn} where αo and αij are the actions labeling transi-
tions respectively defined from the transition relation Rt and the accessibility
relation ∼i→j , while βij is the action labeling transitions added when there
exists a transition labeled with αij and needed to define transformation of the
formula Fu(Ci→jϕ),

– the function lAc is then defined as follows:
1. αo ∈ Ac, then lAc(α

o) = {ε},
2. lAc(α

ij) = {αi→j} for 1 ≤ i ≤ n and 1 ≤ j ≤ n,
3. lAc(β

ij) = {βi→j} for 1 ≤ i ≤ n and 1 ≤ j ≤ n.
– the labeled transition relation → combines the temporal labeled transition Rt

and the accessibility relation ∼i→j under the following conditions: for states
s, s′ ∈ S,

1. (s, αo, s′) ∈→ if (s, s′) ∈ Rt,
2. (s, αij , s′) ∈→ if s ∼i→j s′,
3. (s, βij , s′) ∈→ if (s′, αij , s) ∈→.

From the definition of H (MC), it is clear that H (S) = SG. Let us now define
H (ϕ) by induction on the form of ϕ.

– H (p)=p, if p is an atomic proposition,
– H (¬ϕ) = ¬H (ϕ), and H (ϕ ∨ ψ) = H (ϕ) ∨H (ψ),
– H (EXϕ) = EXH (ϕ), and H (E(ϕ U ψ)) = E(H (ϕ) U H (ψ)),
– H (EGϕ) = EGH (ϕ), and H (Ci→jϕ) = A(αi→j → XH (ϕ)),
– H (Fu(Ci→jϕ)) = E(βi→j ∧XH (Ci→jϕ)).

18 El-Menshawy et al.

Theorem 2 (Soundness of H) Let MC and ϕ be respectively a CTLC+ model

and formula and let H (MC) and H (ϕ) be the corresponding model and formula in

GCTL∗. We have MC |= ϕ iff H (MC) |= H (ϕ).

Proof

We can prove this theorem by induction on the structure of ϕ in a way similar to
the proof of Theorem 1. ¤

Remark 1

GCTL∗ and ARCTL logics can both express properties of state-based and action-
based models and a careful analysis of the semantics of these two logics reveals
that GCTL∗ subsumes ARCTL. In fact, in GCTL∗, a path satisfies θ iff the path
contains at least one transition and the label of the first transition on the path
satisfies θ where θ is an atomic action proposition, and an action a satisfies θ

iff θ ∈ lAc(a). In ARCTL, the actions of the whole path, not only of the first
transition, should satisfy an action formula α as the transitions in the model of
ARCTL are α-restricted. In fact, ARCTL allows quantification over action-labelled
paths, so a path formula is evaluated on α-paths, which means paths where all
transitions are α-restricted, which can also be done in GCTL∗. For example, for
a path formula γ, Eαγ in ARCTL means there is an α-path where γ holds, which
can be expressed in GCTL∗ as: E(Gα ∧ γ). However, although GCTL∗ subsumes
ARCTL, their model checking techniques are different and our motivation behind
using these two logics is to be able to use their respective model checkers, which
are based on two different model checking techniques: automata-based technique
for GCTL∗ and symbolic, OBDD-based technique for ARCTL.

3.3 Complexity Analysis

Overview

In the previous sections, explicit models (MC , MA, and MG) were considered.
In this section, we analyze the space complexity of CTLC+ model checking for
explicit models and then its complexity for concurrent programs. We use concur-
rent programs as defined in [34] as composed of n concurrent processes (agents)
Pi, where each process is described by a transition system (the formal definition is
given later). The need for concurrent programs is motivated by the need of having
compact representations where states and transitions are not listed explicitly, but
having instead compact representations that still correspond to the actual system.
In general, the relation between explicit models (i.e. Kripke-like structures) and
concurrent programs, which provide compact representations of the systems to
be checked, is as stated in [34]: “the Kripke structures to which model checking
is applied are often obtained by constructing the reachability graph of concurrent

programs”. In other terms, the explicit models are obtained as the product of the
components Pi of concurrent programs. The size of explicit models is thus ex-
ponential in the size of processes Pi as the system’s evolution results from joint
actions of the components [29].

Reducing Model Checking Commitments for Agent Communication 19

To analyze the complexity of model checking CTLC+ in concurrent programs,
we use a methodology similar to the one presented in [34]. The idea is as follows.
First, we analyze the complexity of model checking GCTL∗ in the explicit model
MG, and show that by using an on-the-fly (local) and top-down algorithm, it is
possible to perform model checking GCTL∗ in space polynomial in the length of
the formula, but only poly-logarithmic in the size of the explicit model. It is impor-
tant to mention that the algorithm is on-the-fly, which means we do not hold the
whole structure to be checked in memory at any one time, and this is the reason
behind the poly-logarithmic space complexity in the size of the explicit model.
As in [34], our approach is an automata-theoretic approach, and makes use of a
special class of automata called Alternating Büchi Tableau Automata (ABTA) [4,
10], which will be introduced later. The approach is based on building an ABTA,
combining the model MG and the automaton of the formula to be verified, and
checking its nonemptiness. This combined ABTA is computed on-the-fly and lim-
ited to its reachable states, which avoids exploring the parts of the model MG

that are irrelevant for the formula to be checked. The type of ABTA employed
allows using a top-down, space-efficient model checking algorithm. Then, we prove
that the explicit structure complexity of GCTL∗ model checking (i.e. by fixing the
formula) is NLOGSPACE-complete, which means that model checking GCTL∗ is
NLOGSPACE-complete in the size |MG| of the explicit model. Thereafter, we use
the previous results to obtain the complexity of model checking GCTL∗ for concur-
rent programs, exploiting the fact that the combined ABTA whose nonemptiness
has to be checked is obtained as the product of the components of a concurrent
program and this product is at most exponentially larger than the program itself.
Thus, the fact that (1) the space complexity of model checking GCTL∗ is polyno-
mial in the length of the formula and poly-logarithmic in the size of the explicit
model; and (2) the model checking algorithm is on-the-fly, imply that GCTL∗

model checking for a concurrent program can be done in polynomial space with
respect to the size of this program rather than of the order of the exponentially
larger combined ABTA as is the case of bottom-up approaches to model checking.
By logspace reduction to GCTL∗ model checking with respect to explicit mod-
els, we analyze the explicit structure complexity of CTLC+ model checking and
prove that is NLOGSPACE-complete, which, as the case of GCTL∗, implies that
CTLC+ model checking can be done in polynomial space with respect to the size
of concurrent programs.

Preliminaries

We start this section by defining ABTA and associated concepts needed to analyze
the complexity of model checking GCTL∗. Definition of concurrent programs will
follow. We use L = Φp ∪ {¬p | p ∈ Φp} to denote the set of state literals and
Lact = Φb ∪ {¬θ | θ ∈ Φb} to denote the set of action literals. Let Θ be a typical
subset of Lact. An ABTA is defined as follows [10]:

Definition 7 (ABTA) An ABTA B is a tuple (Q, h,→B , qI ,F), where Q is a finite
set of states; h : Q → L∪{¬,∧,∨, [Θ], 〈Θ〉} is the state labeling function;→B⊆ Q×Q

is the transition relation; qI ∈ Q is the start state; and F ⊆ 2Q is the set of sets of

20 El-Menshawy et al.

accepting states. →B should also satisfy:

|{q′|q →B q′}|

= 0 if h(q) ∈ L
= 1 if h(q) ∈ {¬, [Θ], 〈Θ〉}
≥ 1 if h(q) ∈ {∧,∨}

Also if h(q) = ¬, then q does not appear on a cycle.

ABTAs have the advantage of supporting efficient model checking for different
logics and are used to define the system properties using tableau proof rules [9].
They are used to encode how the properties are to be proved and allow us to encode
top-down proofs for temporal formulae (GCTL∗ formulae in this case). Indeed, an
ABTA B encodes a proof schema in order to prove, in a goal-directed manner, that
a model MG satisfies a temporal formula. Let us consider the example of proving
that a state s in a model MG = (SG, Ac, lS , lAc,→, IG) satisfies a temporal formula
of the form F1∧F2, where F1 and F2 are two formulae. Regardless of the structure
of the system, there would be two subgoals if we want to prove this in a top-
down, goal-directed manner. The first would be to prove that s satisfies F1, and
the second would be to prove that s satisfies F2. Intuitively, an ABTA for F1 ∧ F2

would encode this proof structure using states for the formulae F1 ∧ F2, F1, and
F2. A transition from F1 ∧F2 to each of F1 and F2 should be added to the ABTA
and the labeling of the state for F1 ∧ F2 being “∧”. Indeed, in an ABTA, we can
consider that: (1) states correspond to “formulae”; (2) the labeling of a state is
the “logical operator” used to construct the formula or a state literal from L; and
(3) the transition relation represents a “subgoal” relationship. Thus, to show that
a model state s satisfies an ABTA state q labeled with ∧, one needs to show that
s satisfies each of q’s children. Regarding the labels [Θ] and 〈Θ〉, for a model state
s to satisfy an ABTA state q labeled with [Θ] (resp. 〈Θ〉), one needs to show that
for each s′ (resp. some s′) such that (s, α, s′) ∈→ for some α “satisfying” Θ (i.e.
θ ∈ lAc(α) for every θ ∈ Θ), s′ must satisfy the unique successor of q.

In order to decide about the satisfaction of formulae, the notion of accepting
runs of an ABTA B on a model MG is used. These runs are infinite and cycle in-
finitely many times through accepting states. Formally, a run is defined as follows,
where the notation (s, Θ, s′) ∈→ means (s, α, s′) ∈→ for some α ∈ Ac satisfying Θ:

Definition 8 (Run of ABTA) A run of an ABTA B = (Q, h,→B , qI ,F) on a
model MG = (SG, Ac, lS , lAc,→, IG) is a maximal tree in which the nodes are
classified as positive or negative and are labeled by elements of Q×SG as follows.

– The root of the tree is a positive node and is labeled with (qI , iG) where iG ∈ IG

– If σ is a positive (resp. negative) node with label (q, s) such that h(q) = ¬ and
q →B q′, then σ has one negative (resp. positive) child labeled (q′, s)

– For a positive node σ labeled with (q, s):

– If h(q) ∈ L then σ is a leaf.
– If h(q) = ∧ and {q′| q →B q′} = {q1, . . . , qm}, then σ has m positive children

labeled by (qi, s), 1 ≤ i ≤ m.
– If h(q) = ∨, then σ has one positive child4 labeled by (q′, s) for some

q′ ∈ {q′| q →B q′}.
4 We only consider one positive child in a run when the node is positive and disjunctive (i.e.,

labeled by ∨ or 〈Θ〉) as only one branch in the product graph (see Definition 11) is chosen.

Reducing Model Checking Commitments for Agent Communication 21

– If h(q) = [Θ], q′ is such that q →B q′, and {s′| (s, Θ, s′) ∈→} = {s1, . . . , sm},
then σ has m positive children labeled by (q′, si), 1 ≤ i ≤ m.

– If h(q) = 〈Θ〉 and q′ is such that q →B q′, then σ has one positive child
labeled by (q′, s′) for some s′ such that (s, Θ, s′) ∈→.

