44 research outputs found

    Algorithms for data-gathering in wireless sensor networks

    Get PDF
    Wireless sensor networks consist of a large number of small battery powered sensor nodes with limited energy resources which are responsible for sensing, processing, and transmitting the monitored data. Once deployed, the sensor nodes are normally inaccessible to the user, and thus replacement of the battery is generally not feasible. A major concern in designing and operating dense Wireless Sensor Networks (WSNs) is the energy-efficiency. Hierarchical clustering and cross-layer optimization are widely accepted as effective techniques to ameliorate this concern. We propose two different novel energy efficient algorithms to gather data from sensor nodes. Energy-Efficient Media Access Control (EE-MAC) protocol is the first algorithm, which has excellent scalability and performs well for both small and large sensor networks. We will also provide a theoretical analysis of the protocol and give guidelines on how to find the optimal protocol parameters such as the number of clusters. In addition, we develop and analyze a novel and scalable Spiraled Algorithm for Data-gathering (SAD) that periodically selects cluster heads according to their geographic locations and residual energy by sorting nodes on virtual spirals. Theoretical analysis and simulation results show that SAD can achieve as much as a factor of three prolonging network lifetime compared with other conventional protocols like LEACH especially when the network is large. Moreover, SAD is also able to distribute energy dissipation evenly throughout the sensors such that 80% of the nodes run out of batteries in the last 20% of the network lifetime

    Enabling Cyber Physical Systems with Wireless Sensor Networking Technologies

    Get PDF
    [[abstract]]Over the last few years, we have witnessed a growing interest in Cyber Physical Systems (CPSs) that rely on a strong synergy between computational and physical components. CPSs are expected to have a tremendous impact on many critical sectors (such as energy, manufacturing, healthcare, transportation, aerospace, etc) of the economy. CPSs have the ability to transform the way human-to-human, human-toobject, and object-to-object interactions take place in the physical and virtual worlds. The increasing pervasiveness of Wireless Sensor Networking (WSN) technologies in many applications make them an important component of emerging CPS designs. We present some of the most important design requirements of CPS architectures. We discuss key sensor network characteristics that can be leveraged in CPS designs. In addition, we also review a few well-known CPS application domains that depend on WSNs in their design architectures and implementations. Finally, we present some of the challenges that still need to be addressed to enable seamless integration of WSN with CPS designs.[[incitationindex]]SCI[[booktype]]紙

    Network coding for reliable wireless sensor networks

    Get PDF
    Wireless sensor networks are used in many applications and are now a key element in the increasingly growing Internet of Things. These networks are composed of small nodes including wireless communication modules, and in most of the cases are able to autonomously con gure themselves into networks, to ensure sensed data delivery. As more and more sensor nodes and networks join the Internet of Things, collaboration between geographically distributed systems are expected. Peer to peer overlay networks can assist in the federation of these systems, for them to collaborate. Since participating peers/proxies contribute to storage and processing, there is no burden on speci c servers and bandwidth bottlenecks are avoided. Network coding can be used to improve the performance of wireless sensor networks. The idea is for data from multiple links to be combined at intermediate encoding nodes, before further transmission. This technique proved to have a lot of potential in a wide range of applications. In the particular case of sensor networks, network coding based protocols and algorithms try to achieve a balance between low packet error rate and energy consumption. For network coding based constrained networks to be federated using peer to peer overlays, it is necessary to enable the storage of encoding vectors and coded data by such distributed storage systems. Packets can arrive to the overlay through any gateway/proxy (peers in the overlay), and lost packets can be recovered by the overlay (or client) using original and coded data that has been stored. The decoding process requires a decoding service at the overlay network. Such architecture, which is the focus of this thesis, will allow constrained networks to reduce packet error rate in an energy e cient way, while bene ting from an e ective distributed storage solution for their federation. This will serve as a basis for the proposal of mathematical models and algorithms that determine the most e ective routing trees, for packet forwarding toward sink/gateway nodes, and best amount and placement of encoding nodes.As redes de sensores sem fios são usadas em muitas aplicações e são hoje consideradas um elemento-chave para o desenvolvimento da Internet das Coisas. Compostas por nós de pequena dimensão que incorporam módulos de comunicação sem fios, grande parte destas redes possuem a capacidade de se configurarem de forma autónoma, formando sistemas em rede para garantir a entrega dos dados recolhidos. (…

