
An Approach to the Bio-Inspired Control
of Self-reconfigurable Robots

Dongyang Bie1, Miguel A. Gutiérrez-Naranjo2, Jie Zhao1, and Yanhe Zhu1(B)

1 State Key Laboratory of Robotics and System, Harbin Institute of Technology,
Harbin, Heilongjiang, China

yhzhu@hit.edu.cn
2 Department of Computer Science and Artificial Intelligence,

University of Seville, Seville, Spain
magutier@us.es

Abstract. Self-reconfigurable robots are robots built by modules which
can move in relationship to each other. This ability of changing its phys-
ical form provides the robots a high level of adaptability and robustness.
Given an initial configuration and a goal configuration of the robot, the
problem of self-regulation consists on finding a sequence of module moves
that will reconfigure the robot from the initial configuration to the goal
configuration. In this paper, we use a bio-inspired method for studying
this problem which combines a cluster-flow locomotion based on cellu-
lar automata together with a decentralized local representation of the
spatial geometry based on membrane computing ideas. A promising 3D
software simulation and a 2D hardware experiment are also presented.

1 Introduction

Modular Self-reconfigurable (MSR) robots [12] are robots built by modules which 
can move in relationship to each other. This ability can change its physical 
form and provide MSR robots a high level of adaptability and robustness [32]. 
The modularity allows the robot to optimize their shape for different tasks and 
the control of the movement of the modules represents a big challenge for the 
development of new research ideas [26]. In fact, such control of the modules and 
the locomotion planning is a complex non-linear problem and there is no analytic 
solution for it. According to the existence of center controller or not, current 
approaches can be generally divided into two categories: centralized control and 
decentralized control. The problem of obtaining a centralized control is a NP 
problem [14], so decentralized approaches are currently on the focus of many 
research approaches in order to achieve effective solutions.

The decentralized control of self-reconfiguration has been studied from differ-
ent points of view. One of the most interesting is to consider nature as a source 
of inspiration. In the literature, several bio-inspired methods have been applied 
for the distributed control of self-reconfigurable robots, among them, methods 
based on cellular automata (CA) [9,35] or particle swarm optimization [34] can



be cited. They all have the distributed nature for emergent systems from bottom
interaction to global regular phenomenon. This match of decentralized character
can contribute to the scalability of module numbers by focusing on local agents,
but the convergence problem still stands out in the emergent process of swarm
systems.

Recently, a bio-inspired approach based on ideas taken from membrane com-
puting and CA has been presented [5]. In this paper, we go on with the idea
of combining a cluster-flow locomotion based on CA together with a decentral-
ized local representation of the spatial geometry based on membrane computing
ideas. The used method represents a novelty in the framework of self-configurable
robots in a double sense, from a theoretical and practical point of view. From
a theoretical side, an abstract representation of the robot beyond its physical
representation is considered. From a practical point of view, the solution is based
on two of the basic features of one of the most studied membrane computing
devices, the so-called cell-like P systems: On the one hand, the tree-like graph
structure which can be abstracted from the hierarchical arrangement of vesi-
cles in an alive eucaryotic cell. On the second hand, in membrane computing
the information is encapsulated in vesicles and encoded by multisets of simple
objects. The key point for the use of such multisets in the framework of self-
configurable robots is the interpretation of the objects. As it will be pointed out
below, such objects can represent the length, the relative angle of a module of
the robot or any other feature chosen by the designer.

Next, we briefly recall some ideas about the bio-inspired computational
research areas used in this paper, namely, membrane computing and CA. Mem-
brane computing [20] is inspired by the structure and functioning of cells as living
organisms able to process and generate information. In particular, it focuses on
membranes, which are involved in many reactions taking place inside the cell.
The basic idea is inspired in the flow of metabolites between cells of a living tissue
or between the organelles in an eucaryotic cell. This flow of metabolites can be
interpreted as a flow of information for computational purposes. Membrane com-
puting devices are called P systems. They are distributed and have a high degree
of parallelism. Such degree of autonomy and the possibility of locally encapsulate
the local information needed for the next step of computation make these devices
suitable for modelling the geometry of modular self-reconfigurable robots. The
second bio-inspired tool used in this paper, CA [30], has been widely used in
the literature for the control of self-reconfigurable robots. CA were introduced
to decentralized control of MSR robots by Butler et al. [9]. Since then, many
other approaches can be found in the literature (e.g., [7,10]). In this paper, CA
are used to handle the distributed and parallel motion of decentralized modules
in MSR robots.