– Otherwise, for a negative node σ labeled with (q, s):

– If h(q) ∈ L then σ is a leaf.
– If h(q) = ∧, then σ has one negative child5 labeled by (q′, s) for some

q′ ∈ {q′| q →B q′}.
– If h(q) = ∨ and {q′| q →B q′} = {q1, . . . , qm}, then σ has m negative children

labeled by (qi, s), 1 ≤ i ≤ m.
– If h(q) = [Θ] and q′ is such that q →B q′, then σ has one negative child

labeled by (q′, s′) for some s′ such that (s, Θ, s′) ∈→.
– If h(q) = 〈Θ〉, q′ is such that q →B q′, and {s′| (s, Θ, s′) ∈→} = {s1, . . . , sm},

then σ has m negative children labeled by (q′, si), 1 ≤ i ≤ m.

Every infinite path in a well-formed ABTA has a suffix that contains either only
positive or only negative nodes [10]. If only positive (resp. negative) nodes are
included, the path is said to be positive (resp. negative). A successful run is then
defined as follows:

Definition 9 (Successful Run of ABTA) Let R be a run of an ABTA B on a
model MG.

– A positive leaf of R labeled (q, s) is successful iff s satisfies h(q) or h(q) = [Θ]
and there is no s′ such that (s, Θ, s′) ∈→.

– A negative leaf of R labeled (q, s) is successful iff s does not satisfy h(q) or
h(q) = 〈Θ〉 and there is no s′ such that (s, Θ, s′) ∈→.

– A positive path is successful iff for each F ∈ F some q ∈ F occurs infinitely
often.

– A negative path is successful iff for some F ∈ F there is no q ∈ F that occurs
infinitely often.

R is successful iff every leaf and every path in R is successful.

Model Checking GCTL∗. Let ψ be a GCTL∗ state formula. The automata-based
model checking procedure for GCTL∗ proposed in [10] works as follows:

1. Translating ψ into a variant of ABTA: and-restricted Alternating Büchi Tableau
Automaton (arABTA). The resulting automaton is denoted by Bψ.

2. Exploring the product graph of MG and Bψ to check if it contains a successful
run. If such a run does exist, the formula is satisfied and MG is said to be
accepted by Bψ (i.e. MG |= Bψ), otherwise, the formula is not satisfied. The
product graph is denoted by BMG,ψ.

Definition 10 (arABTA) An ABTA B is and-restricted (arABTA) iff every state
q ∈ Q satisfies:

– If h(q) = ∧ then there is at most one q′ such that q →B q′ and there is a path
from q′ back to q.

5 Similar to the positive case, we only consider one negative child in a run when the node
is negative and conjunctive (i.e., labeled by ∧ or [Θ]) because again only one branch in the
product graph is selected.

22 El-Menshawy et al.

– If h(q) = [Θ] and q →B q′, then there is no path from q′ back to q.

In an arABTA, the strongly-connected component of a state labeled by ∧ can con-
tain at most one of its state’s children and a state labeled by [Θ] is guaranteed to
belong to a different strongly-connected component that its child. Thanks to this
restrictedness, the handling of recursive children (i.e., children where there is a
path from them back to the parents) is simplified, particularly when space is con-
cerned. This makes simple the treatment of recursive calls needed for some GCTL∗

formulae, which allows for space-efficient model checking this logic (this will be
made clear later when we will analyze the complexity of model checking GCTL∗).
As argued in [10], arABTAs play the same role in model checking GCTL∗ that
do hesitant alternating word automata (HAAs) in model checking CTL and CTL*
[34] although the two automata are conceptually different6. In fact, it has been
shown that HAAs are the key to the space-efficient model checking algorithms for
CTL and CTL* thanks to their restricted alternation structure (every nontrivial7

strongly-connected component of HAAs is either (1) existential, so contains only
nodes that are disjunctively related; or (2) universal, so contains only nodes that
are conjunctively related). In this paper, we will show that arABTAs are the key
to the space-efficient complexity of the problem of model checking GCTL∗ and to
the NLOGSPACE membership of the explicit structure complexity of this model
checking problem.

Intuitively, the product graph of MG and Bψ can be seen as an encoding of all
the runs of the arABTA. Formally:

Definition 11 (Product Graph) The product graph BMG,ψ of an arABTA Bψ =
(Q, h,→B , qI ,F) and a modelMG = (SG, Ac, lS , lAc,→, IG) where F = {F0, . . . , Fn−1}
has vertex set V er = Q × SG × {0, . . . , n − 1} and edges Edg ⊆ V er × V er. The
edges are defined by: ((q, s, i), (q′, s′, i′)) ∈ Edg iff

– there exist nodes σ and σ′ in some run of Bψ on MG labeled (q, s) and (q′, s′)
respectively such that σ′ is a child of σ; and

– either q /∈ Fi and i′ = i, or q ∈ Fi and i′ = (i + 1) mod n

A vertex (q, s, i) is said to be accepting iff q ∈ F for some F ∈ F and i = 0.

Bhat has proved in [9] that an arABTA can be partitioned uniquely to ordered
sets Q1, . . . , Qn, which correspond to its strongly-connected components. The num-
ber n of these sets is the depth of the arABTA. Finally, we define the sizes of Bψ,
MG, and BMG,ψ as follows:

– |Bψ| = |Q|+ |F|+ | →B | where |Q| and | →B | are the respective cardinalities
of the sets Q and →B , and |F| is the number of component sets in F .

– |MG| = |SG|+ |Ac|+ | → |.
– |BMG,ψ| = |V er|+|Edg|, where the vertex set is bounded in size by |Q|·|SG|·|F|.

6 arABTA would be hesitant if for every strongly-connected component Qi ⊆ Q and every
node q ∈ Qi either h(q) ∈ {∧, [Θ]} or h(q) ∈ {∨, 〈Θ〉}. Details about HAAs are out of scope of
this paper and interested reader can refer to [34].

7 A strongly-connected component Qi is nontrivial if |Qi| > 1 or Qi = {q} and q has a self
loop.

Reducing Model Checking Commitments for Agent Communication 23

Concurrent Programs. Let us now define concurrent programs. As introduced in
[34], a concurrent program Pr is composed of n concurrent processes. Each process
Pi is described by a transition system Di defined as follows: Di = (APi, ACi, Si, ∆i,

s0
i , Hi) where APi is a set of local atomic propositions, ACi is a local action alpha-

bet, Si is a finite set of local states, ∆i ⊆ Si×ACi×Si is a local transition relation,
s0
i ∈ Si is an initial state, and Hi : Si → 2APi is a local state labeling function. A

concurrent behavior of these processes is obtained by the product of the processes
and transition actions that appear in several processes are synchronized by com-
mon actions. The joint behavior of the processes Pi can be described using a global
transition system D, which is computed by constructing the reachable states of the
product of the processes Pi and synchronization is obtained using common action
names. Let AP =

⋃n
i=1 APi, AC =

⋃n
i=1 ACi, S = Πn

i=1Si, s0 = (s0
1, s0

2, . . . , s0
n),

H(s) =
⋃n

i=1 Hi(s[i]) for every s ∈ S, and s[i] be the ith component of s. Thus,
D = (AP, AC, S, ∆, s0, H) where (s, a, s′) ∈ ∆ iff (s[i], a, s′[i]) ∈ ∆i or s[i] = s′[i] for
all 1 ≤ i ≤ n.

Complexity of Model Checking GCTL∗

In this section, we prove two results: (1) the explicit structure complexity of
GCTL∗ model checking (i.e. by fixing the formula) is NLOGSPACE-complete; and
(2) model checking GCTL∗ for concurrent programs with respect to the size of the
components Pi and the length of the formula being checked is PSPACE-complete.

Let cl(ψ) be the closure of ψ defined as the smallest set such that the following
hold:

– ψ ∈ cl(ψ)
– If ¬ψ′ ∈ cl(ψ) then ψ′ ∈ cl(ψ)
– If ψ1 ∧ ψ2, ψ1 ∨ ψ2 ∈ cl(ψ) then ψ1, ψ2 ∈ cl(ψ)
– If E(ψ′) ∈ cl(ψ) then ψ′ ∈ cl(ψ)
– If A(ψ′) ∈ cl(ψ) then E(¬ψ′) ∈ cl(ψ)
– If E(ψ1 ∧ ψ2) ∈ cl(ψ) then E(ψ1, ψ2) ∈ cl(ψ)
– If E(ψ1 ∨ ψ2) ∈ cl(ψ) then E(ψ1), E(ψ2) ∈ cl(ψ)
– If E(ψ1 U ψ2) ∈ cl(ψ) then ψ1, ψ2, EX(ψ1 U ψ2) ∈ cl(ψ)
– If EXψ′ ∈ cl(ψ) then ψ′ ∈ cl(ψ)

We start by presenting the following proposition from [9] and [4], where |ψ|
denotes the length of the formula ψ measured as the number of elements in cl(ψ).

Proposition 4 Let ψ be a GCTL∗ state formula and |ψ| be its length.

1. |BMG,ψ| = O(|MG| · |Bψ|)
2. |Bψ| = O(2|ψ|)

Theorem 3 Given a GCTL∗ formula ψ, we can construct an arABTA Bψ of size

O(2|ψ|) and of depth O(|ψ|) such that every state in IG, the set of initial states of

MG, satisfies ψ iff MG |= Bψ.

Proof

Assuming that Bψ is an arABTA, which will be shown later in this proof, the
first part of the theorem is simply from Proposition 4. For the second part, the

24 El-Menshawy et al.

algorithm to generate arABTAs from GCTL∗ formulae uses goal-directed rules
aiming to build tableaux from formulae. The formulae have the form E(Φ) and
A(Φ) where Φ is a set of path formulae, so E(Φ) denotes E(

∧
ϕ∈Φ ϕ), A(Φ) denotes

A(
∨

ϕ∈Φ ϕ), and E(¬Φ) denotes E(
∨

ϕ∈Φ ¬ϕ). Furthermore, we write E(Φ, ψ) to
represent the formula of the form E(Φ∪{ψ}) and similarly E(Φ, ψ1, . . . , ψn) repre-
sents E(Φ ∪ {ψ1 . . . , ψn}), where ψ, ψ1, . . . ψn are path formulae and Φ is possibly
empty. We sometimes write E(ψ1, ψ2) to represent E(ψ1 ∧ ψ2), which also repre-
sents E({ψ1} ∪ {ψ2}). To build an arABTA Bψ from a state formula ψ ≡ E(Φ),
one first generates the states and transitions. The initial state is the formula ψ

itself and in general, states correspond to state formulae and transitions are link-
ing formulae to their subformulae as defined by the closure of these formulae. The
subformulae (in the sense of the closure) are obtained by applying the tableau
rules shown in Table 1 in the order R1 to R10, where the top part of each rule
being the goal and the bottom part being the subgoals. Assuming a state already
associated with a formula ψ, one applies the rules R1-R10 to generate new states
by comparing the form of ψ with the formula in the goal part of the rules starting
from R1. When ψ and the goal formula match, the label of the rule becomes the
label of the state and the subgoal formulae obtained from the rule are added as
states and transitions from ψ to these states are added. Leaves are labeled by the
state literals and the process stops when no new states are added. The soundness
and termination of this algorithm are presented in [10].

Let us now show that the obtained automaton Bψ is an arABTA. We start first
by proving that Bψ is an ABTA. From the tableau rules R1-R10 and the expla-
nation above, we can see that states are labeled by a subset of {¬,∧,∨, [Θ], 〈Θ〉},
and: (1) leaves (states without children) are labeled by elements of L; (2) states
labeled by {¬, 〈Θ〉} have only one child (rules R4, R5, and R10); (3) states labeled
by {∧,∨} have at least one child (rules R1, R2, R3, R6, R7, R8, and R9); and (4)
states labeled by ¬ using rules R4 and R5 do not appear on a cycle as there are
no rules linking ψ to ¬ψ or E(¬Φ) to A(Φ) since ¬ψ and A(Φ) do not appear as
subgoal formulae in any of the rules. Consequently, Bψ satisfies all the conditions
of ABTAs (Definition 7), so it is an ABTA. To show that it is an arABTA, we
only need to show that (1) states labeled by [Θ] have no recursive children; and
(2) states labeled by ∧ have at most one recursive child, which means in rules
labeled by ∧, at most one subgoal can be recursive, so it can include the formula
identified in the goal. The first part is straightforward as no state is labeled by [Θ]
in Bψ. For the second part, three rules should be discussed: R1, R6, and R7. R1
produces two children, but no one is recursive as there are no rules linking ψ1 or
ψ2 back to ψ1 ∧ψ2. R6 generates two children: E(ψ) and E(Φ), but the child E(ψ)
is not recursive as the only available rule to be applied once E(ψ) is obtained is
R3, which will generate a state labeled by ψ and from ψ a formula having the form
E(Φ, ψ) cannot be produced. Thus, R6 can produce at most one recursive child,
which could be from E(Φ). Finally, R7 generates only one child, so again at most
one is recursive.

The partition of the obtained arABTA Bψ to Q1, . . . , Qn proceeds as follows:
qI ∈ Qn and for each state q ∈ Qi we have:

– if h(q) ∈ {∨, 〈Θ〉} then for every q′ such that q →B q′, q′ ∈ Qj and j ≤ i.
– if h(q) ∈ {[Θ],¬} then for every q′ such that q →B q′, q′ ∈ Qj and j < i.

Reducing Model Checking Commitments for Agent Communication 25

– if h(q) = ∧ then there is exactly at most one state q′ from the set {q′| q →B q′}
such that q′ ∈ Qj and j ≤ i. For the other states q′ we have q ∈ Qj and j < i.

Thus, since each state is associated to a subformula as defined in the closure, this
partition shows that each subformula (in the sense of the closure) of a formula ψ

induces at most one set Qi in ψ. Therefore, the depth of Bψ is linear in |ψ|. ¤

Table 1 Tableau Rules for GCTL∗

R1 ∧ : ψ1 ∧ ψ2
ψ1 ψ2

R2 ∨ : ψ1 ∨ ψ2
ψ1 ψ2

R3 ∨ :
E(ψ)

ψ
R4 ¬ : ¬ψ

ψ
R5 ¬ :

A(Φ)
E(¬Φ)

R6 ∧ :
E(Φ,ψ)

E(Φ) E(ψ)
R7 ∧ :

E(Φ,ϕ1∧ϕ2)
E(Φ,ϕ1,ϕ2)

R8 ∨ :
E(Φ,ϕ1∨ϕ2)

E(Φ,ϕ1) E(Φ,ϕ2)

R9 ∨ :
E(Φ,ϕ1 U ϕ2)

E(Φ,ϕ2) E(Φ,ϕ1,X(ϕ1 U ϕ2))
R10 〈Ψ〉 :

E(Ψ,Xϕ1,...,Xϕn)
E(ϕ1,...,ϕn)

Ψ is a set of action literals.

The following is an example from [9] showing the tableau and arABTA obtained
from a given GCTL∗ formula.

Example 2 Let Ac = {send, receive}. Consider the formula AG(send → F (receive)).
The tableau of the formula along with the applied rules are shown in Table 2. The
obtained arABTA is depicted in Figure 6. It is worth noticing that in the first
application of R9 (to obtain the formulae in line 3 of Table 2), Φ is empty, and we
use the form with “,” instead of “∧” for the left side formula. This choice is simply
motivated by the fact that the two components (send and G(¬receive)) become
clearly separated. By so doing, it becomes clear that in the second application of
R9 (to obtain the formula in line 4), Φ = {send}, but we omit the brackets when we
label the rule for simplicity. The application of the other rules is straightforward.

Table 2 Tableau of AG(send → F (receive))

¬ : AG(¬ send ∨ F (receive)) (R5)

∨ : EF (send ∧G(¬ receive)) (R9)

∨ : E(send, G(¬ receive)) (R9) 〈true〉 : EX(F (send ∧G(¬ receive))) (R10)

〈send〉 : E(send,¬ receive, XG(¬ receive)) (R10) EF (send ∧G(¬ receive))

∨ : EG(¬ receive) (R9)

〈¬ receive〉 : E(¬ receive, XG(¬ receive))(R10)

EG(¬ receive)

Remark 2

In the tableau rules shown in Table 1, there is a rule labeled by 〈Ψ〉, but no rule is
labeled by [Ψ]. The reason is that those rules are mainly dealing with existential
formulae and whenever a universal formula is encountered, it is transformed to an

26 El-Menshawy et al.¬V < t r u e >< s e n d >V< ¬ r e c e i v e >
V

Fig. 6 arABTA of AG(send → F (receive))

existential one using the rule R5. In fact, a rule labeled by [Ψ] would be used to deal
with universal formulae having the form A(Ψ, Xϕ1, . . . , Xϕn) and the rule would

have the form: [Ψ] : A(Ψ,Xϕ1,...,Xϕn)
A(ϕ1,...,ϕn) . Having the rule R5, the rule [Ψ] would be re-

dundant because applying this new rule followed by R5 (the only rule possible when
A(ϕ1, . . . , ϕn) appears) is equivalent to applying first R5 to A(Ψ, Xϕ1, . . . , Xϕn)
followed by 〈¬Ψ〉. In both cases we will end up with E(¬ϕ1, . . . ,¬ϕn). Although
the new rule is redundant, adding it will still produce arABTAs because there is no
rule that can produce A(Ψ, Xϕ1, . . . , Xϕn), so states labeled by [Ψ] will not have
recursive children. On the other hand, notice that it is possible to replace the rules
R3, R5, R6, R7, R8, R9, and R10 by other rules dealing with universal formulae.
In this case, R5 would have the form ¬ : E(Φ)

A(¬Φ) and the rule [Ψ] would be used

instead of R10. Technically, this means the ABTAs obtained can contain either
states labeled by 〈Ψ〉, or [Ψ], but not both, which still complies with the ABTA’s
definition. However, using rules with universal formulae will not necessarily pro-
duce arABTAs because applying the new rule replacing R9 together with the rule
[Ψ], a node labeled by [Ψ] will have recursive children.

Theorem 4 The model checking problem for GCTL∗ can be solved in space O(|ψ|(|ψ|+
log |MG|)2).

Proof

As explained in the preliminaries, the problem of model checking GCTL∗ is the
problem of determining if the product graph BMG,ψ contains a successful run,
which means checking the nonemptiness of the arABTA BMG,ψ. Here we present
the on-the-fly algorithm presented in [10] and then we analyze its space complex-
ity, which has not been done in [10]. The algorithm avoids the storage penalty
associated with the construction of strongly-connected components8 and uses two

8 By storage penalty, we mean the memory cost of constructing and recording the strongly-
connected components of the product graph to be checked, which is needed by some automata-
based model checking algorithms. As the strongly-connected components should be stored prior
to any exploration by those algorithms, the memory (or space) cost is high.

Reducing Model Checking Commitments for Agent Communication 27

depth-first searches, DFS1 and DFS2. The algorithm is a top-down marking algo-
rithm. DFS1 recursively marks nodes as either true or false and DFS2 is lunched
whenever an accepting node is found to check if the node is reachable from itself
via nodes not previously traversed by DFS2. In fact, the success of DFS2 means
the existence of runs with successful infinite paths. Thus, the motivation behind
the requirement for nodes of not being previously traversed by DFS2 is to avoid
unnecessary re-computation of successful paths already found. This is because a
node N is already traversed by DFS2 if it is an accepting state and a recursive
child of another accepting state which has been already found by DFS1 so that
the successful infinite path to which N belongs has been already identified. When
executing DFS1, some nodes are not directly marked true or false, but are marked
as dependant on their recursive children, which are previously traversed by DFS1

but not marked yet, so they are marked true (resp. false) once the nodes on which
they depend are marked true (resp. false). This procedure is called mark propaga-

tion and happens in a strongly-connected component because the nodes previously
traversed can be marked later by exploring other branches in the same component.
Thus, once a node N is marked true or false, the mark is propagated to reachable
nodes from N that are marked dependant on N , which means already traversed
using DFS1. This needs to record a dependency set for each node N . In fact, those
dependant nodes (i.e., the elements of the dependency set) are the parent nodes
of N that are reachable from N and already traversed. The algorithm proceeds by
exploring the label of the states, which are partitioned into negative, conjunctive
and disjunctive states. Negative states are those labeled by ¬; conjunctive states
are those labeled by ∧ and [Θ]; and disjunctive states are those labeled by ∨ and
〈Θ〉. The following recursive procedure illustrates the marking algorithm.

1. Start at the initial state.
2. At a leave (q, s, i), mark the node true if s satisfies h(q); otherwise, mark the

node false.
3. At a negative node, evaluate the state by recursively applying the procedure

to the non recursive child, and mark the node true if the child is marked false;
otherwise mark the node false.

4. At a conjunctive node N , proceed as follows:

(a) Start by non-recursive children and evaluate the node N by applying the
procedure recursively to those children. Label N false if one of the children
is labeled false and propagate the mark (i.e., mark the dependant nodes on
N (if any) true or false depending on the mark of the node N).

(b) If all the children are evaluated true and there is no recursive child of the
node N , then mark the node true and propagate the mark.

(c) Otherwise, if the unique recursive child has not been already traversed,
then apply the procedure recursively to this unique child and mark the
node N true if the child is marked true; otherwise, mark the node false and
propagate the mark.

(d) If the recursive child has been already traversed but not market yet, then
mark the node N as dependant on the recursive child.

(e) If the node N is not marked true or false and if it is accepting, then mark
N true and propagate the mark if it is reachable from itself using states
not marked false. Mark N false and propagate the mark if not.

(f) If none of the previous cases apply, mark the node false.

28 El-Menshawy et al.

5. At a disjunctive node N , proceed as follows:

(a) Start by non-recursive children and evaluate the node N by applying the
procedure recursively to those children. Label N true if one of the children
is labeled true and propagate the mark.

(b) If all the children are evaluated false and there is no recursive children of
the node N , then mark the node false and propagate the mark.

(c) Otherwise, search for a recursive child that has not been traversed yet, and
if found, then apply the procedure recursively to this child and mark the
node N true if the child is marked true and propagate the mark.

(d) Otherwise, if all the recursive children are already traversed, then mark the
node N as dependant on its recursive children.

(e) If the node N is not marked true or false and if it is accepting, then mark
N true and propagate the mark if it is reachable from itself using states
not marked false. Mark N false and propagate the mark if not.

(f) If none of the previous cases apply, mark the node false.

