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1.  Introduction  

Supply chain network design decisions form the backbone of supply chain management with direct impact 

on a firm’s return on investment and its overall performance (Farahani et al., 2014; Zokaee et al., 2014). It 

concerns strategic decisions on supply chain configuration which includes determining the number, location 

and capacity of facilities in order to serve a predetermined, but possibly evolving, customer base. Since 

these decisions are by nature costly and difficult to reverse, supply chain networks are designed to last for 

several years and hence need to be robust to cope with future uncertainties (Jabbarzadeh et al., 2014; Snyder 

et al., 2007). Tang (2006) defines two types of risks facing supply chains: operational risks and disruption 

risks. Operational risks are caused by inherent interruptions such as uncertain customer demand, uncertain 

supply capacity, and uncertain procurement costs. Disruption risks are caused by major incidents such as 

natural and man-made disasters (e.g. earthquakes, floods, terrorist attacks, fires, etc.). Esmaeilikia et al. 

(2014a, b) provides a similar definition and classifies supply chain risks into those posed by major 

disruptions (rare events, but devastating impacts) and supply/demand interruptions (frequent occurrence, 

but less detrimental). 

In most cases, the impact of disruptions on business performance is much larger than that of operational 

risks (Tang, 2006). For today’s supply chains, the primary causes of increased exposure to disruptions are 

the lean and relentless cost-minimization practices, global reach of supply chains, and shorter product life 

cycles. Recent examples of natural disasters which have disrupted the performance of several supply chains 

include the tsunamis in the Indian Ocean (2004) and Japan (2011), the earthquakes in China (2008) and 

Chile (2011 and 2015), and Typhoon Haiyan in the Philippines (2013)  (Fahimnia et al., 2015; Klibi et al., 

2010). We have no direct control over the probability of occurrence of such disasters, and the only way to 

reduce the impact of these disasters is to consider the location of facilities or suppliers; that is, avoidance 

of flood-prone areas, earthquake zones, and areas exposed to high sea level rise and storm surges. 

There are however disasters whose probability of occurrence and magnitude of impact can be mitigated by 

greater facility fortification investments. Some examples of such disasters include bushfire where 

prescribed burning (backburning) will prevent the occurrence, and creating firebreaks will minimize 

property damage. Manmade fire within factory facilities can be prevented by maintenance of electrical 

wiring and appliances, education on basic electrical safety principles and investment in low risk fire 

appliances. Also, installation of fire detection and sprinkler systems will reduce the impact of fire should it 

occur. Illness and injury within a workforce can be prevented by vaccination and implementation of illness 

and injury prevention programs (which involve hazard identification, hazard prevention and control, 
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education and training). Cyber-attacks can be prevented by advanced firewalls and cyber security systems. 

It is the disruptions caused by these disasters that this paper seeks to address. 

According to a recent survey by the insurance company Zurich Financial Services Australia Ltd, 85% of 

Australian-based companies experienced at least one supply chain disruption during 2011. Supply chain 

disruptions can have substantial impacts on the both short-term and long-term performance of firms 

(Hendricks et al., 2009; Peng et al., 2011). Hendricks and Singhal (2005) reported that companies suffering 

from even smaller-scale supply chain disruptions experienced 33-40% lower stock returns relative to their 

industry benchmarks. These illustrations and statistics reinforce the need to consider hedging against 

disruption risks when designing supply chain networks, a highly complex task due to the many influencing 

factors including budget availability (capital investment), decision maker’s risk attitude, type of network 

under consideration, and the probability of disruption occurrence. Given that disruptions tend to be rare 

events, a primary complexity in designing resilient supply chains is the lack of historical data available 

from past disasters. The interaction between operational risks, more importantly demand variation risks, 

and disruption risks can add to this complexity. For instance, under demand uncertainty, it may be more 

beneficial for a company to run fewer number of larger facilities taking advantage of economies of scale in 

purchasing (Daskin et al., 2002), while it may be more worthwhile to operate more number of smaller 

facilities to minimize the impact of a disruption in one facility on the overall supply chain performance 

(Jabbarzadeh et al., 2015 ; Snyder et al., 2006).  

To address these challenges, we present a hybrid robust optimization model (applying a robust optimization 

approach to a stochastic model) for designing a supply chain resilient to supply/demand variations and 

major disruptions whose risk of occurrence and magnitude of impact can be mitigated through facility 

fortification investments. The objective of the proposed model is to minimize the total cost of establishing 

the network while maximizing the supply chain resilience. Disruption occurrence probability is expressed 

as a function of capital investment for facility fortification. Facilities established at lower costs receive a 

higher probability of failure (less reliable facilities) and those with greater capital investment are assigned 

a smaller disruption probability value (more reliable facilities). Obviously, for situations when the 

probability of a disruption is not a function of investment level, one can simply set equal probabilities for 

different fortification levels. The ultimate goal of the proposed model is to determine the supply chain 

design decisions including the number, location and type of facilities (reliable or unreliable facilities) in the 

presence of certain budgetary constraints. We will investigate how the proposed model is able to capture 

the decision-makers’ risk attitude to develop tradeoff between the supply chain design costs and disruption 

risks.  
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2.  Literature Review 

Reviews of facility location modeling efforts have been completed by Snyder (2006), ReVelle et al. (2008), 

and Melo et al. (2009). The more recent review of Snyder et al. (2014) indicates that a research focus on 

the design of ‘resilient supply chains’ has only been a recent occurrence; becoming only about 10 years old 

in 2015. Snyder and Daskin (2005) were among the first to incorporate disruption risks into classical facility 

location problems. They present reliability models based on a P-median problem and an uncapacitated 

fixed-charge location problem in which facilities are subject to disruptions. Their model aims to minimize 

facility location costs while taking into account the expected transportation cost when an unexpected 

disruption occurs. Aryanezhad et al. (2010) include inventory decisions to this model and present integer 

programming models minimizing the sum of facility construction costs, expected inventory costs and 

expected customer costs under normal and disruption situations. Chen et al. (2011) propose a Lagrangian 

relaxation method to solve this model. 

The above studies assume equal disruption probabilities in all facilities, an assumption that has been relaxed 

in some of the more recent works by Berman et al. (2007), Li and Ouyang (2010), Shen et al. (2011), and 

Cui et al. (2010). Berman et al. (2007) presented a nonlinear integer programming model where facilities 

face independent disruptions with different probabilities. Due to model intractability, a heuristic algorithm 

was developed to solve the problem. O’Hanley et al. (2013) proposed an efficient technique for linearizing 

the facility location problem with site-dependent failure probabilities to tackle the intractability issue. Cui 

et al. (2010) presented an exact linear formulation for this problem to consider heterogeneous facility failure 

probabilities utilizing the linearization method of Sherali and Alameddine (1992). 

Lim et al. (2010) incorporate the facility fortification concept into a facility location model to hedge against 

the risk of facility disruptions. They assume that if a serving facility fails, the associated demand point is 

immediately assigned to its backup. The problem is formulated as a mixed integer programming model for 

which a Lagrangian relaxation algorithm is proposed as a solution method. Li et al. (2013) extend this 

model by incorporating the rate of return for fortification investment and compare the results with that of 

alternative investment opportunities. For instance, a firm may choose to invest in network fortification only 

if the rate of return exceeds a minimum acceptable rate of return. The problem is further extended and 

investigated by Li and Savachkin (2013) where a facility can be fortified to a certain reliability level (a 

partial fortification strategy). All of these studies assume unlimited facility capacity. 

The aforementioned models assume that a disrupted facility is completely out of service and hence disregard 

the probability that the performance of a facility can only be partially affected. Jabbarzadeh et al. (2012) 

present a supply chain design model for a situation where a facility may be partly disrupted, but may yet be 
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able to fulfill a fraction of the initially assigned demand. Two solution methods based on Lagrangian 

relaxation and genetic algorithms are developed to solve the model. Liberatore et al. (2012) study the 

problem of optimally protecting a capacitated median where disasters may result in partial or complete 

shutdown of facilities. The proposed model optimizes protection plans when facing large area disruptions 

(i.e. disruptions that affect regions rather than single elements of the system). An algorithm is designed to 

solve the model optimally and is tested on a set of data from 2009 L’Aquila earthquake. Azad et al. (2013) 

formulate a capacitated location allocation model that accounts for partial disruptions considering 

deterministic supply chain demand. Benders decomposition is utilized to solve this computationally 

intractable model.  

All the above models assume a risk-neutral decision maker who wishes to optimize the expected value of 

the objective function. Some of the most recent studies focus on risk aversion decision making through bi-

level model formulation and optimizing worst-case objectives (Hernandez et al., 2014; Liberatore et al., 

2011; Losada et al., 2012; Medal et al., 2014). Medal et al. (2014) investigate the minimax facility location 

and hardening problem seeking to minimize the maximum distance from a demand point to its closest 

located facility after facility disruptions. A decision maker in this case is interested in mitigation against a 

facility disruption scenario with the largest consequence. Likewise, Hernandez et al. (2014) apply a worst-

case approach to hedge against disruptions. Using a multi-objective optimization approach, their model 

provides a decision maker with an option to tradeoff total weighted travelling distance before and after 

disruptions in a facility location problem. It allows investigating the impact that the opening of additional 

facilities can have on total distance travelled. Losada et al. (2012) present a bi-level mixed integer linear 

program for protecting an uncapacitated median type facility network against worst-case losses, taking into 

account the role of facility recovery time on system performance and the possibility of multiple disruptions 

over time. Their model differs from a typical facility protection model in that protection is not assumed to 

always successfully avoid facility failure, but rather to speed up recovery time post disruptions. One 

limitation of the worst-case approaches is that it can be highly over conservative in practical cases as the 

probability at which uncertain parameters reach their worst values may be very low (Snyder, 2006). 

There are also studies that consider the risk preference of decision makers using scenario-based models. 

Peng et al. (2011) present a scenario-based modeling approach in which each scenario includes a set of 

facilities that can fail simultaneously. Their model aims at minimizing the total cost under normal 

circumstances while reducing the disruption risk using the p-robustness criterion (bounding the cost in 

disruption scenarios and allowing capturing risk aversion). A genetic algorithm approach is used to solve 

the model. Similarly, Baghalian et al. (2013) develop a scenario-based model for designing a supply chain 
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whose objective is to maximize profit under the risks of disruption. To address the risk-aversion attitude of 

a decision maker, the variance of total profit is incorporated into the model. The model is formulated using 

mixed integer nonlinear programming and approximated using multiple linear regressions. The limitation 

of a scenario-based approach is that solving such models becomes more difficult as the number of scenarios 

increases (Peng et al., 2011).  

Our study contributes to this literature in the following ways. First, unlike the published models, our model 

is able to tackle multiple types of risks, including strategic disruption risks and operational supply/demand 

usncertainties. This allows the effective design of supply chain networks where historical risk data is limited 

or nonexistent. Second, we present a hybrid robust-stochastic method (i.e. applying a robust optimization 

approach to a stochastic model) that overcomes the limitations of the scenario-based methods (the 

computational overhead for managing a large number of scenarios) and the worst-case approaches (over-

conservative attitude in practical cases). The approach has the flexibility of adjusting the conservativeness 

level of solutions while preserving the computational complexity of the nominal problem. In addition, the 

hybrid nature of the presented formulation facilitates the modeling of a complex situation where even the 

probability of random disruptions is uncertain. Third, our modeling effort takes into consideration a realistic 

range of assumptions (e.g. partial or complete shutdown of facilities when disruptions occur), variables 

(e.g. both partial and full facility fortification options) and constraints (e.g. budget and capacity constraints); 

representing a more realistic situation than those studied in the past (see the review of Snyder et al. (2014) 

for a more comprehensive review of the existing literature).  
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3.  Model Formulation 

We first present a background of robust optimization to better inform the mathematical formulation of the 

resilient supply chain network design. A stochastic model is then developed for supply chain network 

design considering the risk of disruptions. This model is then extended to incorporate uncertainties in 

demand, probability of disruption occurrence and capacity of facilities into the model; forming a hybrid 

robust-stochastic optimization formulation. The latter model aims to design a resilient supply chain 

network, a supply chain that is resilient to disruptions and supply/demand interruptions. 

 

3.1 Background of robust optimization  

Although stochastic programming methods are powerful in modeling uncertain factors (Birge and 

Louveaux, 2011), they usually require the availability of probability distributions of random variables (Klibi 

et al., 2010). Robust optimization methods have been used to tackle this drawback when there is the lack 

of historical data to estimate the actual distribution of uncertain parameters. They are also capable of 

incorporating decision-makers’ risk attitude (Bental et al., 2009). Here, we explain the framework of the 

robust formulation introduced by Bertsimas and Sim (2003, 2004) which has been extensively adopted in 

the past to address supply chain uncertainty issues (Gabrel et al., 2014). 

Let us consider a linear mathematical programming model as: 

Min    jj xc '   (1) 

Subject to:   

.,...,3,2,1 mibxa ij jij  �d¦  (2) 

^ `0,1jx �  (3) 

Here, ija  denotes uncertain parameters and iJ  is the set of uncertain parameters in ith constraint. Bertsimas 

and Sim (2003, 2004) assume that each uncertain parameter ija  is a random variable which takes values 

in interval [ ˆij ija a� , ˆij ija a� ]. Where ija  represents the nominal value of the uncertain 
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parameter and ijâ  is the deviation of the nominal value. Using duality theory, they prove that the robust 

counterpart of the uncertain linear programming model (1) to (3) can be written as: 

Min jj xc ' ,  (4) 

Subject to:  

ibpZxa
Jj

iijii
Jj

jij �d�*� ¦¦
��

 (5) 

JjxapZ jijiji ��t� ˆ  (6) 

iZi �t 0  (7) 

jipij ,0 �t  (8) 

^ `0,1jx �  (9) 

𝑍𝑖 and 𝑝𝑖𝑗 are auxiliary variables and iΓ  is a parameter called “uncertainty budget”. The parameter iΓ

adjusts the uncertainty level in each row varying in interval of [0, iJ ]. In other words, the robust 

formulation aims to protect against all cases that up to iΓ  of uncertain parameters ija are allowed to 

change. When iΓ  is set equal to zero, the constraints are equivalent to that of the nominal problem. 

Likewise, when iΓ  is set to iJ , the robust model acts with the highest level of conservatism. The role of 

iΓ  is thus to adjust the conservatism level of the robust formulation. Further details about robust 

formulation can be found in Bertsimas and Sim (2003, 2004). 

 

3.2 Formulation of the base stochastic model 

We now formulate a stochastic network design model for a supply chain under random disruptions, 

assuming no demand and supply uncertainties. We consider a generic supply chain network in which 

facilities fulfil market demands at customer locations. A disruption at any facility can cause either a 

complete shutdown or a reduced supply capacity. Disruption probabilities in different facilities are assumed 

to be independent and location specific. The facilities can be either partially or fully fortified requiring 

capital investments corresponding to the degree of fortification. An example of such investments is the 
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acquisition, installation and implementation of infection control measures to contain and prevent disease 

from disabling a workface. Another example is the acquisition and installation of advanced fire protection 

systems to mitigate the risk of factory fires. Therefore, we assume that the probability and magnitude of a 

disruption in a facility can be expressed as a function of fortification degree in that facility (as is the case 

in many disruptions). Compliance with a full fortification degree will make a facility reliable (resilient to 

major disruptions). Partially fortified facilities still remain unreliable and may be affected by disruptions 

with a given probability. When affected by a disruption, an unreliable facility can be supplied by other 

reliable facilities to compensate for the reduced supply capacity so that the assigned demands can still be 

satisfied. For a hypothetical example with two fortification levels, Figure 1 illustrates the assignment of 

customers to facilities and the shipment of products between these nodes.   

