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Abstract

Models are presented for the optimal location of hubs in airline networks, that take

into consideration the congestion effects. Hubs, which are the most congested

airports, are modeled as M/D/c queuing systems, that is, Poisson arrivals,

deterministic service time, and c servers. A formula is derived for the probability of

a number of customers in the system, which is later used to propose a probabilistic

constraint. This constraint limits the probability of b airplanes in queue, to be lesser

than a value α.  Due to the computational complexity of the formulation, The model

is solved using a meta-heuristic based on tabu search.  Computational experience

is presented.

Keywords:  Hub location, Congestion, Tabu-search



Introduction

Networks involving hubs are important in transportation and telecommunications.

In both cases, when there is traffic between several origins and several

destinations, there are economical benefits if this traffic is concentrated on some

arcs of the network. A hub is a point where traffic from several origins is

concentrated and sent either to another hub, taking advantage of the economies of

scale, or to its final destination. Since the eighties, models and heuristic algorithms

have been presented for the location of a fixed number of hubs, or a number of

hubs to be determined by the solution to the model. The goal in all cases has been

to find the least expensive hub network (considering transportation and fixed

costs), given the traffic volumes between each origin-destination node pair.

Most of the hub models and algorithms discussed in the literature have been

oriented to the location of hubs in airline networks for transportation of both cargo

and passengers (selection of certain airports as hubs). Although there is a profuse

literature on the design of telecommunications networks, the models are generally

not oriented to location of hubs alone, because in these networks there are some

other difficulties, as for example, those related to arc capacities.

Telecommunications models include typically the effects of transmission delay (on

arcs) and congestion at nodes. The goal of these models is to keep average

transmission delay and average waiting times at nodes, as low as possible. On the

other hand, airline hub location models have never considered congestion; there is

a parallel body of literature concerning congestion at airports.

As it is (particularly in the last few years) evident for all airline users, hub airports

are more congested because they receive higher traffics than other airports in the



network. We formulate hub location models that consider congestion at hub

airports. The models we propose are oriented to the design of hub networks, or to

the analysis of existing hub networks with planning purposes, as for example, to

determine in which existing hub it is worth adding an additional runway.

Congestion in airports is hard to deal with, because of several complicating issues.

In the first place, arrival rate of the planes is highly variable throughout the day.

Although flights follow a schedule, they are subject to delays at their origin airports

and during the flight itself, which make their arrival non-deterministic. Secondly,

although it can be considered constant during short periods of time, the service

rate is also variable, mainly depending on weather conditions and the type of

planes that are serviced. In general, service times are not independent, identically

distributed, because there are passengers that transfer between flights. Thus,

service time for a flight may depend on the arrival time of other flights. In the third

place, at their arrival to the airport, airplanes have to go through three stages of

service: landing at a landing runway, service at a gate and departure through a

takeoff runway. Service at the gate includes waiting for passengers transferring

from other flights. The probabilistic distributions of these service times are difficult

to determine, although they can be approximated. Due to these issues, detailed

models for congestion at airports are very complicated and it is extremely difficult

to use them for planning purposes. Thus, some of the detail must be avoided

through approximations, if models for planning purposes are to be developed.

We focus on the queue formed by airplanes waiting for landing. Under certain

assumptions, the analysis is applicable to takeoff runways or combined landing-

departure runways. We use a peak hour analysis, assuming that during the peak



hour the average arrival rate and the service rate are both constant. This allows us

to model an airport as a M/D/c queuing system, i.e. Poisson arrivals, deterministic

service time and several (c) servers. This election of probabilistic modeling is

justified in the body of the paper. We state an analytic formula for the steady state

probabilities of different numbers of customers in an M/D/c system, found using an

approach similar to the one used by Gross and Harris (1974) for single server

queues and Prabhu (1965) for waiting time distribution. Later, we use this formula

for the development of a deterministic equivalent of a probabilistic constraint in an

integer optimization formulation for the location of congested hubs.