Let us now consider the complexity of this algorithm9. For each state (q, s, i) in the
product graph BMG,ψ, if the children are already marked recursively, then marking
the state becomes a problem of evaluating a Boolean expression since the children
represent the subformulae of the formula in the state. As we consider Boolean ex-
pressions over the set V er, the length of each expression is linear in the size |BMG,ψ|
of the arABTA product. As the problem of evaluating Boolean expressions is in
LOGSPACE [38], marking a state assuming all the children states are marked can
be done deterministically in space O(log |BMG,ψ|). Before analyzing the different
cases, let us consider the propagation procedure. In fact, the property of arABTA
used in this algorithm is that this propagation can be done deterministically in
space O(log2 |BMG,ψ|). The procedure consists in recording the dependency set,
which means determining if the parent nodes of a given node N are reachable from
N and already marked traversed. The reachability from N is a graph accessibility
problem, and it is known by Jones [31] that the problem is in NLOGSPACE, so
it can be done nondeterministically in space O(log |BMG,ψ|), or, by Savitch’s the-

orem [44], deterministically in space O(log2 |BMG,ψ|). A necessary condition for a
node to be already traversed is to be a recursive node of a given node. Thus, the
size of already traversed nodes is bounded by the size of the recursive children. On
the one hand, as in arABTA a node labeled by ∧ has only one recursive child, and
a node labeled by [Θ] has no recursive children, the size of recursive children of a
conjunctive node is logarithmic in the size of the product graph BMG,ψ. On the
other hand, as for a disjunctive node only one recursive child should be recorded
at time, the size of recursive children needed at a given moment is also logarithmic
in the size of the product graph. Thus, marking a node as already traversed can
be done deterministically in space O(log |BMG,ψ|), so the whole procedure can be

done in space O(log2 |BMG,ψ|). Let us now analyze the different cases. If the state is
a leave, marking the state is simply evaluating a positive or negative literal, which
can be done deterministically in space O(log |BMG,ψ|). If the state is a negative
node, assuming the non-recursive child is evaluated, marking the node is simply
complementing the evaluation of the child, so it can be done deterministically in
space O(log |BMG,ψ|). Let us then consider the case of a conjunctive state (the

9 The complexity analysis of the algorithm is novel in this paper and has not been addressed
in [10].

Reducing Model Checking Commitments for Agent Communication 29

case of a disjunctive state is symmetric). If all the children are non-recursive, then
evaluating the node assuming that the children are already evaluated recursively
can be done, as explained above, deterministically in space O(log |BMG,ψ|). If the
node has a recursive child, which is already evaluated, then evaluating the node is
simply evaluating a Boolean expression deterministically in space O(log |BMG,ψ|).
Otherwise (i.e., the child is already traversed), the mark is propagated, and this
can be done, as explained above, deterministically in space O(log2 |BMG,ψ|). If the
node is accepting, then marking it becomes a problem of reachability from itself
using states not already marked false. Assuming the nodes are already marked,
this can be done nondeterministically in space O(log |BMG,ψ|) [31], or, by Savitch

[44], deterministically in space O(log2 |BMG,ψ|).
In practice, we do not keep the Boolean values of the children, but whenever

we need such a value, we evaluate it recursively. As argued in [34], the depth of
the recursion is bounded by the depth of the automata, which is, from Theorem
3, O(|ψ|). Thus, marking the initial state can be done deterministically in space
O(|ψ|(log2 |BMG,ψ|)). From Proposition 4, we know that: |BMG,ψ| = O(|MG|·|Bψ|)
and |Bψ| = O(2|ψ|). Thus, the model checking problem of GCTL∗ can be solved

in space O(|ψ|(log2(|MG| · 2|ψ|))), which means O(|ψ|(|ψ|+ log |MG|)2). ¤

Let us now discuss the explicit structure complexity of GCTL∗ model check-
ing as the complexity of this problem in terms of the size of the input explicit
model MG, that is assuming the formula fixed. In what follows, the logspace and
polynomial reductions are denoted respectively by ≤log and ≤p.

Proposition 5 Let Mod(L) be a model of the language L, where L ∈ {CTL, CTLC+,

CTL∗, GCTL∗}.

1. Mod(CTL∗) ≤log Mod(GCTL∗)
2. Mod(CTL) ≤log Mod(CTLC+)
3. Mod(CTLC+) ≤log Mod(GCTL∗)

Proof

1. CTL∗ is a subset of GCTL∗ and thus any model of CTL∗ is also a model of
GCTL∗. So, we can easily imagine a deterministic Turing machine TM that
can compute this reduction in space O(log n) where n is the size of the input
model of CTL∗. In fact, TM simply looks at the input and writes in its output
tape, one by one, the states (including the initial ones), labeling function, and
transitions.

2. CTL is a subset of CTLC+, so the result follows using a similar proof as 1.
3. Here we show that the model reduction presented in Section 3.2 can be com-

puted by a deterministic Turing machine TM in space O(log n) where n is
the size of the input model of CTLC+. TM reads in the input tape a model of
CTLC+ and generates in the output tape, one by one, the same states including
the initial ones and the same state labeling function as the input. Furthermore,
TM writes αo in the set of actions Ac if there are transitions defined in Rt, the
transition relation in the model of CTLC+, and reads the accessibility relations
∼i→j in the input model one by one and for each one, it writes αij and βij in
Ac. Then, for each element in Ac, TM writes in the output tape, lAc one by
one as explained in Section 3.2. Finally, TM looks at each transition (s, s′) in

30 El-Menshawy et al.

the input model and writes, one by one, the transitions (s, αo, s′). In the same
way, TM writes, one by one, the transitions (s, αij , s′) and (s′, βij , s) for each
accessibility relation s ∼i→j s′ in the input model. ¤

Theorem 5 The explicit structure complexity of GCTL∗ model checking is NLOGSPACE-

complete.

Proof

Membership: By fixing the formula ψ to be checked, we obtain an arABTA of a
fixed depth. Using the algorithm presented in the proof of Theorem 4, check-
ing the nonemptiness of this automata can be done deterministically in space
O(log2 |MG|), that is, the problem is in NLOGSPACE.
Hardness: The hardness in NLOGSPACE follows directly from Proposition 5 (i.e.,
Mod(CTL∗) ≤log Mod(GCTL∗)) as it is proven in [34] that the explicit structure
complexity (called program complexity) of CTL∗ model checking is NLOGSPACE-
complete. ¤

Theorem 6 The complexity of GCTL∗ model checking for concurrent programs is

PSPACE-complete.

Proof

Membership: As shown in Theorem 4, the model checking problem of GCTL∗ can
be solved in space polynomial in the length of the formula |ψ|, but only poly-

logarithmic in the size of the explicit model |MG|. Since the explicit model is
obtained as the product of the components of a concurrent program and this
product is at most exponentially larger than the program, the state space is expo-
nential in the length of the program. Thus, membership in PSPACE follows from
the fact that the model checking algorithm presented in the proof of Theorem 4
is on-the-fly, that is, we do not have to store all of the product automaton at once
and can store, at each step, only the current configuration (a similar argument is
used in [56] and [34]).
Hardness: The hardness in PSPACE is direct from the fact that CTL∗ ≤p GCTL∗

and model checking CTL∗ is PSPACE-complete for concurrent programs [34]. ¤

It is possible to prove hardness in PSPACE using a reduction from polynomial
space Turing machines, for example as done in [34]. However, for the sake of
simplicity, we used a direct reduction from the model checking of CTL∗. We could
also use a direct reduction from the nonemptiness problem of concurrent programs
proven in [33] to be PSPACE-complete.

Complexity of Model Checking CTLC+

As we did for the complexity of GCTL∗, in this section, two results will be pre-
sented: (1) the explicit structure complexity of CTLC+ model checking (i.e. by
fixing the formula) is NLOGSPACE-complete; and (2) model checking CTLC+

for concurrent programs with respect to the size of the components Pi and the
length of the formula being checked is PSPACE-complete.

Theorem 7 The explicit structure complexity of CTLC+ model checking is NLOGSPACE-

complete.

Reducing Model Checking Commitments for Agent Communication 31

Proof

Hardness: The hardness in NLOGSPACE follows directly from Proposition 5 (i.e.,
Mod(CTL) ≤log Mod(CTLC+)) and the explicit structure complexity (called pro-
gram complexity) of CTL model checking is NLOGSPACE-complete [34].
Membership: From Section 3.2, Theorem 2, and Proposition 5, we proved, using ex-
plicit structures, that: 1) Mod(CTLC+) ≤log Mod(GCTL∗); and 2) the reduction
is sound. Thus, the membership in NLOGSPACE follows from Theorem 5. ¤

Theorem 8 The complexity of CTLC+ model checking for concurrent programs is

PSPACE-complete.

Proof

Hardness: The PSPACE lower bound is direct from the fact that CTL ≤p CTLC+

and the complexity of model checking CTL is PSPACE-complete for concurrent
programs [34].
Membership: In Section 3.2, we have presented a polynomial-time transformation of
a model MC for CTLC+ to a model MG for GCTL∗ and a formula ϕCTLC+ to a
formula ϕGCTL∗ so that MC |= ϕCTLC+ iff MG |= ϕGCTL∗ . Thus, since the model
checking problem of GCTL∗ can be solved in space polynomial in the length of
the formula |ϕGCTL∗ |, and poly-logarithmic in the size of the explicit model |MG|
(Theorem 4), we obtain an upper bound space complexity for model checking
CTLC+ with regard to the length of the formula and the size of the explicit model
MC . On the other hand, from Theorem 7, the space complexity of model checking
CTLC+ is poly-logarithmic in the size of the explicit model |MC |. And since
the model checking problem of CTL can also be solved in space polynomial in
the length of the formula [34], we obtain the space complexity of model checking
CTLC+, that is polynomial in the length of the formula |ϕCTLC+ |, and poly-
logarithmic in the size of the explicit model |MC |. Thus, using a similar proof as
the one presented in Theorem 6 and observing that the same on-the-fly algorithm
presented in this proof can be used for CTLC+ thanks to the transformation, the
result follows. ¤

4 Case Studies

One of the main motivations of this paper is to check the effectiveness of our
reduction techniques and experimentally confirm the theoretical space complexity
results proved so far.

We have implemented the reduction techniques presented in Section 3 on top
of the extended NuSMV and CWB-NC. Such tools have been used to check ac-
tion as well as state formulae. Specifically, NuSMV has been successfully adopted
to model checking web service composition [32], multi-agent interaction protocols
[21], and business models [54]. One limitation is that it does not support model
checking epistemic properties in a system of agents. The extended NuSMV is used
to overcome such a limitation [35,42]. It has also been used to verify commitment-
based protocols [22]. CWB-NC is used for model checking large-scale protocols
in agent communication [5] and security pattern composition [19]. Concretely, the
reduction from CTLC+ to ARCTL using the transformation function F is defined
as a library of M4 macros. M4 is a general-purpose macro processor available on

32 El-Menshawy et al.

most UNIX platforms. The reduction from CTLC+ to GCTL∗ using transfor-
mation function H is performed by Com-2-CWB tool we have implemented. As
shown in Figure 7, the solely manual intervention is the provision of the input file
describing the problem to be verified.

Commitment-based protocol model MC + CTLC+

specs

M4

transformation

Com-2-CWB

transformation

Extended SMV model

+ ARCTL specs

CCS model + GCTL*

specs

TRUE
FALSE +

Counter-ex.

Extended NuSMV

model checker

CWB-NC

model checker

Fig. 7 Verification work flow for commitment-based protocols.

