6,235 research outputs found

    Location-Dependent Impacts of Resource Inertia on Power System Oscillations

    Get PDF
    Inertial responses are seen by the system as the injection or withdrawal of electrical energy, corresponding to a change of frequency. The inertia of a machine primarily contributes to the power system transient stability. Oscillations are always present in the bulk power system due to the electromechanical nature of the grid. Poorly damped oscillations may cause system instability. Thus, this paper aims to study inertia\u27s impacts on system primary frequency response, in particular on system oscillation modes. Both transient stability simulations and modal analysis are performed to provide insights into the extent to which inertia and its location influence the system oscillation behavior. Simulation results using both a small-scale test system and a large-scale synthetic network dynamic model are presented to verify the locational impacts of resource inertia

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine

    A review of utility issues for the integration of wind electric generators

    Get PDF
    A review of issues and concerns of the electric utility industry for the integration of wind electric generation is offered. The issues have been categorized in three major areas: planning, operations, and dynamic interaction. Representative studies have been chosen for each area to illustrate problems and to alleviate some concerns. The emphasis of this paper is on individual large wind turbines (WTs) and WT arrays for deployment at the bulk level in a utility system

    Development of a dynamic multivariate power system inertia model

    Get PDF
    A research project submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfillment of the requirements for the degree of Master of Science in Engineering, 2018.The power system inertia immediately following small and large system disturbances was investigated. By understanding factors affecting the system inertia and primary frequency response behaviour, an online inertia model was developed. Historical data was extracted from the Eskom Energy Management System (EMS) and Wide Area Monitoring System (WAMS). The developed model using Multivariate Analysis (MVA) includes measured and estimated data from Eskom generators, Renewable Energy Sources (RESs) and the interconnected Southern African Power Pool (SAPP). Inertia plus Fast Primary (Frequency) Response (FPR) (as determined by the load behaviour) and system inertia models were developed from June 2015-December 2016 and validated with past frequency disturbance events (June 2014-March 2017). From the comparison between the measured and model results for 355 actual disturbances, 225 disturbances resulted in errors within ±5% and 51 events resulted in errors between ±5% and ±10%. Eight disturbances caused errors greater than ±10%, which were largely from trips at particular large power stations and HVDC. During a large disturbance, the multivariate coefficients for Renewable Energy Sources, HVDC and interconnectors were very small for the pure inertia model (excluding the load frequency behaviour and the generator damping). In contrast, the spinning reserve provides significant contribution and is location based. The location of a disturbance affects the FPR behaviour and the system inertia but not the Rate of Change of Frequency (RoCoF) with reference to the central power station. The strong and weak areas with respect of the stiffness of the system (extent of frequency nadir for particular disturbances) were identified. This can contribute to future grid planning and real-time operations in managing the system inertia and primary frequency response. The model is expected to improve with time, as the accuracy of a statistical approach requires large amounts of data. The model can be used to determine and monitor the maximum level of RES in real time.XL201

    Impact of vehicle to grid in the power system dynamic behaviour

    Get PDF
    This work was supported in part by FCT-Fundação para a Ciência e a Tecnologia de Portugal, under the grant SFRH/BD/47973/2008 and within the framework of the Project "Green Island" with the Reference MIT-PT/SES-GI/0008/2008, by the European Commission within the framework of the European Project MERGE - Mobile Energy Resources in Grids of Electricity, contract nr. 241399 (FP7) and by INESC Porto - Instituto de Engenharia de Sistemas e Computadores do PortoTese de doutoramento. Sistemas Sustentáveis de Energia. Universidade do Porto. Faculdade de Engenharia. 201

    Mitigating the erosion of transient stability margins in Great Britain through novel wind farm control techniques

    Get PDF
    The predominant North-to-South active power flow across the border between Scotland and England has historically been limited by system stability considerations. As the penetration of variable-speed wind power plants in Great Britain grows (reducing the generation share of traditional synchronous generation), it is imperative that stability limits, operational flexibility, efficiency and system security are not unduly eroded as a result. The studies reported in this thesis illustrate the impacts on critical fault clearing times and active power transfer limits through this North-South corridor, known as the B6 boundary, in the presence of increasing penetrations of wind power generation on the GB transmission system. By focussing on the transient behaviour of a representative reduced test system following a three-phase short-circuit fault occurring on one of the two double-circuits constituting the B6 boundary, the impacts on the transient stability margins are qualitatively identified. There is a pressing necessity for new wind farms to be able to mitigate, as much as possible, their own negative impacts on system stability margins. The transient stability improvement achieved by tailoring the low voltage ride-through reactive power control response of wind farms is first investigated, and a novel control technique is then presented which can significantly mitigate the erosion of the transient stability performance of power systems, in the presence of in-creasing amounts of wind power, by tailoring the immediate post-fault active power recovery ramp-rates of the wind power plants around the system. The impacts of these control techniques on critical fault clearing times and power transfer limits are investigated. In particular, it has been found that the use of slower active power recovery from wind farms located in exporting regions when a short circuit fault occurs on the export corridor will provide significant benefits for both of these metrics, while a faster active power recovery in importing regions will provide a similar transient stability benefit. However, it is also shown that there are potential detrimental effects for system frequency stability. In addition, important impacts of wind farm settings in respect of low voltage ride through are revealed whereby the LVRT controls can act to erode stability margins if careful consideration of their settings is not taken. Assuming a future power system with high levels of centralised observability and controllability (or decentralised co-operative control systems), it may be possible to continually “dispatch” the reactive power gains and active power recovery ramp rates discussed in this thesis to match the current system setpoint and to seek an optimal transient response to a range of credible contingencies.The predominant North-to-South active power flow across the border between Scotland and England has historically been limited by system stability considerations. As the penetration of variable-speed wind power plants in Great Britain grows (reducing the generation share of traditional synchronous generation), it is imperative that stability limits, operational flexibility, efficiency and system security are not unduly eroded as a result. The studies reported in this thesis illustrate the impacts on critical fault clearing times and active power transfer limits through this North-South corridor, known as the B6 boundary, in the presence of increasing penetrations of wind power generation on the GB transmission system. By focussing on the transient behaviour of a representative reduced test system following a three-phase short-circuit fault occurring on one of the two double-circuits constituting the B6 boundary, the impacts on the transient stability margins are qualitatively identified. There is a pressing necessity for new wind farms to be able to mitigate, as much as possible, their own negative impacts on system stability margins. The transient stability improvement achieved by tailoring the low voltage ride-through reactive power control response of wind farms is first investigated, and a novel control technique is then presented which can significantly mitigate the erosion of the transient stability performance of power systems, in the presence of in-creasing amounts of wind power, by tailoring the immediate post-fault active power recovery ramp-rates of the wind power plants around the system. The impacts of these control techniques on critical fault clearing times and power transfer limits are investigated. In particular, it has been found that the use of slower active power recovery from wind farms located in exporting regions when a short circuit fault occurs on the export corridor will provide significant benefits for both of these metrics, while a faster active power recovery in importing regions will provide a similar transient stability benefit. However, it is also shown that there are potential detrimental effects for system frequency stability. In addition, important impacts of wind farm settings in respect of low voltage ride through are revealed whereby the LVRT controls can act to erode stability margins if careful consideration of their settings is not taken. Assuming a future power system with high levels of centralised observability and controllability (or decentralised co-operative control systems), it may be possible to continually “dispatch” the reactive power gains and active power recovery ramp rates discussed in this thesis to match the current system setpoint and to seek an optimal transient response to a range of credible contingencies

    Methodologies for Frequency Stability Assessment in Low Inertia Power Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore