38,274 research outputs found

    Improving Livability Using Green and Active Modes: A Traffic Stress Level Analysis of Transit, Bicycle, and Pedestrian Access and Mobility

    Get PDF
    Understanding the relative attractiveness of alternatives to driving is vitally important toward lowering driving rates and, by extension, vehicle miles traveled (VMT), traffic congestion, greenhouse gas (GHG) emissions, etc. The relative effectiveness of automobile alternatives (i.e., buses, bicycling, and walking) depends on how well streets are designed to work for these respective modes in terms of safety, comfort and cost, which can sometimes pit their relative effectiveness against each other. In this report, the level of traffic stress (LTS) criteria previously developed by two of the authors was used to determine how the streets functioned for these auto alternative modes. The quality and extent of the transit service area was measured using a total travel time metric over the LTS network. The model developed in this study was applied to two transit routes in Oakland, California, and Denver, Colorado

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    Unreliable point facility location problems on networks

    Get PDF
    In this paper we study facility location problems on graphs under the most common criteria, such as, median, center and centdian, but we incorporate in the objective function some reliability aspects. Assuming that facilities may become unavailable with a certain probability, the problem consists of locating facilities minimizing the overall or the maximum expected service cost in the long run, or a convex combination of the two. We show that the k-facility problem on general networks is NP-hard. Then, we provide efficient algorithms for these problems for the cases of k = 1, 2, both on general networks and on trees. We also explain how our methodology extends to handle a more general class of unreliable point facility location problems related to the ordered median objective function.Ministerio de Ciencia y TecnologĂ­aJunta de AndalucĂ­

    Location models for airline hubs behaving as M/D/c queues

    Get PDF
    Models are presented for the optimal location of hubs in airline networks, that take into consideration the congestion effects. Hubs, which are the most congested airports, are modeled as M/D/c queuing systems, that is, Poisson arrivals, deterministic service time, and {\em c} servers. A formula is derived for the probability of a number of customers in the system, which is later used to propose a probabilistic constraint. This constraint limits the probability of {\em b} airplanes in queue, to be lesser than a value α\alpha. Due to the computational complexity of the formulation. The model is solved using a meta-heuristic based on tabu search. Computational experience is presented.Hub location, congestion, tabu-search

    Issues in providing a reliable multicast facility

    Get PDF
    Issues involved in point-to-multipoint communication are presented and the literature for proposed solutions and approaches surveyed. Particular attention is focused on the ideas and implementations that align with the requirements of the environment of interest. The attributes of multicast receiver groups that might lead to useful classifications, what the functionality of a management scheme should be, and how the group management module can be implemented are examined. The services that multicasting facilities can offer are presented, followed by mechanisms within the communications protocol that implements these services. The metrics of interest when evaluating a reliable multicast facility are identified and applied to four transport layer protocols that incorporate reliable multicast

    What it takes to design a supply chain resilient to major disruptions and recurrent interruptions

    Get PDF
    Global supply chains are more than ever under threat of major disruptions caused by devastating natural and man-made disasters as well as recurrent interruptions caused by variations in supply and demand. This paper presents an optimization model for designing a supply chain resilient to (1) supply/demand interruptions and (2) facility disruptions whose probability of occurrence and magnitude of impact can be mitigated through fortification investments. Numerical results and managerial insights obtained from model implementation are presented. Our analysis focuses on how supply chain design decisions are influenced by facility fortification strategies, a decision maker’s conservatism degree, demand fluctuations, supply capacity variations, and budgetary constraints. Finally, examining the performance of the proposed model using a Monte Carlo simulation method provides additional insights and practical implications

    Integrated Modeling Approach for the Transportation Disadvantaged

    Get PDF
    Transportation models have not been adequate in addressing severe long-term urban transportation problems that transportation disadvantaged groups overwhelmingly encounter, and the negative impacts of transportation on the disadvantaged have not been effectively considered in the modeling studies. Therefore this paper aims to develop a transportation modeling approach in order to understand the travel patterns of the transportation disadvantaged, and help in developing policies to solve the problems of the disadvantaged. Effectiveness of this approach is tested in a pilot study in Aydin, Turkey. After determining disadvantaged groups by a series of spatial and statistical analyses, the approach is integrated with a travel demand model. The model is run for both disadvantaged and nondisadvantaged populations to examine the differences between their travel behaviors. The findings of the pilot study reveal that almost two thirds of the population is disadvantaged, and this modeling approach could be particularly useful in disadvantage-sensitive planning studies to deploy relevant land use and transportation policies for disadvantaged groups
    • …
    corecore