On the one hand, the extended NuSMV is a symbolic model checker based on
OBDDs, where the states of the model and formula to be checked are represented
by means of Boolean functions, which can be easily represented using OBDDs and
the set of states of the model satisfying an ARCTL formula is also represented
as a Boolean function. By comparing the later set with the set of initial states
represented also as a Boolean function, it is possible to establish whether or not
a formula holds in a given model. As a result, the problem of model checking
ARCTL is reduced to the comparison of Boolean functions. In extended NuSMV,
models are described into a modular language called extended symbolic model verifier

(extended SMV) with respect to a finite state machine formalism.
On the other hand, the CWB-NC is an automata-based model checker based on

ABTAs, which are a variation of alternating tree automata such as deterministic
and non-deterministic Büchi automata to support efficient model checking wherein
the algorithm searches only the part of the state space that needs to be explored
to prove or disprove a certain formula [10]. The state space is never constructed a
priori. Specifically, in CWB-NC, the model and formula are translated into ABTA
and then the product graph of those ABTA are computed to check if the model is
accepted by the product automaton. As a result, the problem of model checking
GCTL∗ is reduced to check the emptiness condition of the ABTA product. In
CWB-NC, the models are described into a process algebra language called calculus

of communicating systems (CCS).
Two case studies for which we have been able to carry out the above motiva-

tions are the NetBill protocol (NB) [52] and Contract Net protocol (CN)10, already
applied to show how commitments can specify protocols in business settings [22,
23,63].

10 FIPA Contract Net Interaction Protocol Specification (2002), http://www.fipa.org/
specs/fipa00029/index.html

Reducing Model Checking Commitments for Agent Communication 33

4.1 Verifying NB Protocol

NB protocol is an electronic commerce protocol designed to be used for the selling
and delivery of low-priced information goods such as software programs and journal
articles over the Internet [52]. It orchestrates and regulates interactions between
two agents: the merchant Merc and customer Cust [66,40]. In particular, the
protocol starts when the customer requests a quote for some desired goods at the
global state s0 (see Figure 8). This request is followed by the merchant’s reply
by sending the price quote as an offer at s2. The customer can then either reject
the offer and the protocol moves to the initial state s0 after passing through the
failure state s4, or accept the offer, which means the customer commits to send
the payment to the merchant at s3.

S0

(Cus0,Mer0)

S1

(Cus1,Mer1)
priceRequest

S2

(Cus2,Mer2)
Offer

S3

(Cus3,Mer3)

S4

(Cus4,Mer4)
notPayment

(Cus3,Mer5)

S5

Payment

∼Cust→ Merc

(Cus5,Mer3)

S6 ∼Merc → Cust

Reachable

(Cus7,Mer7)

S8

notDeliver
(Cus6,Mer5)

S7

Deliver

∼Merc → Cust

(Cus3,Mer8)

S9

∼Cust → Merc

(Cus9,Mer10)

S10

Refund

(Cus8,Mer9)

S9

ReceiptNull

Null

Reject Accept

Null

(Cust) (Merc)

(Cust)(Cust)

(Cust)(Cust)

(Cust)

(Cust)

(Merc)

(Merc)

(Merc)(Merc)

(Merc)(Merc)
∼Merc → Cust
∼Cust→ Merc

∼Merc → Cust
∼Cus t→ Merc

∼Merc → Cust
∼Cust → Merc

∼Merc → Cust
∼Cust→ Merc

∼Merc → Cust

∼Cust → Merc

∼Merc → Cust

∼Cust → Merc

∼Merc → Cust

∼Cus t→ Merc

∼Merc → Cust
∼Cust→ Merc

∼Merc→ Cust

∼Cust → Merc

∼Merc → Cust

∼Cust → Merc

Fig. 8 The NB protocol representation using our model MC . Notice that each transition
connecting local states is labeled by an agent and its local action. Also, the dashed arrows
refer to the social accessibility relation using ∼i→j .

Suppose that the customer agent accepts the received offer, then he has two
choices: 1) to fulfill its commitment by sending the payment to the merchant at s5,
which is accessible from s3 using ∼Cust→Merc; or 2) to violate its commitment and
the protocol will move to s0 after passing through the failure state s4. When the
merchant receives the payment, he commits to deliver the requested goods to the
customer at s5. In a way similar to the customer’s choices, the merchant can fulfill
its commitment by delivering the requested goods to the customer at s7, which
is accessible state from s5 using ∼Merc→Cust and then moves to the acceptance
state s9 after sending the receipt to the customer and finally the protocol moves
to s0. Conversely, the customer can pay for the requested goods without being
delivered by the merchant. In this case, the merchant violates its commitment at

34 El-Menshawy et al.

s8 and then the protocol moves to the initial state s0 after sending the refund to
the customer at s10.

This protocol can be extended to any number n of agents greater than two. We
encode the NB protocol using our model MC=(S, I, Rt, {∼i→j | (i, j) ∈ A2},V) by
introducing n agents to represent the customers and merchants. Concretely, in the
extended SMV the participating agents in the NB protocol are encoded as a set of
isolated modules MODULE anAgent<name> in which each agent module is instantiated
in the main module at run time using the VAR keyword, which generally defines
the SMV variables. The main module also includes the SPEC keyword to specify
the formulae that need to be checked using the ARCTL syntax . For each agent,
we can use the VAR keyword to define its local states including the commitment,
fulfillment, violation, acceptance and failure states in the form of enumeration
type. The local actions of each agent are represented as input variables using the
IVAR keyword. Agent’s protocol is defined as a relation between its local state
and action variables through the TRANS statement. The labeled transitions among
states are encoded using the TRANS statement with the next and case expressions
that represent agents’s choices in a sequential manner, and initial conditions using
the INIT statement. Figure 9 gives the main components of agent definition as an
SMV module. The complete encoding of the NB protocol using the extended SMV
language is available for download11.

MODULE main -- main module

VAR Cust : Customer(args1,args2); -- customer agent

Merc : Merchant(args1,agrs2); -- merchant agent

SPEC <formulae_list>; -- formulae

MODULE Customer(args1,agrs2) -- customer agent module

VAR local_state: {...}; -- the local states of customer

IVAR local_action: {...}; -- the local actions of customer

INIT(...); -- initial conditions

TRANS(local_action =

case ... esac); -- the customer's protocol

INIT(...);

TRANS(next(local_state)=

case ... esac); -- the customer's evolution function

Fig. 9 Example of agent structure in extended SMV. Notice that “--” defines comments in
the SMV program.

Many properties can be checked in the NB protocol [5,21], such as fairness

constraints, liveness, safety, reachability, deadlock freedom, livelock freedom. Two ex-
amples of these properties formalized using CTLC+ are listed in Table 3. The first
formula is given in the universal form and the second one uses the existential form.
The first formula expresses an example of the standard safety property, i.e., “some-
thing bad never happens”. In general, the safety property is expressed by AG¬p

where p characterizes a “bad” situation, which should be avoided. In our protocol,
a bad situation happens when the customer fulfills its commitment by sending the
payment, but the merchant never commits to deliver the requested goods. The

11 http://users.encs.concordia.ca/~bentahar/Case-Studies.zip

Reducing Model Checking Commitments for Agent Communication 35

motivation behind this property is to check if the protocol is consistent, i.e., the
NB protocol should not yield conflicting computations.

Table 3 Examples of tested formulae

ϕ1 = AG¬(
Fu(CCust→MercPay) ∧AG¬ CMerc→Cust Deliver

)

ϕ2 = EF Fu(CMerc→Cust Deliver)

The formula ϕ2 is an example of the standard reachability property, i.e., a particular
situation can be reached from the initial state via some computation sequences. It
states that along a given path, it is eventually the case that there is a possibility
for the merchant to fulfill its commitment by delivering the requested goods. This
property checks if the NB protocol is effective, i.e., the protocol’s transitions should
be enough to confirm that it can be executed and ended successfully.

Our experimental results were performed on a laptop equipped with the In-
tel(R) Core(TM) 2 Duo clocked at 1.66 GHz processor and 2 GB RAM running
under Ubuntu Linux 8.04 with a vanilla 2.6.24-28-generic Kernel. We reported
5 experiments in Table 4 wherein the number of agents (#Agent), number of
reachable states (#States), execution time (Time) in seconds (sec), which is the
summation of the time required for building all OBDDs parameters and the actual
execution time for the verification, and memory in use (Memory) in MB are given.
From Table 4, we notice that the number of reachable states (which reflects the
state space) and execution time—especially from experiment 3—increase exponen-
tially when the number of agents increases. In contrast, the memory usage does
not increase exponentially, but only polynomially when augmenting the number
of agents, which approves the complexity results presented in Section 3.3.

Table 4 Verification results of the NB protocol using extended NuSMV

#Agents #States Time(sec) Memory(MB)

2 12 0.020 4.241
3 446 0.184 5.507
4 4224 2.736 12.957
5 33454 63.687 15.432
6 238787 630.914 83.839

Notice that from experiment 2 we rewrite the defined formulae in a parame-
terized form, for example in experiment 5:

ϕ′1 = AG¬ (
5∧

i=1

Fu(CCusti→Merc Payi)
5∧

i=1

AG¬ CMerc→Custi
Deliveri)

This formula captures the bad situation in the NB protocol that intuitively means
the merchant never commits to deliver the requested goods to none of the five
customers paid for these goods.

In order to encode the NB protocol formalized using our model with the CCS
language to use CWB-NC as a benchmark, we first present the syntax of CCS
language using the following BNF grammar [10]:

36 El-Menshawy et al.

P ::= nil | α.P | (P + P) | (P|P) | proc C=P

where P refers to the CCS process; the process nil means no action whatsoever;
if P is a process and α is an action prefixing, then α.P is a process; if P1 and P2

are processes, then so is P1 + P2 using the choice operator “+”; if P1 and P2 are
processes, then so is P1 | P2 using the parallel composition operator “|”; and the
keyword proc is used to assign the name C to the process P.

A given model of the NB protocol can be encoded using the language CCS by
associating each agent to a set of processes (in the sense of process algebra) wherein
such processes represent the agent’s local states in a recursive manner. Following
standard conventions, an CCS process conceptually uses communication channels
to receive messages from other processes using input channels and may send out
messages after performing actions to other processes using output channels in a
complementary fashion (see Figure 10). These channels are reliable guaranteeing
timely delivery of messages. Internally, the commitment, fulfillment, violation,
acceptance, and failure states are defined as variables in the proc statement. The
actions of each agent are explicitly represented using atomic action propositions in
the proc statement in order to capture the labeled transitions among states. For
example, the customer Cust agent can be specified as follows:

proc Cus0 = ’priceRequest.Cus1

proc Cus1 = Offer.Cus2

proc Cus2 = (’Accept.Cus3 + ’Reject.Cus4)

. . .

which means the Cust agent initially produces the price request message and
evolves into the state Cus1. The Merc agent replies by sending the offer message,
which makes the Cust agent enter into the state Cus2. At the state Cus2, the
Cust agent is willing to produce: 1) accept message and enter into the state Cus3;
or 2) reject message and enter into the state Cus4. The interactions among these
processes are shown in Figure 10.

C u s 0 C u s 1 C u s 2 C u s 3p r i c e R e q u e s t O f f e r C u s 4A c c e p tR e j e c t
Fig. 10 Example of the interactions among processes in the Cust agent.

Experimental results for the verification of the NB protocol are reported in Table
5. These experiments were performed on a laptop equipped with the Intel(R)
Core(TM) 2 Duo clocked at 1.66 GHz processor and 2 GB RAM running under
32-bit Windows Vista. The execution time, in seconds, (i.e., the summation of
the time required for building all ABTAs parameters and the actual execution
time for the verification) and memory usage (in MB) are reported in Table 5.
This table shows only the results of checking ϕ2 because as ϕ2 is satisfied and

Reducing Model Checking Commitments for Agent Communication 37

includes the existential path quantifier, it only performs on a fragment of the
model, whilst ϕ1, as it is satisfied and has the universal form, needs to be performed
on the whole model. Notice that unlike the case with the automata-based CWB-
NC, the verification results for model checking using extended NuSMV, which is
based on OBDD techniques, are not affected by the structure of the formula being
verified [35]. Moreover, we put “N/A” in Table 5, which means that CWB-NC
is not applicable. Here again the number of reachable states and execution time
increase exponentially when the number of agents increases while the memory
usage increases only polynomially.