    A review of Energy Hole mitigating techniques in multi-hop many to one communication and its significance in IoT oriented Smart City infrastructure

    Get PDF
    A huge increase in the percentage of the world's urban population poses resource management, especially energy management challenges in smart cities. In this paper, the growing challenges of energy management in smart cities have been explored and the significance of elimination of energy holes in converge cast communication has been discussed. The impact of mitigation of energy holes on the network lifetime and energy efficiency has been thoroughly covered. The particular focus of this work has been on energy-efficient practices in two major key enablers of smart cities namely, the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). In addition, this paper presents a robust survey of state-of-the-art energy-efficient routing and clustering methods in WSNs. A niche energy efficiency issue in WSNs routing has been identified as energy holes and a detailed survey and evaluation of various techniques that mitigate the formation of energy holes and achieve balanced energy-efficient routing has been covered

    Bandwidth-aware distributed ad-hoc grids in deployed wireless sensor networks

    Get PDF
    Nowadays, cost effective sensor networks can be deployed as a result of a plethora of recent engineering advances in wireless technology, storage miniaturisation, consolidated microprocessor design, and sensing technologies. Whilst sensor systems are becoming relatively cheap to deploy, two issues arise in their typical realisations: (i) the types of low-cost sensors often employed are capable of limited resolution and tend to produce noisy data; (ii) network bandwidths are relatively low and the energetic costs of using the radio to communicate are relatively high. To reduce the transmission of unnecessary data, there is a strong argument for performing local computation. However, this can require greater computational capacity than is available on a single low-power processor. Traditionally, such a problem has been addressed by using load balancing: fragmenting processes into tasks and distributing them amongst the least loaded nodes. However, the act of distributing tasks, and any subsequent communication between them, imposes a geographically defined load on the network. Because of the shared broadcast nature of the radio channels and MAC layers in common use, any communication within an area will be slowed by additional traffic, delaying the computation and reporting that relied on the availability of the network. In this dissertation, we explore the tradeoff between the distribution of computation, needed to enhance the computational abilities of networks of resource-constrained nodes, and the creation of network traffic that results from that distribution. We devise an application-independent distribution paradigm and a set of load distribution algorithms to allow computationally intensive applications to be collaboratively computed on resource-constrained devices. Then, we empirically investigate the effects of network traffic information on the distribution performance. We thus devise bandwidth-aware task offload mechanisms that, combining both nodes computational capabilities and local network conditions, investigate the impacts of making informed offload decisions on system performance. The highly deployment-specific nature of radio communication means that simulations that are capable of producing validated, high-quality, results are extremely hard to construct. Consequently, to produce meaningful results, our experiments have used empirical analysis based on a network of motes located at UCL, running a variety of I/O-bound, CPU-bound and mixed tasks. Using this setup, we have established that even relatively simple load sharing algorithms can improve performance over a range of different artificially generated scenarios, with more or less timely contextual information. In addition, we have taken a realistic application, based on location estimation, and implemented that across the same network with results that support the conclusions drawn from the artificially generated traffic

    Energy efficient wireless sensor network topologies and routing for structural health monitoring.