The paper is organized as follows: Firstly, we recall some basics on MSR
robots and membrane computing. We present how the cell-like structure of a
P system can be interpreted as a configuration of a MSR. Next, we show how
the configuration of a tree-like structure can be geometrically represented by
a self-reconfigurable robot. Such representation is performed by a cluster-flow



locomotion of spare modules inspired on the well-known turtle graphics methods.
This is illustrated with a 3D software simulation and a 2D hardware experiment.
Finally, the paper finishes with some conclusions and open research lines.

2 MSR Robots

There are several categories of hardware architecture for MSR robotic modules,
suchas lattice architecture (see, e.g., [22,28]),mobile architecture (e.g., [17,27,33]),
chain architecture (e.g., [2,29]) and hybrid architecture (e.g., [6,31,35]). For the
regular geometric organization, lattice architecture is the most convenient for com-
puter modeling among all those architectures. As illustrated in Fig. 1, each module
in a lattice architecture has a cubic structure with local coordinate. This module
is also called sliding cube model (SCM) module, which has been used as a com-
mon module for rapid verification of control methods. Each module is a completely
independentworking robotwith three kinds of basicmotion ability: convexmotion,
linear motion and concave motion. A MSR robot with multi SCM modules changes
its global topology by adjusting relative relationships of inner modules through a
self-organizing process.

Fig. 1. A 3D structure made with blocks.

The configuration of the whole robot is determined by the relative position
of inner modules. Since the independent modules have various possible motion
plans, choosing an appropriate mechanism for controlling the movement of each
module is a hard task [15,32]. Bearing in mind that each lattice module has six
connecting faces and directly connected modules has four relative connecting

Fig. 2. A schematic representation of a 3D structure made with 42 blocks and its
associated robotic structure made with modules.



orientations, a robot system with n modules has n6×4 kinds of connecting ways.
Such amount of possibilities makes difficult the control of the robot even for
robots with a low amount of modules, as the structure shown in Fig. 2, where a
robotic structure with 42 modules is presented.

3 Membrane Computing

According to their topology1, there are three basic sets of P system models,
although other approaches are possible [20]: cell-like P systems, where mem-
branes have a tree-like structure; tissue-like P systems, where membranes are
placed in the nodes of a general graph; and spiking neural P systems, which
are inspired by the structure of living neurons in a brain. In this paper we use
cell-like P systems in order to represent the spatial geometry of MSR.

The basic cell-like P system model consists of a hierarchical structure com-
posed by several membranes, embedded into a main membrane called the skin.
Membranes divide the Euclidean space into regions, that contain multisets of
objects (represented by symbols of an alphabet) and/or other membranes. The
intuition behind this membrane structure is taken from biology. A membrane can
be seen as a three-dimensional vesicle which is a separator of the region inside
and the region outside. Biological metabolites inside the regions are modelled by
object-symbols. Each region, which is defined by a membrane, can contain other
symbols or other membranes, so that a P system has exactly one outer mem-
brane, called the skin membrane, and a hierarchical relationship governing all
its membranes under the skin membrane. The information encapsulated inside
each region is encoded in the type of symbols, but also in its multiplicity. In
this paper, the structure of cell-like P systems is used to construct branching
structures of self-reconfigurable robots. The rooted tree nature of membranes is
a perfect frame to encode the branching structure. In this paper, we use the for-
mal framework of membrane computing in order to describe the geometry and
the topology of MSR robots whose modules can be represented with a tree-like
structure. The key points of the representation are the following:

1. Firstly, the geometrical structure of each segment (concerning to length, thick-
ness, color or whatever other features) is represented by a multiset of objects
placed in the corresponding membrane.