Table 5 Verification results of the NB protocol using CWB-NC

#Agents #States Time(sec) Memory(MB)

2 325 0.035 4.020
3 6501 1.785 10.340
4 128327 58.872 25.470
5 N/A N/A N/A

4.2 Verifying CN Protocol

We consider the CN protocol designed from online business point of view to co-
ordinate and regulate interactions among autonomous agents—as in NB protocol,
we introduced n agents to represent the managers (Mgr) and participants (Prt)—
which interact with each other to send results about a particular task. The protocol
starts with the manager requesting proposals for a particular task. Each partic-
ipant either sends a proposal message or a reject message. The manager accepts
only one proposal among the received proposals and explicitly rejects the rest pro-
posals. The participant with the accepted proposal informs the manager with the
proposal results or the failure of the proposal. The protocol is self-described in
Figure 11 using our model, as we did in the previous case study. An example of
safety in this protocol can be expressed by the formula ϕ3 stating a bad situation
where the manager fulfills its commitment by sending reply message, but the par-
ticipant never commitments to deliver the results of the proposal. The formula ϕ4

is an example of the standard reachability in the CN protocol, which means along
a given path, there is a possibility for the participant to fulfill its commitment by
sending the results performing its proposal.

ϕ3 = AG¬(Fu(CMgr→Prt Reply) ∧AG¬ CPrt→Mgr Results)

ϕ4 = EF Fu(CPrt→Mgr Results)

Table 6 shows the CN protocol verification results with extended NuSMV using
the same machine as in the previous case study. Because the number of reachable
states that are effectively considered in the CN protocol is much more smaller, its
execution time is shorter than in the NB protocol with extended NuSMV. Table
7 reports the verification results of the CN protocol using CWB-NC. In both
cases, the memory usage increases polynomially, which is expected according to
the theoretical results.

38 El-Menshawy et al.

S0

(M0,P0)

S1

(M1,P1)
callForProposal

S2

(M3,P3)
Reject

S3

(M2,P2)

(M4,P4)

S4

Accept

Reachable

notResults

(M4,P5)

S5

(M5,P4)

S6

(M6,P5)

S7

ResultsNull

Null

Proposal

(Mgr) (Prt)

(Prt)

(Mgr)

(Prt)

(Prt)(Prt)

∼Mgr → Prt

∼Prt → Mgr

∼Mgr → Prt
∼Prt → Mgr

∼Mgr → Prt
∼Prt → Mgr

Reject

(Mgr)

(Mgr)

notReply

(Mgr)

∼Mgr → Prt

∼Prt → Mgr

Reply

(Mgr) (Prt)

∼Prt → Mgr

(M4,P6)
∼Mgr → Prt

S8

∼Mgr → Prt
∼Prt → Mgr

∼Mgr → Prt
∼Prt → Mgr

∼Mgr → Prt
∼Prt → Mgr

∼Mgr → Prt
∼Prt → Mgr

Fig. 11 Actions of the CN protocol.

Table 6 Verification results of the CN protocol using extended NuSMV

#Agents #States Time(sec) Memory(MB)

2 9 0.044 4.226
3 528 0.1 4.734
4 4121 0.908 14.414
5 30346 11.285 14.835
6 217631 145.913 31.610

Table 7 Verification results of the CN protocol using CWB-NC

#Agents #States Time(sec) Memory(MB)

2 257 0.038 3.013
3 5655 1.219 7.112
4 114717 50.754 18.022
5 N/A N/A N/A

We should underline that CWB-NC is efficiently applied to check satisfiability
of existential formulae (i.e., for checking that a universal formula does not hold),
which validate the main ABTA idea of finding counter-examples without exploring
the whole model. The extended NuSMV performs moderately better than CWB-
NC in terms of the execution time. It is also efficiently applicable when the model
of MAS formalized using the interpreted systems is getting larger. Furthermore,
comparisons with other proposals are given in the following section.

Reducing Model Checking Commitments for Agent Communication 39

5 Related Literature

We relate our work broadly to two areas of research: 1) defining and 2) verifying
social semantics of commitments and their fulfillment along with commitment-
based protocols, using formal methods.

5.1 Formal Semantics of Commitments

Formal methods are a particular kind of mathematically-based techniques for pro-
viding rigorous frameworks to specify, model, and verify autonomous agents that
communicate with one another [49,5]. They are best described as the application
of formal languages using for example temporal logics, which are a set of temporal
modalities allowing the specification of event orders in time without having to
introduce time explicitly. Semantics generally deals with the meaning delivered by
valid (syntactically correct) language constructs.

Commitments for Agent Communication

Singh [49] proposed a suitable formal semantics for ACLs by defining three levels of
semantics for each communication act. The author extended CTL with modalities
for social commitments, beliefs and intentions to represent communication among
autonomous agents. He presented three accessibility relations to define the seman-
tics of those modalities. Particularly, the accessibility relation C: A×A×A×S → 2Π

where A is a set of agents, S is a set of states and Π is a set of paths, produces the
set of accessible paths along which the commitments made at a state s ∈ S by the
debtor i towards the creditor j in the social context G hold. Thus, the semantics
of the commitment modality is satisfied at s in a model M iff the content is true
along every accessible path π defined using the accessibility relation C(i, j, G, s)
and emanating from the commitment state s. Singh’s approach also refers to a
mental component by claiming that communication should be sincere.

Colombetti [16] introduced a new speech-act based ACL, which is named Alba-

tross (agent language based on a treatment of social semantics). This language is
based on the social notion of commitments contrary to mental states. The author
proposed an extended first order modal language to define the semantics of Alba-
tross. The semantics of commitments is defined using a certain type of accessibility

relation: fc : Daction ×Dagent ×Dagent × S → 22S

, which produces a family set of
states for each state, a typed domain of individual sorts of action, and a pair of
two agents. Technically, such a semantics is defined by computing the set ||ϕ|| of
states satisfying the commitment content ϕ and testing if this set is among the set
of sets of states computed by fc.

The first work on combing social commitments as deontic notions and argu-
ments into the paradigm of agent communication language was done by Bentahar
et al. [6]. In this hybrid approach, the social and public aspects of conversations can
be captured by commitments and the reasoning aspects can be captured by means
of arguments. In continuation of this work, Bentahar et al. [7,8] developed “Com-
mitment and Argument Network (CAN)”, which is a unified framework for prag-
matic and semantics issues. It uses both a temporal logic CTL∗CA, which extends
CTL∗ with modalities for commitments and their actions, argument modality,

40 El-Menshawy et al.

and a dynamic logic (DL) to define a logical semantics for agent communication.
The authors then introduced two accessibility relations to define the semantics
of commitment and argument modalities. The accessibility relation dedicated to
commitments [8] is defined as follows: Rsc : A×A×S → 2Π . It associates with a
state s a set of accessible paths along which an agent commits towards another
agent. Thus, in terms of semantics, the commitment about ϕ is satisfied in a model
M at a state s iff the content ϕ holds along every accessible path started at s and
computed by Rsc. Furthermore, the semantics of the Satisfy formula, which cap-
tures the commitment satisfaction, is defined in terms of whether a commitment
has been created in the past and still active and its content holds. So, it has the
same problem raised in Mallya et al.’s framework [41].

El-Menshawy et al. [21] showed how social commitments can be mapped into
underlying logic-based formalisms by extending CTL∗ with: (1) past-directed tem-
poral modalities; and (2) modalities for commitments and associated actions. In or-
der to define the semantics of unconditional and conditional commitments, the au-
thors introduced two accessibility relations. For instance, the accessibility relation
devoted to unconditional commitments is defined as follows: Rscp : S×A×A → 2Π ,
which associates to a given state s a set of accessible paths along which an agent
commits towards another agent. Such paths are conceived as merely possible, and
as paths where the contents of commitments made in s are true. For example, if
we have: π ∈ Rscp(s, i, j), then the commitments that are made in the state s by i

towards j are satisfied along the path π ∈ Πs, where Πs is a set of paths starting
at s.

The aforementioned approaches [7,8,16,21,49] have made a significant progress
in defining the formal semantics of social commitments by making use of accessi-
bility relations. The fact that these relations are not defined and computed using
the formalism of interpreted systems and agents’ global and local states makes the
application of our model checking-based reduction technique to these approaches
hard because such a reduction technique is fundamentally based on this formalism.
This means, in order to apply our technique, a transformation (or redefinition) of
these accessibility relations within this formalism is needed.

Verdicchio and Colombetti [58] introduced a logical framework for the defini-
tion of ACL semantics based on the concept of social commitments by presenting
a new branching time logic called CTL±, which extends CTL∗ with “past-directed
temporal operators”. Then, they used CTL± to represent commitments and their
fulfillment and violation. Unlike our logical model where violation is defined as a
property, in [58], violation is explicitly defined. Their semantics of fulfilling commit-
ment also differs from our semantics as they use “a truth-preserving translation”
of the commitment content into a formula of “the semantics language” and past
operator that points to the state at which the commitment is made.

Yolum and Singh have developed a formalism to represent and reason about
commitment protocols called commitment machines using a CTL-like semantics
[64]. In this formalism, commitments could be conditional and the condition is im-
plemented using strict implication p Ã q, which requires q to hold when p holds.
Although it is possible to extend our logic with the strict implication operator, its
model checking using reduction has the problem that no operator in ARCTL or
GCTL∗ we are using in our approach can support the strict implication. An appro-
priate approach to implement conditional commitments is the semantics proposed
by Singh [50], which clearly identifies the link between the condition and content of

Reducing Model Checking Commitments for Agent Communication 41

commitments without using the strict implication. However, such semantics does
not use the accessibility relation and possible-worlds semantics, so using a similar
idea in CTLC+ is beyond the scope of this paper.

Commitments for General Agent Actions

Xing and Singh [62] proposed commitment patterns that accommodate revisions
and exceptions to model agent interactions. The authors expressed commitment
patterns as CTL formulae, but a commitment itself is defined as an abstract data
type.

Mallya and Hunhs [39] and Mallya et al. [41] developed an extension of CTL
with a way to describe time points and intervals to obtain a richer temporal frame-
work to represent and reason about commitments and their actions. The semantics
of the predicate satisfied is defined in terms of whether the DISCHARGE oper-
ation has been performed in the past or not. The authors assumed that “the
DISCHARGE operation brings about p [the relevant commitment’s content], and
conversely, if p occurs, the DISCHARGE operation is assumed to have happened”.
This differs from our proposal as we defined the semantics of the fulfillment modal-
ity in terms of accessibility states from commitment state and left defining the
truth conditions of the content of commitment as one of the key points of the
satisfaction of the commitment modality.