In the next section, we review briefly the related literature. Next, we develop the

probabilistic analysis and the probabilistic constraint. We present the full model and

show some computational experience obtained through the use of exact and

heuristic algorithms.

Literature Review

Hubs

The optimal location of hubs in a network is more difficult than other location

problems because, as opposed to what happens in these, hubs interact with each

other. This interaction results in non-linear models (O'Kelly, 1986a; O'Kelly, 1987

or Aykin, 1988), which can be linearized through the replacement of non-linear

products in the objective by new variables (O'Kelly and Lao, 1991). This

linearization squares the number of integer variables of the formulation. In the

telecommunications case, simpler versions of the problem have been formulated,

as the star-star concentrator location problem (Gavish, 1991; Pirkul, Nagarajan,



1992; Pirkul, Narasimhan, De, 1988; Marianov et al, 1995) in which the hubs are

not connected to each other, but instead, they are connected to a central point.

Thus, there is no interaction between them, and the problem becomes simpler.

Hub location models can be classified in two. Planar hub location problems, in

which demand is concentrated at discrete points and hubs can be located

anywhere on the plane, and network hub location problems, in which both demand

and hubs are located at discrete points on a plane. Planar problems have been

studied by O'Kelly, 1986a; Aykin, 1988; Aykin, 1995. In the case of airline

networks, these models are not realistic, because they would result in airports

being built anywhere. Consequently, we will refer to the second type, that is,

network problems. These can be, in turn, classified in several types. The p-hub-

median problem on a network (O'Kelly, 1986b; Klincewicz, 1991) locates a pre-

specified number p of hubs on nodes of a network, and allocates the demand

points to them. The uncapacitated hub location problem seeks the location of an

unknown number of hubs at nodes of a network and the allocation of demand

points to them, so that the sum of investment and transportation costs is minimized

(O'Kelly, 1992). For reviews of these, see Campbell, 1994, who also proposes

three new classes of models, analogous to the usual location problems: the p-hub

center problem, the hub set covering problem and the hub maximal covering

model. Later, Marianov, Serra and ReVelle (1998) formulated a maximum-capture

hub location model, for competitive environments. Most of the models seek cost

minimization. An exception are Campbell's, 1994, maximal covering models, which

seek the location of p hubs, so as to maximize the coverage (by pairs of hubs) of

weighted demand (represented by origin-destination pairs). No further definition of



coverage is offered. Most of these models can be written in their single-allocation

or multiple-allocation versions (a demand node is allocated to one hub, or to

several hubs, depending on the destination of the traffic).

Different solution methods have been proposed for the hub location models. Aykin

(1994) proposes lagrangian relaxation. Klincewicz (1989 and 1991) shows the

results of applying Greedy Random Adaptive Search Prcedure (GRASP) and Tabu

Search to the problem. Skorin-Kapov and Skorin-Kapov (1994) use tabu search

and compare the results with other algorithms.

None of the hub models consider congestion.

Congestion and airports

When dealing with location, most of the spatial queuing networks have been

presented in the context of emergency systems. Many of them assume a single

server in the region under study, because of the complexity of the multiple-server,

non-Markovian queues. Berman, Larson and Chiu (1985), formulate the Stochastic

Queue Median, a heuristic algorithm to locate optimally one server on a congested

network, behaving as an M/G/1 queue. A model by Batta (1988) considers a

situation with a selective rejection of calls. Batta, Larson and Odoni (1988) present

a model and an algorithm for locating one server with calls of different priorities.

Batta (1989) presents a model to study the effect of using expected service time

dependent queuing disciplines on optimal location of a single server. Based on the

one server Stochastic Queue Median, Berman, Larson and Parkan (1987) develop

two heuristics for locating p servers on a congested network. Berman and Larson

(1985) solve the problem of districting for a two-server network in the presence of



queuing, seeking minimum average response time. Later, Berman and Mandowsky

(1986), use the Stochastic Queue Median, combined with this 2-server districting

algorithm, to develop a general location - districting iterative algorithm for two units,

and for n-nodes, m-server networks. All of these models are nonlinear.