2. Secondly, the topological relations among the segments are represented by
the tree-like membrane structure of the P system. If two segments are joint
in the robot, the corresponding membranes are joint in the tree-like structure
of the P system, i.e., one of them is contained in the other one.

3. Thirdly, the relative position of a module with respect to its father in the
segment will be also encoded with a multiset of objects placed inside the
corresponding membrane.

1 Since there are an extensive literature on the use of CA for the control of self-
reconfigurable robots, we focus on the membrane computing ideas used in this paper.



The encapsulation of the information in P systems makes possible a natural
translation of the idea of module from a physical robot to the formal compu-
tational model. One of the main advantages of this formalism is that no global
position is needed in order to describe the topology or geometry of the robot.

3.1 An Example

As an initial example, let us consider the figure composed by six Greek crosses
as shown in Fig. 2. Each of the crosses is composed by two bars of five cubic
modules. The modules at the end of the bars are shared by two crosses and the
whole figure has cubical symmetry. Such figure can be thought as the composition
of 42 cubical modules which can be distributed into 24 solid segments of length
units 1, 2 or 3. By keeping the topological connection of (at least) one of ends of
each bar, the 24 solid segments of the figure can be unrolled in a like-tree planar
figure shown in Fig. 3(left). Let us remark that the relative position between
adjacent segments in the planar representation is the same than in the original
3D figure in the following sense: If two segments are adjacent in the planar
representation, they are also adjacent in the 3D figure.

In Fig. 3(left), a label from in a, b, . . . , x is associated to each segment and a
dual representation of this tree-like structure is depicted in Fig. 3(right). In this
new representation, segments of the planar structure are represented by nodes
in the graph and there is an edge between the nodes x and y if and only if the
segments x and y are joint in the planar representation of the figure. This dual
representation will be used for representing the topology of the robot as a cell-
like P system membrane structure. The correspondence is immediate since such
membrane structure is also a tree-like arrangement of membranes. Figure 4(left)

a

bc d

e

fg h

i

jk l

m

n

o

p

q

r

u

v

ts w x

Fig. 3. Tree structure for inner relationships of the structure in Fig. 2.



shows a cell-like P system structure associated to the structure in Fig. 3. Let us
remark that this cell-like P system structure takes the vertex a as the root of
the tree and hence, the corresponding membrane in the P system structure is
the skin of the P system, but any other terminal node could be taken as root.

Fig. 4. Membrane structure of a P systems representing the topological structure of
the tree in Fig. 3(Left). Rotation around axis (Right).

The tree-like graph in Fig. 3(right) can be immediately obtained from the
P system membrane structure in Fig. 4(left), but if we want to represent the
original structure from Fig. 2, several symbols must be placed in the membrane
structure which encode the geometric features. Such combination of membrane
structure plus the symbols associated to each membrane is called a configuration
in membrane computing. In this example, we choose the symbol F for represent-
ing a length unit. For the sake of simplicity, in this example the unique feature of
the segment of the robot described by symbols is the length. Nonetheless, other
features (width, color, . . . ) can also been described by multisets of symbols.
According to the membrane computing theory, several copies of a symbol can
appear in a membrane. The number of copies of F in a membrane will represent
the length of the segment associated to the number of copies of F . Instead of
a global position of each segment, a representation of the relative position of a
segment with respect to its father in the tree-like representation is proposed. In
this way, some ideas are borrowed from [1,19].

Let us consider the set of vectors (H ,L,U ), with unit length, perpendicular
to each other and satisfying H × L = U . A new vector (H ′,L′,U ′) can be
obtained from the vector (H ,L,U ) by using a rotation matrix R with the



composition (H ′,L′,U ′) = (H ,L,U )R. Rotations by angle α about vectors
U , L and H are represented by Eq. 1 (cα = cos α, sα = sinα).