 

 

Figure 1. The assignment of customers to facilities and the shipment of products between facilities and between 

facilities and customers 

 

Customers 

Transportation links between reliable and  
Unreliable facilities 
Transportation link between customers and 
 facilities  

Reliable facilities 

Unreliable facilities with 
 fortification level 1 

Unreliable facilities with fortification level 2 
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The objective is to minimize the total cost of the supply chain in a way that customer demands are satisfied 

even in disruptions. In the presence of certain budgetary constraints, the proposed model aims to determine 

(1) the number of facilities to open, (2) the location of facilities, (3) the allocation of facilities to customers, 

(4) the required fortification degree of each facility, (5) the quantity of products shipped between reliable 

and unreliable facilities when a disruption occurs. Modeling indices, parameters and decision variables are 

defined below. 

Sets: 

K: Set of customers 

J: Set of potential locations for unreliable facilities 

M: Set of potential locations for reliable facilities 

I: Set of potential locations for facilities � �MJI �  

N: Set of fortification levels for unreliable facilities 

Parameters:  

kD : Demand of customer k ( k K� � ) 

𝐵: Budget available for establishing facilities  
U
jnf : Fixed cost of locating an unreliable facility at location j with fortification level n  

R
mf : Fixed cost of locating a reliable facility at location m � �Mm��  

jko : Unit transportation cost from unreliable facility at location j to customer k � �KkJj ���� ,  

mkl : Unit transportation cost from reliable facility at location m to customer k � �KkMm ���� ,  

mjC : Unit transportation cost from reliable facility at location m to unreliable facility at location j 

� �JjMm ���� ,  

jCU : Capacity of unreliable facility at location j under normal circumstances � �Jj��  

mCR : Capacity of reliable facility at location m � �Mm��  

jnq : Disruption probability in unreliable facility at location j with fortification level n � �NnJj ���� ,  

jna : Percentage of total capacity lose when a disruption occurs in unreliable facility at location j with 

fortification level n 

Decision variables:  
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mjT : Quantity of products shipped from reliable facility at location m to unreliable facility at location j 

� �JjMm ���� ,  

� �
¯
®
 ����

 
Otherwise0

,levelionfortificatwithopenedisfacilityunreliableIf1 NnJjnj
Yjn

1 If reliable facility is opened  ( )
0 Otherwisem

m m M
X

� �
 ®
¯

 

¯
®
 ����

 
eOtherwis0

),(facilityunreliabletoassignediscustomerIf1 KkJjjk
U jk  

1 If customer is assigned to reliable facility ( , )
0 Otherwisemk

k m m M k K
R

� � � �
 ®
¯

 

The stochastic supply chain network design model can now be developed by incorporating the impact of 

fortification levels of facilities on the probability of disruptions as well as the associated capacity and budget 

constraints into the model of Azad et al. (2013). The model is formulated as follows (note: uncertainties in 

demand, probability of disruption occurrence and capacity of facilities will be incorporated into the model 

in a later stage): 

: U R
jn jn m m jk k jk mk k mk

j J n N m M j J k K m M k K

jn jn mj mj
j J n N m M

Min f Y f X o D U l D R

q Y T C

� � � � � � �

� � �

� � �

§ ·
� ¨ ¸

© ¹

¦ ¦ ¦ ¦ ¦ ¦ ¦

¦ ¦ ¦        
  (10) 

Subject to:  

BXfYf
Mm

m
R

m
Jj Nn

jn
U
jn d� ¦¦¦

�� �

        (11) 

1t¦
�Mm

mX  (12) 

1i in
n N

X Y i I
�

� d � �¦
 

(13) 

KkMmXR mmk ���d ,  (14) 

JjYCUUD
Nn

jnj
Kk

jkk ��d¦¦
��

 (15) 
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1mj jn jn j k jk
m M n N k K

T a Y CU D U j J
� � �

§ ·
� � t � �¨ ¸
© ¹

¦ ¦ ¦  (16) 

mj k mk m m
j J k K

T D R CR X m M
� �

� d � �¦ ¦           (17) 

1jk mk
j J m M

U R k K
� �

�  � �¦ ¦  (18) 

^ `0,1mX m M� � �  (19) 

^ `0,1 ,jnY j J n N� � � � �  (20) 

^ `0,1 ,mkR m M k K� � � � �  (21) 

^ `0,1 ,jkU j J k K� � � � �  (22) 

0 ,mjT m M j Jt � � � �  (23) 

The objective function (10) minimizes the expected total cost including the costs of locating reliable and 

unreliable facilities with different fortification levels, transportation costs for shipment of products from 

facilities to customers, and expected transportation costs for shipment of products from reliable facilities to 

unreliable facilities when disruptions occur. Constraint (11) expresses the total budget limitation. Constraint 

(12) enforces that at least one reliable facility must be opened to guarantee demand satisfaction when all 

unreliable facilities are disrupted. Constraint (13) ensures that only one facility can be opened at each 

location. For this constraint, we set 0iX   for i M�  and 0inY   for i J� . Constraint (14) ensures that 

customers can only be assigned to open facilities. Constraint (15) expresses the capacity restriction of 

unreliable facilities. Constraint (16) guaranties that demand assigned to each unreliable facility is satisfied. 