In general, a fairly large computational effort is required if these models are to be

used for location of servers. All of the models are nonlinear, heuristic, and their

objective is to minimize expected response time of servers that travel to the site of

an emergency. Also, all models use approximations in order to model the system.

Some authors have used embedded queuing systems in optimization models for

location. Marianov and ReVelle (1994 and 1996) formulated models for emergency

services in networks behaving as M/M/k queues, and Marianov and Serra (1997

and 1998) considered congested fixed servers.

 A few researchers have studied congestion at airports, mainly for obtaining a

model of its behavior. Peterson, Bertsimas and Odoni (1995) propose a model of

the set of landing strips or runways (considered as a single server), with a

deterministic, time-varying flight arrival rate and deterministic, time-varying service

rate. This model is not intended for locational purposes but for schedule policy

making. Newell (1979) presents a complete analysis of the airport operations. Both

papers review existing results on this subject.

M/D/c queuing systems

The single server M/D/1 queue (Poisson arrivals, deterministic service times, 1

server) has been completely characterized. However, few results are available in

the literature on the computation of the steady-state probabilities of different



numbers of customers in a multiple server M/D/c queue (Poisson arrivals,

deterministic service times, c servers). Syski (1986), Gross and Harris (1974),

Prabhu (1965) and Saaty (1961) present a method for finding the generating

function of these probabilities, based on a seminal development by Crommelin

(1932). Altinkemer et al, (1998) propose an approximation to the average waiting

time in an M/D/c queue with non-preemptive priorities. Prabhu (1965) presents a

formula for the limiting waiting time cumulative distribution. Knessl et al (1990)

review the results for multiple server queues and present an integral approach for

the M/G/2 queue, being a particular case the M/D/2 queue. Chaudhry et al (1992),

provide an algorithm for numerically finding the limiting distribution of the number in

the system for a Bulk arrival M/D/c queue. Many approximations and bounds for

the average waiting time are available (see Altinkemer et al, 1998 for a survey).

Model for the Location of Congested Hubs (MoLoCH), when the number of
runways at each airport is fixed a priori.

In a detailed analysis of congestion at airports, Peterson et al (1995) model the

transient behavior of a queuing system at an airport using a time horizon (one day)

divided in small intervals (15 minutes). Since flights follow schedules, each interval

t is characterized by its own deterministic arrival rate, λt, which is highly variable

from one interval to the next. They also assume bulk service at the end of the

period, according to a service rate µt, also deterministic, which may last for several

periods, depending on the runway configuration and weather conditions. Later,

they remark that there is almost always a variation around scheduled arrival times,

so a time varying (from period to period) Poisson process could to be a better



representation of the arrival rates. They confirm the validity of a Poisson-arrivals

assumption, as well as the fit of their own model using real data. They also remark

that their model is not exact in the sense that services take place over the whole

interval, rather than concentrating at the end of it. Their model, taking into account

the mentioned remarks, is probably the best approximation to the real behavior of

the congestion at an airport. However, this model is not suitable for location

purposes unless it is embedded in a simulation-type of location algorithm. Such a

simulation algorithm should have as a starting point the location of the hubs, and a

proposed schedule plan for all flights, for each proposed hub location set. This

makes such a location algorithm practically impossible to use. Furthermore, they

present recursive formulas for the waiting time and queue length, which require

extensive computation time and the knowledge of large amounts of data. This data

includes the arrival rates at every 15-minute-period of the day, the service rates at

all times, and all the transition probabilities of going from one service rate to a

different one. Thus, the use of their model imbedded in a location optimization

algorithm can be discarded.

Since our goal is to construct a model for strategic planning purposes (hub

location), as opposed to a model for traffic control policy-making, as Peterson’s et

al, (1995), we do not focus on a transient or microscopic analysis of the delays at

the airports. Rather, we use an approximation of the behavior of the airport from

the point of view of congestion, which allows us to develop a tractable hub location

model.