RU (α) =

⎛
⎝

cα sα 0
−sα cα 0

0 0 1

⎞
⎠ RL(α) =

⎛
⎝

cα 0 −sα
0 1 0
sα 0 cα

⎞
⎠ RH(α) =

⎛
⎝

1 0 0
0 cα −sα
0 sα cα

⎞
⎠ (1)

Figure 4(right) illustrates the rotation around the axis. For the regular orga-
nization of lattice modules, the angle α is set to be α = π/2. But the construction
can be made in general. By fixing α = π/2, we have these rotating matrices:

RU =

⎛
⎝

0 1 0
−1 0 0
0 0 1

⎞
⎠ RL =

⎛
⎝

0 0 −1
0 1 0
1 0 0

⎞
⎠ RH =

⎛
⎝

1 0 0
0 0 −1
0 1 0

⎞
⎠ (2)

Since all rotating angles between lattice modules are π/2 rotations, it suffices
to introduce the symbols RL, RU and RH into the membranes. The occurrence
of such symbol in a membrane will be interpreted as the rotation angle of the
corresponding robot segment with respect to its segment father in the like-tree
structure. In a similar way that with the F symbol, the multiplicity has also
a associated meaning. In a natural way, we will consider that the rotation is
applied as many times as the number of copies. In such way, we can represent
rotations of π/2, π or −π/2 by considering one, two or three copies of the symbol.

In this way, the general position of the 3D structure of Fig. 2 can be encoded
in a P system configuration by considering the membrane structure shown in
Fig. 4(left) and adding to the membrane i the following multiset of symbols wi

(symbol wi describes the multiset of objects in the membrane associated to the
segment i in Fig. 3, and relative orientations are organized respect to the parent
membrane, the superscripts [20] denote the multiplicity):

wa = F 3 wg = F 2 RH wm = F 2 ws = F RU

wb = F 2 RU wh = F 2 R3
H wn = F RU wt = F 2 RU

wc = F RH wi = F 2 wo = F 2 RU wu = F 2 R3
H

wd = F R3
H wj = F 2 RU wp = F 2 RH wv = F 2 RH

we = F 2 wk = F RH wq = F 2 R3
H ww = F 2

wf = F 2 RU wl = F R3
H wr = F 2 wx = F RU

3.2 Geometrical Interpretation of a P System Configuration

The structure of membranes in a cell-like P system is a tree-like graph. Such
graph does not have an intrinsic geometric interpretation, but we can add such
interpretation by giving a geometric meaning to the objects placed inside the
membranes2. Given a P system configuration, the membrane structure and the

2 These ideas has been previously used in membrane computing, see [13,21,23]. Dif-
ferent approaches bridging membrane computing with other geometric problems can
be found in [3,4] or [16].



multisets placed in the membranes encoded all the needed information for set-
tling the features of the modules in the robot and their relative position. Nonethe-
less, for a methodological point of view, such information must be interpreted in
order to have a 3D model of the robot. A simple way for graphically representing
a membrane structure is to make a depth-first search of it and, for each mem-
brane containing the object F, drawing a segment of length m × l, where m is
the multiplicity of F and l is a length unit. This segment is drawn rotated with
respect to the segment corresponding to the parent membrane with an angle of
n × δ, where n is the multiplicity of objects Ri, i ∈ {H,L,U} and δ is a fixed
angle (π/2 in our example). Obtaining a 3D model from a P system configu-
ration can be made by using different methods. In this paper, the well-known
turtle interpretation [1,18] is considered: A turtle is placed on an N -dimensional
space (usually, N ∈ {2, 3}) facing in a certain direction. The turtle can move and
its movements are determined by a simple object language. In its basic version
the symbols only control the number of straightforward steps and the angle and
direction of turns. In this way, turtle interpretation is an appropriate tool for
obtaining a 3D model of a P system configuration.