Constraint (17) expresses the capacity limit of reliable facilities. Constraint (18) enforces that each customer 

is assigned to a facility. Constraints (19) to (23) define the domains of the decisions variables. 

The model formulation (10)-(23) is nonlinear by the term ¸
¹
·

¨
©
§ ¦¦ ¦

�� � Mm
mjmj

Jj Nn
jnjn CTYq  in objective 

function (10). This formulation can be linearized using a new auxiliary variable named jnmH  and a new 

constraint (25) as follows. 

: U R
jn jn m m jk k jk mk k mk jn mj jnm

j J n N m M j J k K m M k K j J m M n N
Min f Y f X o D U l D R q C H

� � � � � � � � � �
� � � �¦ ¦ ¦ ¦¦ ¦ ¦ ¦ ¦ ¦  (24) 
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Subject to:  

Constraints (11) to (23)  

NnMmJjYMTH jnmjjnm ������t ,,)1(  (25) 

0 ,jnmH j J k Kt � � � �  (26) 

Where M  is a big number and the auxiliary jnmH  is defined as follows. 

, ,                             jnm jn mjH Y T m M j J n N � � � �   
(27) 

Constraint (25) ensures that products cannot be transported from a reliable facility to an unreliable facility 

that is not yet established. Bringing the objective function (24) into the constraints and defining a new 

variableO , the above model can be rewritten as:  

O:Min  (28) 

Subject to:  

Constraints (11) to (23) and (25) and (26)  

Od

����

¦ ¦¦

¦¦¦¦¦¦¦

� � �

� �� ��� �

Jj Mm Nn
jnmmjjn

Mm Kk
mkkmk

Jj Kk
jkkjk

Mm
m

R
m

Jj Nn
jn

U
jn

HCq

RDlUDoXfYf

 (29) 

0tO  (30) 

3.3 Formulation of the hybrid robust-stochastic model 

We now extend the stochastic model presented in Section 3.2 to include uncertainties in demand, supply 

capacity and probability of disruption occurrence, forming a robust-stochastic optimization model. We first 

look at demand uncertainty in Section 3.3.1 and will then incorporate uncertainty in the likelihood of 

disruption occurrence and uncertainty in capacity of facilities in Section 3.3.2. 

3.3.1 Formulating demand uncertainty 

We utilize the robust optimization approach discussed in Section 2 to formulate demand uncertainty. The 

uncertain parameter kD  takes the values within the range of ˆ ˆ,k kk kD D D Dª º� �¬ ¼  corresponding to all 
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customers. Also, budget uncertainty D*  (conservatism degree) is considered for customer demands taking 

values between zero and the number of customers. As discussed in Section 2, the robust model can be 

written as follows. 

O:Min  (31) 

Subject to:  

Constraints (11) to (14), (18) to (23) ,(25) and (26)  

Od*�*��

����

¦¦

¦¦¦¦¦¦¦¦¦¦

��

� � �� �� ��� �

DD

Kk
k

Kk
k

Jj Mm Nn
jnmmjjn

Mm Kk
mkkmk

Jj Kk
jkkjk

Mm
m

R
m

Jj Nn
jn

U
jn

ZZpp

HCqRDlUDoXfYf

1021
 

(32) 
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KkJjUDZp jkkjk ���t� ,ˆ34  (38) 

MmXCRZpRDT
Jj

mm
D

j
Kk

k
Kk

mkkmj ��d*���¦ ¦¦
� ��

45           (39) 

KkJjUDZp jkkjk ���t� ,ˆ45  (40) 

.,0,,,,,,,,, 4321054321 KkJjZZZZZppppp jjjjjkkkkk ���t  (41) 

Where variables 4321054321 ,,,,,,,,, jjjjjkkkkk ZZZZZppppp  are auxiliary variables. 

3.3.2 Formulating supply uncertainty 

We now formulate uncertainty in supply capacity of facilities ( jna ) and uncertainty in the probability of 

disruption occurrence ( jnq ). Consider uncertain parameters jnq  and jna  that can take values within intervals 
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> @jnjnjnjn qqqq ˆ,ˆ ��  and > @jnjnjnjn aaaa ˆ,ˆ �� , respectively. Here, q*  denotes the uncertainty 

budget for the probability of disruption occurrence ranging between zero and the number of facilities 

multiplied by number of fortification levels. Also, the uncertainty budget for capacity of facilities is denoted 

by a*  which takes values between zero and the number of fortification levels. Therefore, the robust 

optimization model including the uncertainties in demand, probability of a disruption occurrence and 

capacity of facilities can be formulated as follows. 

O:Min  (42) 

Subject to:  

Constraints (11) to (14), (18) to (23) ,(25), (26), (33) to (36), and (38) to (41)   
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(43) 

MmNnJjHqpZ jnmjnjn ����t� ,,ˆ65  (44) 
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63471  
(45) 

NnJjYCUapZ jnjjnjnj ����t� ,ˆ76         (46) 

5Z , 6
jZ , 6

jnp , 7
jnp  t0                             NnJj ���� ,  (47) 

Where variables 
5Z , 

6
jZ , 

6
jnp , 

7
jnp  are axillary variables.  

