258 research outputs found

    An Approach to the Bio-Inspired Control of Self-reconfigurable Robots

    Get PDF
    Self-reconfigurable robots are robots built by modules which can move in relationship to each other. This ability of changing its physical form provides the robots a high level of adaptability and robustness. Given an initial configuration and a goal configuration of the robot, the problem of self-regulation consists on finding a sequence of module moves that will reconfigure the robot from the initial configuration to the goal configuration. In this paper, we use a bio-inspired method for studying this problem which combines a cluster-flow locomotion based on cellular automata together with a decentralized local representation of the spatial geometry based on membrane computing ideas. A promising 3D software simulation and a 2D hardware experiment are also presented.National Natural Science Foundation of China No. 6167313

    Heterogeneous Self-Reconfiguring Robotics: Ph.D. Thesis Proposal

    Get PDF
    Self-reconfiguring robots are modular systems that can change shape, or reconfigure, to match structure to task. They comprise many small, discrete, often identical modules that connect together and that are minimally actuated. Global shape transformation is achieved by composing local motions. Systems with a single module type, known as homogeneous systems, gain fault tolerance, robustness and low production cost from module interchangeability. However, we are interested in heterogeneous systems, which include multiple types of modules such as those with sensors, batteries or wheels. We believe that heterogeneous systems offer the same benefits as homogeneous systems with the added ability to match not only structure to task, but also capability to task. Although significant results have been achieved in understanding homogeneous systems, research in heterogeneous systems is challenging as key algorithmic issues remain unexplored. We propose in this thesis to investigate questions in four main areas: 1) how to classify heterogeneous systems, 2) how to develop efficient heterogeneous reconfiguration algorithms with desired characteristics, 3) how to characterize the complexity of key algorithmic problems, and 4) how to apply these heterogeneous algorithms to perform useful new tasks in simulation and in the physical world. Our goal is to develop an algorithmic basis for heterogeneous systems. This has theoretical significance in that it addresses a major open problem in the field, and practical significance in providing self-reconfiguring robots with increased capabilities

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    Heterogeneous Self-Reconfiguring Robotics

    Get PDF
    Self-reconfiguring (SR) robots are modular systems that can autonomously change shape, or reconfigure, for increased versatility and adaptability in unknown environments. In this thesis, we investigate planning and control for systems of non-identical modules, known as heterogeneous SR robots. Although previous approaches rely on module homogeneity as a critical property, we show that the planning complexity of fundamental algorithmic problems in the heterogeneous case is equivalent to that of systems with identical modules. Primarily, we study the problem of how to plan shape changes while considering the placement of specific modules within the structure. We characterize this key challenge in terms of the amount of free space available to the robot and develop a series of decentralized reconfiguration planning algorithms that assume progressively more severe free space constraints and support reconfiguration among obstacles. In addition, we compose our basic planning techniques in different ways to address problems in the related task domains of positioning modules according to function, locomotion among obstacles, self-repair, and recognizing the achievement of distributed goal-states. We also describe the design of a novel simulation environment, implementation results using this simulator, and experimental results in hardware using a planar SR system called the Crystal Robot. These results encourage development of heterogeneous systems. Our algorithms enhance the versatility and adaptability of SR robots by enabling them to use functionally specialized components to match capability, in addition to shape, to the task at hand

    Distributed Control of Microscopic Robots in Biomedical Applications

    Full text link
    Current developments in molecular electronics, motors and chemical sensors could enable constructing large numbers of devices able to sense, compute and act in micron-scale environments. Such microscopic machines, of sizes comparable to bacteria, could simultaneously monitor entire populations of cells individually in vivo. This paper reviews plausible capabilities for microscopic robots and the physical constraints due to operation in fluids at low Reynolds number, diffusion-limited sensing and thermal noise from Brownian motion. Simple distributed controls are then presented in the context of prototypical biomedical tasks, which require control decisions on millisecond time scales. The resulting behaviors illustrate trade-offs among speed, accuracy and resource use. A specific example is monitoring for patterns of chemicals in a flowing fluid released at chemically distinctive sites. Information collected from a large number of such devices allows estimating properties of cell-sized chemical sources in a macroscopic volume. The microscopic devices moving with the fluid flow in small blood vessels can detect chemicals released by tissues in response to localized injury or infection. We find the devices can readily discriminate a single cell-sized chemical source from the background chemical concentration, providing high-resolution sensing in both time and space. By contrast, such a source would be difficult to distinguish from background when diluted throughout the blood volume as obtained with a blood sample

    Decentralized Approach to Evolve the Structure of Metamorphic Robots

    Get PDF
    International audienceMetamorphic robots are robots that can change their shape by reorganizing the connectivity of their modules to adapt to new environments, perform new tasks, or recover from damages. In this paper we present a decentralized method for structural evolving of a class of lattice-based simulated metamorphic robots in a static environment. These robots are considered as a set of crystalline (compressible) modules that are able to connect or disconnect one from each another or even exchange information and energy with the neighbor modules in order to form various structures/patterns dynamically. Our approach is splitted in two layers: in the first layer a genetic algorithm is used to generate a number of well suited target configurations based on current information perceived from environment, while in the second layer a PacMan-like algorithm is used to make a plan for modules movement to transform the robot from its current pattern to the target pattern emerged in first layer

    Bio-inspired Tensegrity Soft Modular Robots

    Get PDF
    In this paper, we introduce a design principle to develop novel soft modular robots based on tensegrity structures and inspired by the cytoskeleton of living cells. We describe a novel strategy to realize tensegrity structures using planar manufacturing techniques, such as 3D printing. We use this strategy to develop icosahedron tensegrity structures with programmable variable stiffness that can deform in a three-dimensional space. We also describe a tendon-driven contraction mechanism to actively control the deformation of the tensegrity mod-ules. Finally, we validate the approach in a modular locomotory worm as a proof of concept.Comment: 12 pages, 7 figures, submitted to Living Machine conference 201
    • …
    corecore