4 Cluster-Flow Locomotion of Spare Modules

In this paper, the final configuration is obtained by a cluster-flow locomotion of
the modules of the robot3. These modules move from the initial configuration
to the final one determined by a P system configuration. A segment of the robot
determined by a membrane containing n objects F will be built by n modules
in a row. Modules have three kinds of states during the interpretation.

– Turtle Module: Modules which do the search work for moving as the turtle.
– Spare Module: Modules that can move to other areas to continue the growth

of structures.
– Finalized Module: Modules which have reached the final position will and

do not move any more.

Turtle modules do the turtle search work according to inner objects in mem-
brane configuration, as shown in Fig. 5. Connected modules at the moving direc-
tion receive a multiset of objects in membrane configuration from former turtle
modules and become new turtle modules. New turtle modules receive P sys-
tem objects by reducing one F . When all neighbouring lattices meet the mem-
brane configuration description, the turtle module changes to finalized module
as a fixed part of the reconfiguration result. This locomotion allows the robot
to reach the final configuration for totally connected robots. A local localiza-
tion strategy is used in this decentralized control mechanism. In decentralized
robotic system, there is no compass direction for turtle moving as the graphic
interpretation. Instead of global map for each module, the relative orientation

3 A detailed description of the cluster-flow locomotion is out of the scope of this paper.
A good introduction can be found, e.g., in [8] or [11].



Fig. 5. Robotic segments develop by attaching new modules at neighboring lattice
position in develop direction.

to connected neighbours is used. New attached modules get their global state
from connected father module, which is the former turtle module. Directly con-
nected modules can determine relative orientation through local communication
on connecting surface. The regular organization of lattice-based module con-
tributes to the computation of moving direction. The forward direction for F
starts from the connecting surface receiving turtle state to the opposite surface.
Turtles move by attaching a module in the neighboring lattice at the moving
direction. If the neighboring lattice is not filled, spare modules in the system can
move on the surface of other modules to fill it. Such modules can move on the
surface of other modules, including finalized modules. Segments develop through
constantly attaching new modules. CA is used for the cluster-flow locomotion
of spare modules as shown in [35]. In order to get a computational model for
controlling the movement of the modules, a set of CA rules has been designed,
which only contains two rules. This set of rules is obviously simpler in numbers
than the presented in [8]. Figure 6 show a scheme of both rules. The scheme on
the left will be used for representing the convex and concave motion of one mod-
ules. The scheme on the right represents a one length movement of a module in
linear motion. The gradient attraction strategy [24,35] is used to provide moving
directions for local modules4.

Fig. 6. A simplified set of CA rules for SCM

4 See [35] for the technical details on the strategy for the maintenance of the global
connection during the locomotion.



5 Simulation and Experimental Results

5.1 Convergence and Parallelism

Some multi-simulations have been performed in order to illustrate the used
method. The membrane structure in Fig. 4(left) has been used in order to guide
the self-reconfiguration process. Figure 7 shows multi simulations with increasing
number of modules. All simulations start from a lattice structure and reconfig-
ure to the predefined branching topology shown in Fig. 2. In order to verify
the convergence of self-reconfiguration process, the number of modules is fixed
according to the target configuration. Let us remark that decentralized mod-
ules are replaceable with each other, and there is no planning for particular
position for each module. The whole structure is determined by the relative
position of inner modules. Video attachments [36] record the corresponding self-
reconfiguration process. The convergence of decentralized method is defined as
the emergence of target structure, and has long been an open problem [14,24].
It is computed as the ratio of modules in the structure state and total mod-
ules that the target configuration. Since the robotic systems contain exactly the
number of modules for target configuration, the convergence ratio increases to
100% when all modules change state to structure module. The used method is
convergent in from the theoretical side, as the serial movement of turtle state
between directly connected modules, but the convergence has also been ver-
ified in simulations, as shown in Fig. 8. Simulations in Fig. 7 are repeated 100
times, and simulation results are statistically analyzed. Statistical analysis shows

Fig. 7. Simulations with increasing number of modules by the membrane structure in
Fig. 4(left).