In order to construct the location optimization model, we use a peak-hour analysis.

This is a worst case analysis, and the hope is, that improving the performance at



peak hours will reduce also the queuing effects during off-peak time. We focus on

the landing runways. Takeoff runways could be assumed to behave in the same

way as landing runways, only delayed by the service time at the gate. For the sake

of clarity, we assume that there are different runways for landing and takeoff, so

the demand for service is composed only by the landing flights. In the case of

airports where the same runways are used for both landing and departure, the

assumption can be made that the service time at the gates (between landing and

departure) is approximately exponential. Then, the departure process is Poisson.

Thus, two added Poisson processes, with different average arrival rates, compose

the arrival process to the runways. If such assumption can be validated in practice,

our analysis and model are valid also for this case. We use also some of the

assumptions in Peterson et al (1995) model. In particular, as they suggest, during

peak hours we assume that arrivals of flights to a hub located at node k follow a

Poisson distribution.  We also assume a deterministic service time at the same

node. As opposed to what other authors do (Gerla and Kleinrock, 1977, Peterson

et al 1995), we do not approximate the set of undistinguishable servers (landing

runways) as one server. Instead, we use a more exact M/D/c model for the system.

The first hub-location model we propose is based on the plant location model

(Balinski, 1965). O’Kelly (1992) and Campbell (1994) presented different

uncapacitated versions of the hub location model. Since we need to maintain

congestion within acceptable limits, we choose to add an extra probabilistic

“capacity” constraint, as follows:
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cijkm = transportation cost from node i to node j going through hubs located at
nodes k and m.

fk = fixed cost of locating a hub (with a predetermined number of runways)
at node k.

ατ, αq = desired upper bounds for the probabilities of inadequate waiting times
or queue lengths at hubs.

In this model, the objective minimizes transportation cost, as well as fixed costs of

locating the hubs. The first constraint forces the traffic to go through one or two

hubs (note that if both hub subscripts are the same, the traffic goes only through

one hub). The next two equations force the traffic to go through hubs that are

effectively located. The new probabilistic constraint (5) forces the probability of

more than b airplanes waiting on queue to be less than αq.  The alternative



equation (6) is written in terms of waiting time: the probability of an aircraft having

to wait for more than a time τ is constrained to be less than ατ.

Probabilistic equations (5) and (6) must be rewritten in an analytic, hopefully linear

form, for the model to be possible to solve. In order to write a deterministic, linear

equivalent to equation (5), let ps be the steady state probability of s customers

being in the system with c servers. Then, the probability of more than b airplanes

waiting on queue is

∑
∞

++= 1cbs
sp ,   or     ∑

+

=

−
cb

s
sp

0

1 (8)

that is, more than b airplanes on queue and c being served. The second form just

uses the fact that the sum of all probabilities is one.

We want to restrict this probability to be less than or equal to αq. In order to derive

a useful formula, we need the expression for the probabilities of different numbers

of customers in the system, ps. It has not been possible to find the expression in

the reviewed literature, so we find it. Given an arrival rate of λ and a service time of

T = 1/µ, where µ is the service rate, we use the generating function for these

probabilities (Prabhu, 1965):
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where c is the number of servers, and vi is calculated using the equations:
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In equation (11), jz  is the jth root of equation
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Note that the limiting distribution for ps exists only for c > λT. Otherwise, the queue

length tends to infinity. In this case, equation (12) has exactly c distinct roots zj

(one of which is 1), within and on the unit circle |z| ≤ 1. (Prabhu, 1965). Once these

roots are known, the set of c equations composed by equations (10) and (11) have

a determinant that does not vanish, and the c unknowns v0, v1, ... vc-1 are uniquely

determined. Thus, for a complete knowledge of the generating function, equation

(12) is solved first for the roots zj and next, equations (10) and (11) are solved for

the parameters vi. We remark that, because of the how the generating function is

constructed, and the form in which the parameters vs are defined, for s ≤ c –1,

ps = vs - vs-1 or ∑
=

=
s

i
ss pv

0

.