To enable a rich modeling of temporal aspects of commitments, Torroni et
al. [55] extended Mallya et al.’s work [41] by using “variables with domains” in-
side commitments. The authors showed that without such an extension, Mallya
et al.’s representation of commitments does not cover some practical situations.
For example, a commitment of i towards j to bring about p is going to hold at
a given moment in the interval beginning at t1 and ending at t2 would be repre-
sented in Mallya et al.’s model as follows: C(i, j, [t1, t2]p). This modeling enables
reasoning about the temporal aspect without considering the p’s meaning, but
it does not specify the time at which the commitment is satisfied. In Torroni et
al.’s model, p is associated with a variable, which is bound to a domain inter-
val: [T]p where T ∈ [t1, t2]. So, the commitment above can be written as follows:
C(i, j, [T]p), t1 ≤ T ≤ t2. When there exists a possible value of T in the range [t1, t2],
the commitment is satisfied and this value can be used for further inferences. This
commitment is violated at time t (viol(C(i, j, [T]p, t))) “due to the elapsing at time
t of a time interval in which p was supposed to be verified”. The authors proposed
a specification language called “commitment modeling language”, which consists
of a set of domain variables, constraints and rules. They used event calculus ax-
ioms not only for reasoning about the effects of commitment actions, but also for
a static verification and compliance checking, which tracks the evolution of com-
mitment statuses at run time by making use of reactive event calculus, which is
implemented in SCIFF , an abductive logic programming proof-procedure. As for
Mallya et al.’s approach, this approach differs from ours at the semantic level (the
commitment and its fulfillment are not defined as modalities). Furthermore, time
in our proposal is abstract and captured using temporal operators, which allows
us to use the model checking technique for the design time verification, which can
complement the run time verification.

Singh [50] defined the semantics of commitment and its fulfillment by extend-
ing LTL logic with commitment modalities: “dialogical” (i.e., commitments about

42 El-Menshawy et al.

propositions) and “practical” (i.e., commitments about actions to be performed).
This semantics is interpreted without using an accessibility relation but by using
Segerberg’s idea, which maps “each world into a set of set of worlds”. To define the
semantics of commitments, the author; 1) introduced a function that produces “a
set of sets of periods for each moment and proposition”; and 2) computed the set
of periods along which the content of commitment holds. So, the idea is checking
if all possible ways in which the content of commitment may hold are in the set
of sets of periods satisfying the condition of commitment, then the commitment
holds. Thus, the author focused on identifying the link between the condition and
content of commitments. As the semantics is not based on Kripke structures, ver-
ifying such a semantics using model checking needs either defining an equivalent
semantics using Kripke structures or interpreted systems; or defining a completely
new model checking approach for the extended logic.

5.2 Formal Verification of Commitment-based Protocols

Venkatraman and Singh [57] developed an approach for locally verifying whether
the behavior of an agent in open systems complies with a commitment-based pro-
tocol specified in CTL. Their verification method concentrates on the conditions
under which an individual agent may check others’ commitments toward itself.

The operational specification of a commitment-based ACL with a minimal
communicative act library was given by Fornara and Colombetti [26]. They in turn
used these communicative acts having formal social semantics to define complex
interaction protocols, such as the “English Auction protocol” with the help of
interaction diagrams. The authors have introduced the idea of soundness condition
when the concurrent combinations of communicative acts may have legal orderings,
so the resulting protocol becomes verifiable without deeply giving the theoretical
justification of this condition.

Limiting agents’ autonomy, flexibility and reliability, as well as lacking the
ability to capture real meaning of interactions are the main difficulties of tradi-
tional approaches that specify and model protocols by means of FSMs and Perti
Nets. To overcome these limitations, Yolum and Singh [65] developed a declara-
tive approach for formally specifying and flexibly executing protocols in which it
is possible to capture the content of the actions through agents’ commitments to
one another. In fact, traditional approaches limit the flexibility of the agents in
executing the protocols as modeling protocols is done in terms of action sequences,
which are known a priori. The authors formalized commitment actions with the
use of event calculus axioms that enable agents to reason about their actions and
help protocol designers to track the evolution of commitments. Yolum and Singh
[66] used an abductive event calculus planner to compute all possible paths that
can be generated between an initial state and goal state regarding the protocol
specification. By keeping track of agent’s commitments, we can check whether the
agent behaviors comply with its commitments, this technique is called static ver-
ification. Based on Yolum and Singh’s approach, Chesani et al. [13] developed a
run time commitment verification procedure to track the status of commitments.
Our verification technique can be seen as complement to the run time verification.

Yolum [63] formalized the main generic properties that are required to help
protocol designers to analyze and correct the development of commitment-based

Reducing Model Checking Commitments for Agent Communication 43

protocols by signaling possible errors and inconsistencies that arise at run time
and determining the applicability of protocols. These properties are categorized
into three classes: effectiveness, consistency and robustness. Yolum also developed
algorithms that can be used to semi-automatically verify those properties using any
available design tools. Our approach enhances Yolum’s semi-automatic verification
with full-automatic verification using model checking.

For MASs to be openly operative, there should be a balance between flexi-
bility of executing protocols and verification in designing these protocols. Mallya
and Singh [41,40] have defined a tradeoff between flexibility and verification to
be problematic. They proposed an approach for designing commitment-based pro-
tocols wherein traditional software engineering notions such as refinement and
aggregation are extended to apply to protocols so that protocol designers should
be able to create new protocols by refining or combining existing protocols at de-
sign time. For verification issues, they presented a “sound theory” of composing
protocols using “state-similarity functions” based on the notion of “subsumption
of protocols”. The authors argued that the protocol that allows many computa-
tions is better than the one that allows less computations giving more choice and
flexibility in protocol execution.

The approach presented by Mallya et al. [41,40] were further complemented
in three research proposals by [12], [17] and [28]. Cheng [12] and Desai et al.
[17] developed the idea of supporting the verification of properties geared toward
the composition of commitment-based protocols specified in a particular language
called OWL-P. Their properties are specified using LTL to verify the deadlocks
and livelocks where deadlocks can result from the contradiction among composition
axioms. They also presented another kind of properties called “protocol-specific
properties”. Their approach depends on translating the protocols into PROMELA
(the input language of the SPIN automata-based model checker). Gerard and Singh
[28] used the MCMAS model checker to verify the refinement of commitment-based
protocols by developing a preprocessor tool that reads protocols and specifications
(i.e., the refinement axioms or rules expressed in CTL) from files and then trans-
lates them into the ISPL (the input language of MCMAS).

Telang and Singh [54] used the NuSMV symbolic model checker to verify
whether or not the operational model defined in the UML sequence diagrams
correctly supports the business model that is aggregated from a set of business
patterns. These patterns are defined in a highly abstract level based on the notion
of commitments and mapped into CTL specifications. The commitment is defined
as an isolated SMV module, which can be instantiated as a variable in the main
module.

Compared to the above approaches, our verification is based on the formal
translation of commitments and their fulfillment into ARCTL and GCTL∗ formu-
lae without losing their real and concrete meanings as when representing them as
simple data structures [17], processes [12] or variables [28,54]. Moreover, no exper-
imental results and tools are presented in [17,12,28,54], but they only focused on
checking the correctness of properties needed either for composition or refinement
processes.

Bentahar et al. [5] presented a new verification method based on translating
ACTL∗ formulae and protocols into alternating Büchi tableau automata to use
CWB-NC where the commitment states are defined as variables and agent actions
as atomic propositions using CCS language. This approach is close to our approach,

44 El-Menshawy et al.

but—as the mentioned approaches— it lacks a formal translation process. They
also used a different encoding of the NB protocol, which only models each agent
by describing its possible actions and each action is described by a set of states.
However, we used the formalism of interpreted systems, which provides a general
framework for modeling MASs. Technically, Bentahar et al.’s encoding allowed
for the verification of 2 agents only, the experimental results shown in Table 5
report scenarios with up to 4 agents. While [12,17,28,5] and [54] show that the
model checking of commitment-based protocols is feasible, in this paper we focused
on fully automatic verification of commitments and their fulfillment as modal
connectives as well as efficiency, applicability and complexity considerations.

6 Conclusion

The main contribution of this paper lies in presenting a new approach for reducing
the problem of model checking CTLC+, an extension of CTL with modalities for
commitments and their fulfillment, into the problem of model checking ARCTL
and GCTL∗. In this approach, the commitment and fulfillment modalities are
transformed into ARCTL and GCTL∗ formulae. We also computed the space com-
plexity of model checking CTLC+ with regard to explicit models and concurrent
programs, which is respectively NLOGSPACE-complete and PSPACE-complete.
Furthermore, we proved the soundness of the proposed reduction techniques. Us-
ing two business protocols, we have experimentally evaluated the effectiveness and
efficiency of our reduction techniques and our verification approach implemented
using two different model checkers (extended NuSMV and CWB-NC). These ex-
periments paint the following picture: the model checkers were able to verify a
variety of complex formulae correctly and efficiently. Our approach is clearly not
exhaustive but helps protocol designers check the compliance of protocols against
given properties expressed in our logic. This paper establishes the practical usabil-
ity of the approach by applying it to a large business protocol having approximately
2.3e+06 states thanks to the OBDDs-based symbolic encodings used in extended
NuSMV. The overall conclusion coincides with the usual considerations in that
automatic verification methods complement other static verification methods very
well. When comparing our approach to other available proposals in the literature,
we found that this approach considerably simplifies the specifications to be checked
and maintains the feasibility of different model checking techniques.

There are many directions for future work. We plan to continue evaluating this
approach by means of other protocols having social semantics so that possible effi-
ciency advantages may be replicated. We also plan to consider other commitment
actions, such as withdraw, assign, and delegate. Analyzing the relations between
agent communication commitments and commitments in strategic logics such as
the ones studied in [1] is another direction for future work. Finally, Jones and Par-
ent [30] proposed a new approach to ACLs, which is neither intention-based nor
commitment-based, but convention-based. The idea is to propose an alternative
social semantics for ACLs based on conventions and conventional signals. The ap-
proach has been applied to analyze sequences of exchanges within communication
protocols. As future work, we aim to investigate this alternative approach to agent
communication from the model checking perspective using reduction techniques
similar to the ones presented in this paper.

Reducing Model Checking Commitments for Agent Communication 45

Acknowledgements

We would like to thank the three anonymous reviewers for their valuable and very
professional comments and suggestions for improvements. We also would like to
thank Professor Orna Kupferman for her explanations and suggestions on the com-
plexity part. The first and third authors thank the Ministry of Higher Education,
Egypt for its financial support. The second and fourth authors are supported by
NSERC (Canada). The second author is also supported by FQRSC and FQRNT
(Québec).