Considering constraint (43), the above model can be rewritten as follows:  

6 1 2 0 1 5

: U R
jn jn m m jk k jk mk k mk

j J n N m M j J k K m M k K

D D q
jn mj jnm jn k k

j J m M n N j J n N k K k K

Min f Y f X o D U l D R

q C H p p p Z Z Z
� � � � � � �

� � � � � � �

� � � �

� � � � * � * � *

¦¦ ¦ ¦¦ ¦¦

¦¦¦ ¦¦ ¦ ¦  

(48) 

Subject to:  

Constraints (11) to (14), (18) to (23), (25), (26), (33) to (36), (38) to (41), and (44) to (47). 
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4.  Computational Experiments and Practical Implications 

4.1 Experimental design 

The application of the proposed model is investigated for 21-node, 32-node and 49-node datasets presented 

in Daskin (1995). For the 21-node and 32-node datasets, the nodes represent the state capitals of the lower 

21 and 32 United States. The 49-node dataset consists of the 48 state capitals of the United States plus 

Washington, DC. The same datasets have been used in some other studies of Snyder and Daskin (2005), 

Snyder et al. (2007), Aryanezhad et al. (2010), Qi et al. (2010) and Jabbarzadeh et al. (2012). The 

computational experiments for these data sets are completed using a branch and bound algorithm coded in 

GAMS 24.1 on a laptop with Intel Core i2 CPU, 2.53GHz and 3GB of RAM. We also need larger datasets 

to evaluate the performance of the proposed Lagrangian relaxation method. For this purpose, we develop 

and adopt three larger datasets: 88-node, 100-node and 150-node datasets. The 88-node dataset includes the 

49-node dataset, plus the 50 largest cities in the United States, minus duplicates. The 150-node dataset 

includes the 150 largest cities in the United States based on 1990 census data (Daskin, 1995). The 100-node 

dataset is comprised of random data, adopted from Snyder and Daskin (2005).  

For the 100-node dataset, the values of all parameters are obtained similar to Snyder and Daskin (2005). 

For the other datasets, the nominal demand is obtained by dividing the population data given in Daskin 

(1995) by 1,000. Three levels of fortification—full, moderate and low—are considered for facilities, 

denoted as FF, FM and FL, respectively. The fixed cost of establishing a reliable (i.e. fully fortified 

facilities) facility is obtained by dividing the fixed facility cost by 10. The fixed costs of locating unreliable 

facilities with moderate and low fortification levels are set equal to 32% and 20% of establishing a reliable 

facility. Unit transportation cost from facilities to customers is assumed to be 50% of the great-circle 

distance between facilities and customers. Unit shipment cost from reliable facilities to unreliable facilities 

is equal to 10% of the great-circle distance between them. The available budget for establishing all facilities 

is $200,000. The values of the other parameters are given in Table 1. Computational experiments are 

conducted considering 5% variability in uncertain parameters from the nominal values.  
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Table 1. Input parameters for all datasets 
 

 
Capacity under normal circumstance  

Probability of 
disruption 
occurrence 

 Percentage disrupted 
capacity 

FF  FM  FL  FM  FL  FM  FL 
21-Node 1,600  1,400  1,400  0.85  0.95  0.55  0.75 
32-Node 2,000  1,500  1,500  0.85  0.90  0.3  0.60 
49-Node 2,600  1,900  1,900  0.9  0.95  0.4  0.75 
88-Node 2,000  1,500  1,500  0.9  0.95  0.25  0.5 

100-Node 2,600  1,900  1,900  0.85  0.95  0.3  0.7 
150-Node 2,600  1,900  1,900  0.9  0.95  0.3  0.6 

 

4.2 Model implementation and initial observations 

Initial numerical results are shown in Tables 2-4 providing the optimal location of facilities as well as the 

optimal assignment of customers to facilities corresponding to different conservatism degrees for the three 

datasets. From these initial findings, one can see that the optimal location of facilities, especially the reliable 

facilities, is almost analogous at different conservatism degrees. Reliable facilities tend to be opened at sites 

5 and 7 regardless of the conservatism degree chosen. One possible reason for this can be the more 

convenient proximity of these facilities to customers and other facilities resulting in a lower transportation 

cost between nodes. Likewise, in all instances, site 4 is a preferred location to open a facility with low 

fortification level. An important insight from these observations can be that small changes in supply chain 

topology (changes in location of a small fraction of facilities) can help protecting the network against some 

of the potential risks.  