Note that the roots zj are complex numbers. However, it can be shown that the

values of the parameters vi, as well as the values of the probabilities ps are real

(see Appendix A.1). Once the generating function is known, the probabilities ps are

the coefficients of zs in the generating function, when this function is written as
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In order to write equation (8) in the form of equation (13), we expand its

denominator in series, in the region )1( zTc ez −−< λ , which coincides with the region

of interest |z| ≤ 1.

[ ]∑
∞

=

−
− =

− 0

)1(
)1(1

1

k

kzTc
zTc ez

ez
λ

λ (14)

 ∑
∞

=

−=
0k

TzkTkkc eez λλ

 ∑ ∑
∞

=

∞

=

−
=

0 0 !
)(

k m

m
Tkkc

m
Tzk

ez
λλ

 ∑∑
∞

=

∞

=

+−=
0 0 !

)(
)1(

k m

mkc
m

mTk z
m
Tk

e
λλ

defining a new index n = kc + m,

∑ ∑
∞

=

∞

=

−
−

− −
−=

− 0
)1( )!(

)(
)1(

1

1

k kcn

n
kcn

kcnTk
zTc z

kcn
Tk

e
ez

λλ
λ (15)

The interested reader can verify (graphing the region of summation on the n - k

plane) that equation (15) is equivalent to
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where  cnr /= , the floor function of n/c, that is, the largest integer smaller than or

equal to n/c. Thus, using equations (9) and (16),
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We define again a new summation index s = n + j, rewrite  cjsr /)( −= , and

perform a reordering of terms analogous to that done to equation (15).  Then, the

generating function can be rewritten as
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After some short algebraic operations of the same nature as those already done,

we can find the coefficients ps of zs in the generating function:
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Now, we use the fact that, for s ≤ c –1, ps = vs - vs-1, to simplify the formula to
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If the values of c, λ and T were known, it would be possible to compute the values

of ps for all s, using equation (19), and the probabilistic constraint (5) could be

written as
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for all nodes were the hubs are located. In this case, λ is the airplane arrival rate to

the hub; c is the number of runways at the same hub, and T the service time at

each runway. Thus, this constraint would be
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However, neither the location of hubs and runways nor the arrival rates to hubs are

known before solving the model. The locations of the hubs are given by the values

of the variables yk, and the arrival rate to a hub located at node k is given by:

∑∑∑∑∑∑ +=
i j m

ijmkij
i j m

ijkmijk xaxaλ , (22)

where aij is the known average rate of airplanes going from node i to node j,

(through hub k) computed for the peak hour. Note that the airplanes coming

directly from an origin node i (first term of the expression), plus the airplanes

coming from another hub, m (second term of the expression) compose the total

arrival rate to a hub k

If the expression for λk given in equation (22) could be plugged in equation (21), we

would obtain a nonlinear, deterministic equivalent to constraint (5). Unfortunately,

this is not possible, because the values of the parameters vs are computed

numerically, starting from a known value of the arrival rate. However, for c > λT, i.e.

if the equilibrium condition is satisfied, the left-hand side of equation (21) must be



decreasing with increasing values of λ. This is so, because physically, when the

arrival rate increases, the queue length increases and, consequently, the

probabilities ps must increase for higher values of s and decrease for lower values

of s. As an example, suppose there is one server. If the arrival rate is zero,

evidently, p0 = 1, and equation (20) is satisfied. As the arrival rate increases, p0

decreases, and the probabilities ps , for s ≥ 1 increase. If the arrival rate keeps

increasing, probabilities ps with small values of s decrease more and more, until

equation (20) is no longer satisfied. What this means is, since the left-hand side of

equation (21) is equivalent to the left-hand side of equation (20), it decreases with