    Get PDF
    The applicability of wireless sensor networks (WSNs) has dramatically increased from the era of smart farming and environmental monitoring to the recent commercially successful internet of things (IoT) applications. Simultaneously, diversity in WSN applications has led to the application of specific performance requirements, such as fault tolerance, reliability, robustness and survivability. One important application is structural health monitoring (SHM) in airplanes. Airborne Wireless Sensor Network (AWSN) have received considerable attention in recent times, owing to the many issues that are intrinsic to traditional wire-based airplane monitoring systems, such as complicated cable routing, long wiring, wiring degradation over time, installation overhead, etc. This project examines the SHM of aircraft wing and WSN design (ZigBee), and aspects such as node deployment and power efficient routing, vis-à-vis energy harvesting. Node deployment and power efficient routing protocol are related problems, and so this thesis proposes solutions using optimization techniques for Ant Colony Optimization (ACO), and power transmission profiling using Computer Simulation Technology software (CST). There are three wing models; namely NACA64A410 model, Empty NACA64A410 model for the Wing, and Empty Prismatic model of the wing was specified and simulated in CST software. A simulation was carried out between the frequencies of 100 MHz to 5 GHz, and identified significant variations in the Sij parameter between the frequency range 2.4GHz and 2.5GHz. Critical analysis of the obtained results revealed the presence of a significant impact from wing shape and the wing’s inner structure on possible radio wave propagation in the aircraft wing. The different material composition of aircraft wings was also examined to establish the influence of aircraft wing material on radio wave propagation in an aircraft wing. The three materials tested were Perfect Electrical Conductor (PEC), Aluminium, and Carbon Fibre Composites (CFCs). For power transmission profiling (Sij parameter), 130 nodes were deployed in regular and periodic compartments, created by ribs and spars, usually at vantage points and rib openings, so that a direct line of sight could be established. However, four sink nodes were also placed at the wing root, as presented in NC37 and NC38 simulations for aluminium and CFC wing models respectively. The evaluation of signal propagation in aluminium and CFC aircraft wing models revealed CFC wing models allow less transmission than aluminium wing models. A multiple Travelling Salesman (mTSP) problem was formulated and solved, using Ant Colony Optimization in MATLAB to identify optimal topology and optimal routes to support radio propagation in ZigBee networks. Then solving the mTSP problem for different regular deployments of nodes in the wing geometry, it was found that an edgewise communication route was the shortest route for a large number of nodes, wherein 4 fixed sink nodes were placed at the wing root. For a realistic wing model, the different possible configuration of ZigBee units were deduced using rational reasoning, based on results from empty wing models. Besides the determined S-parameter, aircraft wing materials and optimal nodes, the residual energy of each sensor node is also considered an essential criterion to improve the efficiency of ZigBee communications on the aircraft wing. Therefore, a novel hybrid protocol called the Energy-Opportunistic Weighted Minimum Energy (EOWEME) protocol can be formulated and implemented in MATLAB. The comparative results revealed the energy saving of EOWEME protocol is 20% higher compared to the Ad Hoc On-Demand Distance Vector (AODV) routing protocol. However, the need for further energy savings resulted in development of an improved EOWEME protocol when incorporating the clustering concept and the previously determined S-parameter, a number of nodes, and their radiation patterns. Critical evaluation of this improved EOWEME protocol showed a maximum of 10% higher energy savings than the previous EOWEME protocol. To summarize key insights and the results of this thesis, it is apparent that the thesis addresses SHM in aircraft wings, using WSNs from a holistic perspective with the following major contributions, • CST simulations identify power transfer (S-parameter) profiling in various wing models, with no internal structural elements to identify realistic wing with spars, and bars. With an average S-parameter of -107 dB at around 3 m, the communication or transmission range of 1 m was identified to minimize loss of transmitted power. A range less than 1m would cause issues such as interference, reflection etc. • Using a transmission range of 1 m, WSN nodes were assessed for shortest route commensurate with energy efficient packet transmission to sink node from the farthest node; i.e. near the wing tip. The shortest routes converged to travel along the length of the wing in the case of an empty wing model, however it was also observed in a realistic wing model, where internal structural elements constrained node deployment. An average distance of nearly 13 m required data transmitted from the farthest nodes to reach the sink nodes. Increasing the nodes however increased the distance required to up to 20 m in the case of 240 nodes. • A new routing protocol, EOWEME was formulated, showing 20% greater energy savings than AODV in the realistic wing model.PhD in Aerospac