Fig. 8. Results analysis of convergent process and parallel character in decentralized
modules.

the convergence of self-reconfiguration by the proposed method in Fig. 8. Com-
pared with those emergent process [25], self-reconfigurations by the proposed
method is convergent and has no unpractical assumptions. Some advantages of
the physical application on real robots, and experiments are provided below. Self-
reconfiguration by the proposed method is parallel in the level of independent
modules. The introduction of membrane computing cooperates with the paral-
lel nature of distributed modules. Figure 8 shows that the variation tendency
in different simulations turns out to be similar. Only times steps for global self-
reconfiguration increases along the increase of module numbers, moving modules
in parallel in each simulation maintains the same tendency.

5.2 Scalability

The designed method is scalable to module numbers. The scalability of control
method cooperates with the mechanical scalability by modular design of MSR
robots. Multi simulations have been performed and the time steps for global
convergence is shown in Fig. 9. Compared with the exponential increase of control
complexity in centralized control, time steps for self-reconfiguration using the
proposed method in this paper increases linearly with the number of modules.

Though modules can perform motion planning and move independently and
simultaneously, the development style of robotic structure during self-reconfigu-
ration needs to attach modules one by one on the growing front. One influencing
factor of the increasing time steps lies in the relative attachment of decentral-
ized modules for the development and reconfiguration of MSR robots. Another
influencing factor lies in the movement of modules by climbing gradient along
robotic segments.



Fig. 9. Scalability to module numbers.

5.3 Experiments

The proposed method has also been verified on Modular Self-reconfigurable
Mobile (Seremo) robots which have been developed in the hardware laboratory
at the Harbin Institute of Technology (Fig. 10(Left)). With a 80×80 (mm) lattice
structure in 2D, a Seremo module is equipped with local communicating ability
and local sensing ability on four connecting faces. Each module is a complete
robot by itself with onboard sensors, actuators, processor, battery and means of
communication5. The Seremo modules can move by rotating along the edge of
neighboring modules. As shown in Fig. 10(Right), Seremo modules can achieve
the convex, concave and linear motion of lattice motion in 2D. Seremo modules
can autonomously connect to and disconnect from neighboring modules. Robots
with Seremo modules can achieve decentralized locomotion by repeating the
basic motion in Fig. 10(Right). A simple experiment with a membrane structure
with two branches is shown in Fig. 11. Each branch is a segment with s modules
linearly connected. All initial configurations starts from a linear structure and
reconfigurations start from the first module in the right. Some experiments (with
s = 1, 2, 3, 4) show the convergence to the topology defined by the membrane
structure. Obstacles are also placed in experiments with s = 3, 4. With local sens-
ing of Seremo modules, neighboring modules can sense the existing of obstacles
and translate through local communication. The surface locomotion of Seremo
modules can move around to the growing front according to local information.
Video attachments [36] record the corresponding self-reconfiguration process.

Fig. 10. Seremo robots (Left). Lattice motion of Seremo modules (right).

5 More details about the mechanical and electrical structure can be found at [6].



Fig. 11. Some experiments with Seremo robots.

6 Conclusions

The control of self-reconfigurable robots in an extremely hard task. On the one
hand, it needs the development of efficient hardware modules able of performing
quick and precise movements in two or three dimensions, but, on the other hand,
it needs of theoretical contributions which guide the movements efficiently. Such
moves depend on several changing variables. Each module processes information
locally and independently from the other modules. Several modules can move
simultaneously in order to reach the final configuration. Such configuration is not
determined by a global position in a 3D space, but it is only determined by the
relative position among the modules. In order to find an appropriate control of
decentralized modules, many different ideas coming from different research areas
are brought together in this paper. Among them, the partition of the Euclidean
space into similar tiles where a module can be alive or not; a turtle interpretation
for giving a dynamic meaning to a set of static symbols representing a configura-
tion or a gradient attraction strategy for moving independent modules. The use
of ideas from membrane computing can shed a new light to the local representa-
tion of the information. As pointed out above, the approach used in this paper
can be considered from both theoretical and practical side, enriching each other
with ideas coming from the self-configurable robots and from membrane comput-
ing. Such open research lines involve new developments in the application of the
theoretical framework of membrane computing for the abstract representation
of robots (and hence a deeper understanding of the theoretical possibilities) and
also, from the practical side, the development of new abilities of physical robots
inspired in the local encapsulation of the information. Many problems remain
open. The study of how problems and techniques from both research areas can
provide new solutions on the other side is matter of future research.

