975 research outputs found

    Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios

    Get PDF
    This paper presents our experience on a real case of applying an indoor localization system formonitoringolderadultsintheirownhomes. Sincethesystemisdesignedtobeusedbyrealusers, therearemanysituationsthatcannotbecontrolledbysystemdevelopersandcanbeasourceoferrors. This paper presents some of the problems that arise when real non-expert users use localization systems and discusses some strategies to deal with such situations. Two technologies were tested to provide indoor localization: Wi-Fi and Bluetooth Low Energy. The results shown in the paper suggest that the Bluetooth Low Energy based one is preferable in the proposed task

    A Comparison Analysis of BLE-Based Algorithms for Localization in Industrial Environments

    Get PDF
    Proximity beacons are small, low-power devices capable of transmitting information at a limited distance via Bluetooth low energy protocol. These beacons are typically used to broadcast small amounts of location-dependent data (e.g., advertisements) or to detect nearby objects. However, researchers have shown that beacons can also be used for indoor localization converting the received signal strength indication (RSSI) to distance information. In this work, we study the effectiveness of proximity beacons for accurately locating objects within a manufacturing plant by performing extensive experiments in a real industrial environment. To this purpose, we compare localization algorithms based either on trilateration or environment fingerprinting combined with a machine-learning based regressor (k-nearest neighbors, support-vector machines, or multi-layer perceptron). Each algorithm is analyzed in two different types of industrial environments. For each environment, various configurations are explored, where a configuration is characterized by the number of beacons per square meter and the density of fingerprint points. In addition, the fingerprinting approach is based on a preliminary site characterization; it may lead to location errors in the presence of environment variations (e.g., movements of large objects). For this reason, the robustness of fingerprinting algorithms against such variations is also assessed. Our results show that fingerprint solutions outperform trilateration, showing also a good resilience to environmental variations. Given the similar error obtained by all three fingerprint approaches, we conclude that k-NN is the preferable algorithm due to its simple deployment and low number of hyper-parameters

    A comparison analysis of ble-based algorithms for localization in industrial environments

    Get PDF
    Proximity beacons are small, low-power devices capable of transmitting information at a limited distance via Bluetooth low energy protocol. These beacons are typically used to broadcast small amounts of location-dependent data (e.g., advertisements) or to detect nearby objects. However, researchers have shown that beacons can also be used for indoor localization converting the received signal strength indication (RSSI) to distance information. In this work, we study the effectiveness of proximity beacons for accurately locating objects within a manufacturing plant by performing extensive experiments in a real industrial environment. To this purpose, we compare localization algorithms based either on trilateration or environment fingerprinting combined with a machine-learning based regressor (k-nearest neighbors, support-vector machines, or multi-layer perceptron). Each algorithm is analyzed in two different types of industrial environments. For each environment, various configurations are explored, where a configuration is characterized by the number of beacons per square meter and the density of fingerprint points. In addition, the fingerprinting approach is based on a preliminary site characterization; it may lead to location errors in the presence of environment variations (e.g., movements of large objects). For this reason, the robustness of fingerprinting algorithms against such variations is also assessed. Our results show that fingerprint solutions outperform trilateration, showing also a good resilience to environmental variations. Given the similar error obtained by all three fingerprint approaches, we conclude that k-NN is the preferable algorithm due to its simple deployment and low number of hyper-parameters

    Physical activity measurement and indoor location for the assessment of daily routines in older adults

    Get PDF
    Este trabajo presenta una propuesta para la monitorización de adultos mayores con el fin de inferir las actividades de la vida diaria (ADLs), e identificar desviaciones en sus rutinas que podrían necesitar alguna clase de intervención. Esta monitorización se consigue analizando el tiempo que pasan en cada habitación de su lugar de residencia, el cual puede ser estimado con balizas basadas en tecnología BLE (Bluetooth Low Energy). Las balizas receptoras de BLE desplegadas en el entorno detectan la señal del dispositivo emisor que porta el usuario. La localización de la persona se realiza a través de algunos métodos de fingerprinting, procesando la intensidad de la señal recibida.This paper presents a proposal for monitoring older adults in order to infer activities of daily living (ADLs), and identify deviations in their routines that might need some kind of intervention. This monitoring is achieved by analysing the time spent in each room of their place of residence, which can be estimated with beacons based on BLE (Bluetooth Low Energy) technology. The BLE receiving beacons deployed in the environment detect the signal of the transmitting device carried by the user. The location of the person is done through some fingerprinting methods by processing the received signal strength.Grado en Ingeniería en Electrónica y Automática Industria

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Improving bluetooth beacon-based indoor location and fingerprinting

    Get PDF
    The complex way radio waves propagate indoors, leads to the derivation of location using fngerprinting techniques. In this cases, location is computed relying on WiFi signals strength mapping. Recent Bluetooth low energy (BLE) provides new opportunities to explore positioning. In this work is studied how BLE beacons radio signals can be used for indoor location scenarios, as well as their precision. Additionally, this paper also introduces a method for beacon-based positioning, based on signal strength measurements at key distances for each beacon. This method allows to use diferent beacon types, brands, and location conditions/constraints. Depending on each situation (i.e., hardware and location) it is possible to adapt the distance measuring curve to minimize errors and support higher distances, while at the same time keeping good precision. Moreover, this paper also presents a comparison with traditional positioning method, using formulas for distance estimation, and the position triangulation. The proposed study is performed inside the campus of Viseu Polytechnic Institute, and tested using a group of students, each with his smart-phone, as proof of concept. Experimental results show that BLE allows having < 1.5 m error approximately 90% of the times, and the experimental results using the proposed location detection method show that the proposed position technique has 13.2% better precision than triangulation, for distances up to 10 m.info:eu-repo/semantics/publishedVersio
    corecore