References

1. Ågotnes, T., Goranko, V., Jamroga, W.: Strategic Commitment and Release in Logics for
Multi-Agent Systems (Extended Abstract). Tech. Rep. IfI-08-01, Clausthal University of
Technology (2008)

2. Artikis, A., Pitt, J.V.: Specifying Open Agent Systems: A Survey. In: A. Artikis, G. Picard,
L. Vercouter (eds.) ESAW, LNCS, vol. 5485, pp. 29–45. Springer (2009)

3. Baldoni, M., Baroglio, C., Marengo, E.: Behavior Oriented Commitment-Based Protocols.
In: H. Coelho, R. Studer, M. Wooldridge (eds.) ECAI, vol. 215, pp. 137–142. IOS Press
(2010)

4. Bentahar, J., Meyer, J.J.C., Wan, W.: Model Checking Communicative Agent-based Sys-
tems. Knowledge-Based Systems 22(3), 142–159 (2009)

5. Bentahar, J., Meyer, J.J.C., Wan, W.: Model Checking Agent Communication. In: M. Das-
tani, K.V. Hindriks, J.J.C. Meyer (eds.) Specification and Verification of Multi-Agent
Systems, First edn., chap. 3, pp. 67–102. Springer (2010)

6. Bentahar, J., Moulin, B., Chaib-draa, B.: Commitment and Argument Network: A New
Formalism for Agent Communication. In: F. Dignum (ed.) ACL 2003, LNCS, vol. 2922,
pp. 146–165. Springer (2004)

7. Bentahar, J., Moulin, B., Meyer, J.J.C., Chaib-draa, B.: A Logical Model for Commitment
and Argument Network for Agent communication. In: Proc. of the 3rd Int. Conf. on
AAMAS, pp. 792–799. IEEE Computer Society (2004)

8. Bentahar, J., Moulin, B., Meyer, J.J.C., Lespérance, Y.: A New Logical Semantics for
Agent Communication. In: K. Inoue, K. Satoh, F. Toni (eds.) CLIMA VII, LNCS, vol.
4371, pp. 151–170. Springer (2007)

9. Bhat, G.: Tableau-Based Approaches to Model-Checking. Ph.D. thesis, North Carolina
State University, Department of Computer Science (1998)

10. Bhat, G., Cleaveland, R., Groce, A.: Efficient Model Checking via Büchi Tableau Au-
tomata. In: G. Berry, H. Comon, A. Finkel (eds.) CAV, LNCS, vol. 2102, pp. 38–52.
Springer (2001)

11. Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Organizations.
In: V.R. Lesser, L. Gasser (eds.) ICMAS, pp. 41–48. The MIT Press (1995)

12. Cheng, Z.: Verifying Commitment-Based Business Protocols and their Compositions:
Model Checking using Promela and Spin. Ph.D. thesis, North Carolina State Univer-
sity (2006)

13. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment Tracking via the Reactive
Event Calculus. In: C. Boutilier (ed.) IJCAI, pp. 91–96 (2009)

14. Chopra, A.K., Singh, M.P.: Multiagent Commitment Alignment. In: C. Sierra, C. Castel-
franchi, K.S. Decker, J.S. Sichman (eds.) International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2009), pp. 937–944 (2009)

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge,
Massachusetts (1999)

16. Colombetti, M.: A Commitment-Based Approach to Agent Speech Acts and Conversa-
tions. In: Proc. of the 4th Int. Conf. on Autonomous Agents, Workshop on Agent Lan-
guages and Conversation Policies, pp. 21–29 (2000)

17. Desai, N., Cheng, Z., Chopra, A.K., Singh, M.: Toward Verification of Commitment Pro-
tocols and their Compositions. In: E.H. Durfee, M. Yokoo, M.N. Huhns, O. Shehory (eds.)
AAMAS, pp. 144–146. IFAAMAS (2007)

46 El-Menshawy et al.

18. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A Methodology for Modeling and Evolu-
tion of Cross-Organizational Business Processes. ACM Transaction on Software Engineer-
ing and Methodology 19(2), 1–40 (2009)

19. Dong, J., Peng, T., Zhao, Y.: Automated verification of security pattern compositions.
Information & Software Technology 52(3), 274–295 (2010)

20. El-Menshawy, M., Bentahar, J., Dssouli, R.: Modeling and Verifying Business Interactions
via Commitments and Dialogue Actions. In: P. Jedrzejowicz, N.T. Nguyen, R.J. Howlett,
L.C. Jain (eds.) KES-AMSTA (2), LNCS, vol. 6071, pp. 11–21. Springer (2010)

21. El-Menshawy, M., Bentahar, J., Dssouli, R.: Verifiable Semantic Model for Agent Inter-
actions using Social Commitments. In: M. Dastani, A.E. Fallah-Seghrouchni, J. Leite,
P. Torroni (eds.) LADS, LNCS, vol. 6039, pp. 128–152 (2010)

22. El-Menshawy, M., Bentahar, J., Dssouli, R.: Symbolic Model Checking Commitment Pro-
tocols using Reduction. In: A. Omicini, S. Sardina, W. Vasconcelos (eds.) DALT, LNAI,
vol. 6619, pp. 185–203. Springer (2011)

23. El-Menshawy, M., Benthar, J., Qu, H., Dssouli, R.: On the Verification of Social Commit-
ments and Time. In: Proc. of the 10th Int. Conf. on AAMAS, pp. 483–890 (2011)

24. Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative Temporal Reasoning.
Real-Time Syst. 4(4), 331–352 (1992)

25. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. The MIT
Press, Cambridge, MA. (1995)

26. Fornara, N., Colombetti, M.: Operational Specification of a Commitment-based Agent
Communication Language. In: Proc. of the 1st Int. Conf. on AAMAS, pp. 535–542. ACM
(2002)

27. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial Institutions: A Model
of Institutional Reality for Open Multi-Agent Systems. AI and Law 16(1), 89–105 (2008)

28. Gerard, S.N., Singh, M.P.: Formalizing and Verifying Protocol Refinements. ACM Trans-
actions on Intelligent Systems and Technology 2(3), xxx–xxx (2011). (In Press)

29. Jamroga, W., Ågotnes, T.: Modular Interpreted Systems. In: Proc. of the 6th Int. Conf.
on AAMAS, pp. 131:1–131:8. ACM (2007)

30. Jones, A.J.I., Parent, X.: A Convention-based Approach to Agent Communication Lan-
guages. Group Decision and Negotiation 16(2), 101–141 (2007)

31. Jones, N.D.: Space-Bounded Reducibility among Combinatorial Problems. Computer and
System Sciences 11(1), 68–85 (1975)

32. Kova, M., Bentahar, J., Maamar, Z., Yahyaoui, H.: A formal verification approach of
conversations in composite web services using nusmv. In: H. Fujita, V. Maŕık (eds.)
SoMeT, vol. 199, pp. 245–261. IOS Press (2009)

33. Kozen, D.: Lower Bounds for Natural Proof Systems. In: Proceedings of the 18th IEEE
Symposium on Foundation of Computer Science, pp. 254–266 (1977)

34. Kupferman, O., Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Branching-
Time Model Checking. Journal of the ACM 47(2), 312–360 (2000)

35. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic Verification of Knowledge and Time
with Nusmv. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, pp. 1384–1389.
Morgan Kaufmann Publishers Inc (2007)

36. Lomuscio, A., Penczek, W., Qu, H.: Partial Order Reductions for Model Checking
Temporal-epistemic Logics over Interleaved Multi-agent Systems. Fundamenta Informat-
icae 101(1-2), 71–90 (2010)

37. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification of
Multi-Agent Systems. In: A. Bouajjani, O. Maler (eds.) CAV, LNCS, vol. 5643, pp. 682–
688. Springer (2009)

38. Lynch, N.: Log Space Recognition and Translation of Parenthesis Languages. Journal of
ACM 24(4), 583–590. (1977)

39. Mallya, A.U., Huhns, M.N.: Commitments Among Agents. IEEE Internet Computing
7(4), 90–93 (2003)

40. Mallya, A.U., Singh, M.P.: An Algebra for Commitment Protocols. Autonomous Agents
and Multi-Agent Systems 14(2), 143–163 (2007)

41. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving Commitments among Autonomous
Agents. In: F. Dignum (ed.) ACL 2003, LNCS, vol. 2922, pp. 166–182. Springer (2004)

42. Pecheur, C., Raimondi, F.: Symbolic Model Checking of Logics with Actions. In:
S. Edelkamp, A. Lomuscio (eds.) Model Checking and Artificial Intelligence (MoChArt
2006), LNCS, vol. 4428, pp. 113–128. Springer (2007)

Reducing Model Checking Commitments for Agent Communication 47

43. Penczek, W., Lomuscio, A.: Verifying Epistemic Properties of Multi-Agent Systems via
Bounded Model Checking. Fundamenta Informaticae 55(2), 167–185 (2003)

44. Savitch, W.J.: Relationships between Nondeterministic and Deterministic Tape Complex-
ities. Computer and System Sciences 4(2), 177–192 (1970)

45. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press (1969)

46. Singh, M.P.: A Conceptual Analysis of Commitments in Multi-Agent Systems. Tech. rep.,
North Carolina State University, Raleigh, NC, USA (1996)

47. Singh, M.P.: Agent Communication Languages: Rethinking the Principles. IEEE Com-
puter 31(12), 40–47 (1998)

48. Singh, M.P.: An Ontology for Commitments in Multiagent Systems: Toward a Unification
of Normative Concepts. AI and Law 7(1), 97–113 (1999)

49. Singh, M.P.: A Social Semantics for Agent Communication Languages. In: F. Dignum,
M. Greaves (eds.) Issues in Agent Communication, LNCS, vol. 1916, pp. 31–45. Springer
(2000)

50. Singh, M.P.: Semantical Considerations on Dialectical and Practical Commitments. In:
D. Fox, C.P. Gomes (eds.) AAAI, pp. 176–181. AAAI Press (2008)

51. Singh, M.P., Chopra, A.K., Desai, N.: Commitment-Based Service-Oriented Architecture.
IEEE Computer 42(11), 72–79 (2009)

52. Sirbu, M.A.: Credits and Debits on the Internet. IEEE Spectrum 34(2), 23–29 (1997)
53. Telang, P., Singh, M.: Enhancing Tropos with Commitments: A Business Meta-Model and

Methodology. In: A. Borgida, V.K. Chaudhri, P. Giorgini, E.S.K. Yu (eds.) Conceptual
Modeling: Foundations and Applications, LNCS, vol. 5600, pp. 417–435. Springer (2009)

54. Telang, P.R., Singh, M.P.: Specifying and Verifying Cross-Organizational Business Models:
An Agent-Oriented Approach. IEEE Transactions on Services Computing 4, xxx–xxx
(2011). (In Press)

55. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social Commitments in Time: Satisfied or
Compensated. In: M. Baldoni, J. Bentahar, M.B. van Riemsdijk, J. Lloyd (eds.) DALT,
LNCS, vol. 5948, pp. 228–243. Springer (2010)

56. Vardi, M.Y., Wolper, P.: Reasoning about Infinite Computations. Information and Com-
putation 115(1), 1–37 (1994)

57. Venkatraman, M., Singh, M.P.: Verifying Compliance with Commitment Protocols: En-
abling Open Web-based Multiagent Systems. Autonomous Agents and Multi-Agent Sys-
tems 2(3), 217–236 (1999)

58. Verdicchio, M., Colombetti, M.: A Logical Model of Social Commitment for Agent Com-
munication. In: Proc. of the 2nd Int. Conf. on AAMAS, pp. 528–535. ACM (2003)

59. Winikoff, M.: Implementing Commitment-based Interactions. In: E. Durfee, M. Yokoo,
M. Huhns, O. Shehory (eds.) AAMAS, pp. 873–880 (2007)

60. Wooldridge, M.: An Introduction to Multi-Agent System. John Wiley and Sons Ltd (2002)
61. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons (2009)
62. Xing, J., Singh, M.P.: Engineering Commitment-Based Multi-Agent Systems: A Temporal

Logic Approach. In: Proc. of the 2nd Int. Conf. on AAMAS, pp. 891–898. ACM (2003)
63. Yolum, P.: Design Time Analysis of Multi-Agent Protocols. Data and Knowledge Engi-

neering 63, 137–154 (2007)
64. Yolum, P., Singh, M.P.: Commitment Machines. In: J.J.C. Meyer, M. Tambe (eds.) ATAL,

LNCS, vol. 2333, pp. 235–247. Springer (2002)
65. Yolum, P., Singh, M.P.: Flexible Protocol Specification and Execution: Applying Event

Calculus Planning using Commitment. In: Proc. of the 1st Int. Conf. on AAMAS, pp.
527–534. ACM (2002)

66. Yolum, P., Singh, M.P.: Reasoning about Commitments in the Event Calculus: An Ap-
proach for Sepcifying and Executing Protocols. Annals of Mathematics and Artificial
Intelligence 42(1–3), 227–253 (2004)