Acknowledgement. This work was supported by National Natural Science Foun-
dation of China (Grant No. 61673137) and the Foundation for Innovative Research
Groups of the National Natural Science Foundation of China (Grant No. 51521003).



References

1. Abelson, H., DiSessa, A.A.: Turtle Geometry: The Computer as a Medium for
Exploring Mathematics. MIT Press, Cambridge (1986)

2. Baca, J., Woosley, B., Dasgupta, P., Nelson, C.A.: Configuration discovery of
modular self-reconfigurable robots: real-time, distributed, Ir+XbEe communica-
tion method. Robot. Auton. Syst. 91, 284–298 (2017)

3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Simulation of Spatial
P System Models. Theor. Comput. Sci. 529, 11–45 (2014)

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P
systems. Nat. Comput. 10(1), 3–16 (2011)

5. Bie, D., Gutiérrez-Naranjo, M.A., Zhao, J., Zhu, Y.: A Membrane Computing
Framework for Self-Reconfigurable Robots (submitted)

6. Bie, D., Zhu, Y., Wang, X., Zhang, Y., Zhao, J.: L-systems driven self-
reconfiguration of modular robots. Int. J. Adv. Robot. Syst. 13(5), 1–12 (2016)

7. Bojinov, H., Casal, A., Hogg, T.: Multiagent control of self-reconfigurable robots.
Artif. Intell. 142(2), 99–120 (2002)

8. Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for a class
of self-reconfigurable robots. In: IEEE International Conference on Robotics and
Automation, ICRA 2002, vol. 1, pp. 809–816 (2002)

9. Butler, Z., Kotay, K., Rus, D., Tomita, K.: Cellular automata for decentralized
control of self-reconfigurable robots. In: IEEE ICRAWorkshop on Modular Robots,
pp. 21–26 (2001)

10. Butler, Z.J., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for
lattice-based self-reconfigurable robots. Int. J. Robot. Res. 23(9), 919–937 (2004)

11. Fitch, R., Butler, Z.J.: Scalable locomotion for large self-reconfiguring robots. In:
IEEE International Conference on Robotics and Automation, pp. 2248–2253 (2007)

12. Fukuda, T., Nakagawa, S.: Approach to the dynamically reconfigurable robotic
system. J. Intell. Robot. Syst. 1(1), 55–72 (1988)

13. Georgiou, A., Gheorghe, M., Bernardini, F.: Membrane-based devices used in com-
puter graphics. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applica-
tions of Membrane Computing. Natural Computing Series, pp. 253–281. Springer,
Heidelberg (2006)

14. Hou, F., Shen, W.: Graph-based optimal reconfiguration planning for self-
reconfigurable robots. Robot. Auton. Syst. 62(7), 1047–1059 (2014)

15. Lakhlef, H., Bourgeois, J., Mabed, H., Goldstein, S.C.: Energy-aware parallel self-
reconfiguration for chains microrobot networks. J. Parallel Distrib. Comput. 75,
67–80 (2015)

16. Margenstern, M.: Can hyperbolic geometry be of help for P systems? In: Mart́ın-
Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003.
LNCS, vol. 2933, pp. 240–249. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24619-0 18

17. Perez-Diaz, F., Zillmer, R., Groß, R.: Control of synchronization regimes in net-
works of mobile interacting agents. Phys. Rev. Appl. 7, 054002 (2017)

18. Prusinkiewicz, P.: Graphical applications of L-systems. In: Proceedings on Graph-
ics Interface 1986/Vision Interface 1986, pp. 247–253. Canadian Information
Processing Society, Toronto (1986)

19. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Virtual
Laboratory. Springer, New York (1990)

https://doi.org/10.1007/978-3-540-24619-0_18
https://doi.org/10.1007/978-3-540-24619-0_18


20. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

21. Rivero-Gil, E., Gutiérrez-Naranjo, M.A., Romero Jiménez, Á., Riscos-Núñez, A.: A
software tool for generating graphics by means of P systems. Nat. Comput. 10(2),
879–890 (2011)

22. Romanishin, J.W., Gilpin, K., Claici, S., Rus, D.: 3D M-blocks: self-reconfiguring
robots capable of locomotion via pivoting in three dimensions. In: IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA,
26–30 May 2015, pp. 1925–1932. IEEE (2015)

23. Romero-Jiménez, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Graphical
modeling of higher plants using P systems. In: Hoogeboom, H.J., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 496–506.
Springer, Heidelberg (2006). https://doi.org/10.1007/11963516 31

24. Stoy, K.: Using cellular automata and gradients to control self-reconfiguration.
Robot. Auton. Syst. 54(2), 135–141 (2006)

25. Stoy, K.: Lattice automata for control of self-reconfigurable robots. In: Sirakoulis,
G.C., Adamatzky, A. (eds.) Robots and Lattice Automata. ECC, vol. 13, pp. 33–45.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10924-4 2

26. Stoy, K., Brandt, D., Christensen, D.J.: Self-Reconfigurable Robots: An Introduc-
tion. Intelligent Robotics and Autonomous Agents. MIT Press, Cambridge (2010)

27. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent.
Multi-Ag. 30(3), 553–580 (2016)

28. Vergara, A., Lau, Y.S., Mendoza-Garcia, R.F., Zagal, J.C.: Soft modular robotic
cubes: toward replicating morphogenetic movements of the embryo. Plos One
12(1), 1–17 (2017)

29. Wang, X., Jin, H., Zhu, Y., Chen, B., Bie, D., Zhang, Y., Zhao, J.: Serpenoid polyg-
onal rolling for chain-type modular robots: a study of modeling, pattern switching
and application. Robot. Cim-Int. Manuf. 39, 56–67 (2016)

30. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-
Wesley, Reading (1994)

31. Yang, Z., Wu, Y., Fu, Z., Fei, J., Zheng, H.: A unit-compressible modular robotic
system and its self-configuration strategy using meta-module. Robot. Cim-Int.
Manuf. 49, 39–53 (2018)

32. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

33. Zhang, Y., Song, G., Liu, S., Qiao, G., Zhang, J., Sun, H.: A modular self-
reconfigurable robot with enhanced locomotion performances: design, modeling,
simulations, and experiments. J. Intell. Robot. Syst. 81(3–4), 377–393 (2016)

34. Zhao, J., Wang, X., Jin, H., Bie, D., Zhu, Y.: Automatic locomotion generation
for a ubot modular robot-towards both high-speed and multiple patterns. Int. J.
Adv. Robot. Syst. 12, 32 (2015)

35. Zhu, Y., Bie, D., Iqbal, S., Wang, X., Gao, Y., Zhao, J.: A simplified approach
to realize cellular automata for ubot modular self-reconfigurable robots. J. Intell.
Robot. Syst. 79(1), 37–54 (2015)

36. https://sites.google.com/site/modularrobots/cycling

https://doi.org/10.1007/11963516_31
https://doi.org/10.1007/978-3-319-10924-4_2
https://sites.google.com/site/modularrobots/cycling

	An Approach to the Bio-Inspired Control of Self-reconfigurable Robots
	1 Introduction
	2 MSR Robots
	3 Membrane Computing
	3.1 An Example
	3.2 Geometrical Interpretation of a P System Configuration

	4 Cluster-Flow Locomotion of Spare Modules
	5 Simulation and Experimental Results
	5.1 Convergence and Parallelism
	5.2 Scalability
	5.3 Experiments

	6 Conclusions
	References