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Mission-based mobility models for UAV networks

    Get PDF
    Las redes UAV han atraído la atención de los investigadores durante la última década. Las numerosas posibilidades que ofrecen los sistemas single-UAV aumentan considerablemente al usar múltiples UAV. Sin embargo, el gran potencial del sistema multi-UAV viene con un precio: la complejidad de controlar todos los aspectos necesarios para garantizar que los UAVs cumplen la misión que se les ha asignado. Ha habido numerosas investigaciones dedicadas a los sistemas multi-UAV en el campo de la robótica en las cuales se han utilizado grupos de UAVs para diferentes aplicaciones. Sin embargo, los aspectos relacionados con la red que forman estos sistemas han comenzado a reclamar un lugar entre la comunidad de investigación y han hecho que las redes de UAVs se consideren como un nuevo paradigma entre las redes multi-salto. La investigación de redes de UAVs, de manera similar a otras redes multi-salto, se divide principalmente en dos categorías: i) modelos de movilidad que capturan la movilidad de la red, y ii) algoritmos de enrutamiento. Ambas categorías han heredado muchos algoritmos que pertenecían a las redes MANET, que fueron el primer paradigma de redes multi-salto que atrajo la atención de los investigadores. Aunque hay esfuerzos de investigación en curso que proponen soluciones para ambas categorías, el número de modelos de movilidad y algoritmos de enrutamiento específicos para redes UAV es limitado. Además, en el caso de los modelos de movilidad, las soluciones existentes propuestas son simplistas y apenas representan la movilidad real de un equipo de UAVs, los cuales se utilizan principalmente en operaciones orientadas a misiones, en la que cada UAV tiene asignados movimientos específicos. Esta tesis propone dos modelos de movilidad basados en misiones para una red de UAVs que realiza dos operaciones diferentes. El escenario elegido en el que se desarrollan las misiones corresponde con una región en la que ha ocurrido, por ejemplo, un desastre natural. La elección de este tipo de escenario se debe a que en zonas de desastre, la infraestructura de comunicaciones comúnmente está dañada o totalmente destruida. En este tipo de situaciones, una red de UAVs ofrece la posibilidad de desplegar rápidamente una red de comunicaciones. El primer modelo de movilidad, llamado dPSO-U, ha sido diseñado para capturar la movilidad de una red UAV en una misión con dos objetivos principales: i) explorar el área del escenario para descubrir las ubicaciones de los nodos terrestres, y ii) hacer que los UAVs converjan de manera autónoma a los grupos en los que se organizan los nodos terrestres (también conocidos como clusters). El modelo de movilidad dPSO-U se basa en el conocido algoritmo particle swarm optimization (PSO), considerando los UAV como las partículas del algoritmo, y también utilizando el concepto de valores dinámicos para la inercia, el local best y el neighbour best de manera que el modelo de movilidad tenga ambas capacidades: la de exploración y la de convergencia. El segundo modelo, denominado modelo de movilidad Jaccard-based, captura la movilidad de una red UAV que tiene asignada la misión de proporcionar servicios de comunicación inalámbrica en un escenario de mediano tamaño. En este modelo de movilidad se ha utilizado una combinación del virtual forces algorithm (VFA), de la distancia Jaccard entre cada par de UAVs y metaheurísticas como hill climbing y simulated annealing, para cumplir los dos objetivos de la misión: i) maximizar el número de nodos terrestres (víctimas) que se encuentran bajo el área de cobertura inalámbrica de la red UAV, y ii) mantener la red UAV como una red conectada, es decir, evitando las desconexiones entre UAV. Se han realizado simulaciones exhaustivas con herramientas software específicamente desarrolladas para los modelos de movilidad propuestos. También se ha definido un conjunto de métricas para cada modelo de movilidad. Estas métricas se han utilizado para validar la capacidad de los modelos de movilidad propuestos de emular los movimientos de una red UAV en cada misión.UAV networks have attracted the attention of the research community in the last decade. The numerous capabilities of single-UAV systems increase considerably by using multiple UAVs. The great potential of a multi-UAV system comes with a price though: the complexity of controlling all the aspects required to guarantee that the UAV team accomplish the