A careful comparison between the impacts that the number of customers and demand scale can have on 

facility location decisions can provide additional insights. Tables 2-4 indicates that the location of reliable 

facilities is less sensitive to changes in the number of customers served (comparing the location results for 

the three datasets). In other words, adjustment in location of unreliable facilities is used to deal with 

different demand sizes. The model is clearly taking advantage of the lower cost of opening unreliable 

facilities to cope with variations in the number of customers served. This is a good example of a situation 

where various facility fortification strategies can be used for effective demand fulfillment in different 

network sizes. 
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Table 2. Initial model outputs for the 21-node dataset 
  

Conservatism Degrees  Location of Facilities  Number of Assigned 
Customers 

D*   q*   a*   FF  FM  FL  FF  FM  FL 

0  0  0  7  5,6  3,4,15  2  11  8 
5  10  0  7  5, 6  3, 4, 9, 10, 15  2  9  10 
10  20  1  5  3,6  4, 7, 9, 10, 15  5  8  8 
15  30  1  5  6,17  4, 7, 9, 10,15  5  7  9 
18  36  2  5  6,17  4, 7, 9, 10, 12, 15  5  7  9 
21  42  2  5  4,6,17  4,7, 9, 12, 15  5  11  5 

 
 
 
 

Table 3. Initial model outputs for the 32-node dataset 
 

Conservatism Degrees  Location of Facilities  Number of Assigned 
Customers 

D*   q*   a*   FF  FM  FL  FF  FM  FL 

0  0  0  7  5  3, 4, 9,18 ,28 ,30 ,32  3  4  25 
5  10  0  7  5  3, 4, 9,18 ,28 ,30 ,32  3  5  24 
8  16  0  5  -  3, 4,7, 9,18 ,28 ,30 ,32  5  -  27 
12  24  1  5  -  3, 4,7, 9,18 ,28 ,30 ,32  5  -  27 
17  34  1  5  9  3, 4, 7, 18, 28, 30  5  5  22 
21  42  1  5  17  4, 7,9, 18, 28, 30, 32  5  3  21 
25  50  2  5  17  4,7,9,10,18,28,30,32  5  3  21 
29  58  2  5  6  4,7,9,12,17,18,28,30  2  4  26 
32  64  2  5  9,17  4,7,12,15,18,28  2  8  22 
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Table 4. Initial model outputs for the 49-node dataset 

 

Conservatism Degrees  Location of Facilities  Number of Assigned 
Customers 

D*   q*   a*   FF  FM  FL  FF  FM  FL 

0  0  0  7  5,46  3,4,15,18 ,29,30,33  7  13  22 
5  10  0  7  5,46  3,4,15,18,29,30,33  7  13  22 
10  20  0  7  5,46  3,4,15,18,29,30,33  8  13  21 
20  40  1  7  5,46  3,4,15,18,29,30,33  7  13  22 
25  50  1  7  5,46  3,4,12,15,18,29,30,33  5  11  33 
30  60  1  7  5,46  3,4,12,15,18,29,30,33  7  10  32 
40  80  2  5  46  3,4,7,15,28,30,33,34  6  8  35 
45  90  2  5  46  3,4,7,12,15,28,30,33,34  3  8  38 
49  98  2  5  46  3,4,7,12,15,28,30,33,34  2  8  39 

 

 

5.3 Analysis on the impact of a decision maker’s conservatism degree 

We now complete an experiment to investigate how the choice of conservatism degree can influence the 

overall supply chain cost and model runtime. The results are shown in Tables 5-7 for the concerned datasets. 

Not surprisingly, a greater conservatism degree results in a higher total supply chain cost to hedge the 

network against the potential risks and uncertainties. What is interesting is that in no occasion does the cost 

increase by more than 9%, indicating that considerable resilience improvements can be achieved with only 

insignificant increases in costs. 

The total cost and cost difference values in Tables 5-7 show that the supply chain cost is not linearly 

increased as conservatism degree gets larger. For example, from Table 5, a 8.9% cost increase occurs to 

improve the supply resilience from the conservative level of 0 *D  and 0 *q  to 5 *D  and 10 *q ; 

while only 0.9% cost difference is enough to move from  5 *D  and 10 *q  to 10 *D  and 20 *q . 

Another interesting observation is that in all datasets the greatest cost increase occurs in the second row, 

implying that the initial efforts to build resilience into the supply chain network are more costly. Note that 

the total cost at 0 *D , 0 *q  and 0 *a  is obtained from the objective value of the stochastic model 

disregarding the supply chain resilience in the face of supply and demand variations as described in Section 

3. The last columns of Tables 5-7 provide the model runtimes.  
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Table 5. Supply chain cost and model runtime at various conservatism degrees for the 21-node dataset 
   

D*  
q*  a*  Total Cost ($) Cost Difference (%) Runtime (Seconds) 

0 0 0 266459 0.0 3.2 
5 10 0 290078 8.9 10 
10 20 1 292757 0.9 17 
15 30 1 298763 2.1 23 
18 36 2 301572 0.9 11 
21 42 2 307879 2.1 10 

 
 
 
 
 

Table 6. Supply chain cost and model runtime at various conservatism degrees for the 32-node dataset 
   

D*  
q*  

a*  Total Cost ($) Cost Difference (%) Runtime (Seconds) 

0 0 0 289838 0.0 2 
5 10 0 312003 7.6 50 
8 16 0 316459 1.4 56 
12 24 1 319550 1.0 62 
17 34 1 320947 0.4 67 
21 42 1 321988 0.3 78 
25 50 2 324640 1.0 69 
29 58 2 332697 2.5 62 
32 64 2 338583 1.8 78 
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Table 7. Supply chain cost and model runtime at various conservatism degrees for the 49-node dataset 

 
D*  

q*  
a*  Total Cost ($) Cost Difference (%) Runtime (Seconds) 