mission that it has been assigned. There have been numerous research works devoted to multi-UAV systems in the field of robotics using UAV teams for different applications. However, the networking aspects of multi-UAV systems started to claim a place among the research community and have made UAV networks to be considered as a new paradigm among the multihop ad hoc networks. UAV networks research, in a similar manner to other multihop ad hoc networks, is mainly divided into two categories: i) mobility models that capture the network mobility, and ii) routing algorithms. Both categories have inherited previous algorithms mechanisms that originally belong to MANETs, being these the first multihop networking paradigm attracting the attention of researchers. Although there are ongoing research efforts proposing solutions for the aforementioned categories, the number of UAV networks-specific mobility models and routing algorithms is limited. In addition, in the case of the mobility models, the existing solutions proposed are simplistic and barely represent the real mobility of a UAV team, which are mainly used in missions-oriented operations. This thesis proposes two mission-based mobility models for a UAV network carrying out two different operations over a disaster-like scenario. The reason for selecting a disaster scenario is because, usually, the common communication infrastructure is malfunctioning or completely destroyed. In these cases, a UAV network allows building a support communication network which is rapidly deployed. The first mobility model, called dPSO-U, has been designed for capturing the mobility of a UAV network in a mission with two main objectives: i) exploring the scenario area for discovering the location of ground nodes, and ii) making the UAVs to autonomously converge to the groups in which the nodes are organized (also referred to as clusters). The dPSO-U mobility model is based on the well-known particle swarm optimization algorithm (PSO), considering the UAVs as the particles of the algorithm, and also using the concept of dynamic inertia, local best and neighbour best weights so the mobility model can have both abilities: exploration and convergence. The second one, called Jaccard-based mobility model, captures the mobility of a UAV network that has been assigned with the mission of providing wireless communication services in a medium-scale scenario. A combination of the virtual forces algorithm (VFA), the Jaccard distance between each pair of UAVs and metaheuristics such as hill climbing or simulated annealing have been used in this mobility model in order to meet the two mission objectives: i) to maximize the number of ground nodes (i.e. victims) under the UAV network wireless coverage area, and ii) to maintain the UAV network as a connected network, i.e. avoiding UAV disconnections. Extensive simulations have been performed with software tools that have been specifically developed for the proposed mobility models. Also, a set of metrics have been defined and measured for each mobility model. These metrics have been used for validating the ability of the proposed mobility models to emulate the movements of a UAV network in each mission

    Розвиток методів підвищення пропускної здатності в мобільних сенсорних мережах

    Get PDF
    Метою данної роботи є проаналізувати методи підвищення пропускної здатності в мобільних сенсорних мережах. МСМ взагалі можна описати як мережу вузлів, котрі взаємодіють і можуть контролювати навколишнє середовище, забезпечуючи взаємодію між особами або комп'ютерами і навколишнім середовищем. Вузли датчиків контролюють зібрані дані для передачі разом з іншими вузлами сенсора шляхом стрибка. Під час передачі дані, що підлягають моніторингу, можуть оброблятися кількома вузлами для доступу до вузла шлюзу після множинного маршрутизації та, нарешті, досягають вузла керування через Інтернет або супутникThe purpose of this work is to analyze methods of increasing bandwidth in mobile sensor networks. The mobile sensor network can generally be described as a network of interacting nodes that can control the environment by providing interactions between individuals or computers and the environment. The nodes of the sensors control the collected data for transmission along with other nodes of the sensor by jumping. During transmission, the data to be monitored can be processed by multiple nodes to access the gateway node after multiple routing, and finally reach the control node via the Internet or satellit
    corecore