0 0 0 314381 0.0 7 
5 10 0 319798 2.0 33 
10 20 0 327184 2.0 38 
20 40 1 330139 0.9 42 
25 50 1 331896 0.5 67 
30 60 1 335101 1.0 72 
40 80 2 336124 1.0 78 
45 90 2 342110 1.8 265 
49 98 2 348829 2.0 394 

 

 

5.4 Analysis on the impacts of demand and supply uncertainties 

For the 49-node dataset, Table 8 shows how demand and supply variations can influence the total supply 

chain cost at different conservatism degrees. What is obvious from this data is that demand variation can a 

have greater impact on the strategic supply chain cost when compared to supply uncertainty. In some 

scenarios when 30t*D , demand variations can even result in infeasibility implying failure to satisfy 

customer demand and hence product shortage and lost sales. A practical implication from this finding would 

be for the risk managers to place the primary focus on developing more accurate demand forecasts, rather 

than a focus on capacity adjustments, to avoid stockout and potential reputational damage. 
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Table 8. Supply chain cost at various conservatism degrees when facing demand and supply variations 
  

Demand Uncertainty  Supply Uncertainty 

Conservatism Degree  Total Cost  Conservatism Degree  Total Cost 

D*   5% Demand 
Variability 

10% Demand 
Variability  q*  

a*   5% Supply 
Variability 

10% Supply 
Variability 

0  309270 309270  0 0  309270 309270 

5  319006 330153  10 0  309797 310060 

10  322863 352176  20 0  309797 310060 

20  325791 357042  40 1  312663 319319 

25  330941 376643  50 1  312663 319319 

30  334773 Infeasible  60 1  312663 319319 

40  336124 Infeasible  80 2  314010 332212 

45  342110 Infeasible  90 2  314010 332212 

49  348829 Infeasible  98 2  314010 332212 

 

5.5 Analysis on the impact of budgetary constraints 

For the largest dataset, Figure 2 illustrates how the total cost is influenced by the budget availability at 

different conservatism degrees. Interesting insights can be obtained from this graph. First, regardless of the 

decision maker’s conservatism degree, initial budget availability results in significant total cost reductions. 

This is evidenced by the steepness of all three curves at the left end. However, greater cost responses to the 

initial budget injections can be observed at the higher conservatism degrees (a steeper curve for a higher 

conservatism degree). Second, the minimum required budget for the design of the supply chain is set higher 

at a larger conservatism degree. The required supply chain design budget is $50,000 at the conservatism 

level 0 *D , 0 *q  and 0 *a ; while at-least $75,000 of initial budget is required to design a network at 

higher conservatism levels. Third, while these results confirm that budget availability can play a key role 

in building resilience into a supply chain network, excessive budget injections do not necessarily result in 

reduced total costs. That is to say that the total cost remains unchanged (i.e. no additional improvements) 

after certain budget injections. As could be expected, this budget unresponsiveness is reached at smaller 

dollar values for lower conservatism degrees. 
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Figure 2. The impact of initial budget on the total supply chain cost 

 

 

6.  Conclusions  

Today’s supply chains are more difficult to design and manage. The increasing frequency and intensity of 

natural and man-made disasters from one hand, and systemic volatilities such as demand fluctuations and 

supply uncertainties from the other hand pose serious risks to global supply chains. Supply chain resilience 

is hence more critical to supply chain profitability and competitiveness than ever before. This paper 

presented an optimization model that can be used to design a supply chain resilient to (1) supply/demand 

interruptions and (2) facility disruptions whose probability of occurrence and magnitude of impact can be 

mitigated through fortification investments. The proposed robust-stochastic optimization model can also be 

utilized for reconfiguration of existing supply chains by assessing the affected operations and injecting 

more resilience into the network. 

Our interpretation of the numerical results from several experiments arrived at some interesting practical 

implications and managerial insights. For example, from multiple viewpoints we found that supply chain 

resilience can be enhanced to a large extent by only slight changes in supply chain configuration and 

insignificant increase in supply chain costs. Our analyses also showed how facility fortification strategies 

can help address demand fluctuations. Another interesting finding is that initial capital investment plays a 

200,000

300,000

400,000

500,000

600,000

700,000

800,000

50,000 75,000 100,000 150,000 200,000 250,000 300,000 400,000 600,000

O
bj

ec
tiv

e 
fu

nc
tio

n 
($

)

Budget ($)

1,20,10  * * * aqD 0,,  *** aqD



What it takes to design a supply chain resilient to major disruptions and recurrent interruptions 
Fahimnia and Jabbarzadeh 

23 
 

key role in developing a resilient supply chain and reducing the strategic supply chain costs, whilst 

excessive budget injections may not necessarily result in conforming supply chain cost reductions. 

The investigation of the influence of disruptions and interruptions on supply chain design decisions is 

gaining increasing importance. The development and availability of new decision tools and risk mitigation 

strategies can help address many of these concerns facing supply chain practitioners. Given the multiple 

contributions of this work, we set the stage for additional and important future modeling efforts and 

practical investigations in this critical research area. For example, the proposed model can be extended to 

incorporate the interdependency between supply chain disruptions/interruptions in different facilities and 

their impacts on supply chain decisions. Another direction for future research can be the inclusion and 

analysis of customer responsiveness and agility elements such as service time and delivery lead-time which 

are the critical performance metrics in fast-paced business environments.   
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