increasing values λ, and consequently, there must exist a continuous range of

values of λ, defined by λ ≤ λmax, that make the equation hold. Furthermore, λmax is

the value of λ that makes the equation (21) hold as equality. Thus, we can

numerically solve equation (21) for the variable λ and find the value λmax. Once this

value is found, any smaller value of λ will satisfy equation (21). What this means is

that equation (21) is equivalent to equation

maxλλ ≤

or, using equation (22), if a value of λmax is computed for each node k, (assuming

that there are differences between nodes in terms of service time or number of

servers),

kmax
i j m

ijmkij
i j m

ijkmij xaxa ,λ≤+ ∑∑∑∑∑∑ (23)

Equation (23) is the deterministic, linear equivalent to equation (5).

In synthesis, in order to write the model, the following steps must be taken:



1. Find the candidate nodes. For each candidate node, estimate the service time,

T and the number c of runways that can be built.

2. For each candidate node with particular values of T and c, find λmax. This is

done iteratively, by giving the arrival rate λ a starting value, solving equation

(12) for roots zj (Appendix A.2), then the set of equations (10) and (11) for

parameters vi (Appendix A.1), and finally, checking if equation (21) holds as an

equality. If it does, stop. If it does not, increase or decrease the value of the

arrival rate, depending if the left-hand side of equation (21) is greater than or

less than the right-hand side, respectively, and solve the equations again.

3. Once the values of λmax have been found, use the model

Min ∑∑∑∑∑ +
k

kk
i j k m

ijkmijkm yfxc (1)

s.t.

jix
k m

ijkm ,               1 ∀=∑∑ (2)

mkjiyx kijkm ,,,               ∀≤ (3)

mkjiyx mijkm ,,,               ∀≤ (4)

kmax
i j m

ijmkij
i j m

ijkmij xaxa ,λ≤+ ∑∑∑∑∑∑ (23)

{ } mkjixy ijkmk ,,,        10  ,1,0 ∀≤≤∈ (7)

Model for allocation of runways

If the number of runways at each airport must be optimized, new variables and

parameters must be defined. The model is:



Min ∑∑∑∑∑ +
ck

c
k

c
k

i j k m
ijkmijkm yfxc

,

(24)
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k m
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located be must airport an  where      1 ky
c

c
k ∀≥∑ (29)

{ } mkjixy ijkm
c
k ,,,        10  ,1,0 ∀≤≤∈ (30)

In this model, the new variable yc
k is one if c runways are located at hub k.

Constraints (25) and (26) have the same meaning as (3) and (4). Constraint (27)

states that, for node k, only one variable yc
k is one, thus an exact number of

runways is located. The parameter λc
max in constraint (28) has to be computed for

each c. Constraint (29) is used when some locations k are preset.

A Heuristic Procedure to Solve the Model

The models presented in the previous section have the common characteristic of

having thousands of variables and constraints for relatively small networks.

Therefore, the use of traditional optimal solution methods such as linear



programming plus branch and bound (LP+BB) can become very burdensome in

terms of computing times and, for relatively large networks, these methods cannot

be applied. On the other hand, the deterministic constraints create an additional

problem in finding integer solutions since the specified parameters are not equal to

0 or 1.  This implies that the number of branches is likely to increase dramatically

(see ReVelle, 1993, on Integer Friendly Programming).

Therefore, it is necessary to develop some alternative solution procedures to solve

these problems.  In this section we offer a heuristic for the Location of Congested

Hubs (MoLoCH) model, when the number of runways at each airport is fixed a

priori. The procedure has two phases: a construction phase and an improvement

phase.

In the first phase (construction phase), a greedy adding procedure with random

substitution (GRASP) is used to find the initial location of the facilities, where in

each iteration the vertex with the best objective value is added to the set of

locations.

In the second phase, a one opt exchange heuristic, based on the well-known Teitz

and Bart (1968) procedure is used.  For each one-opt exchange of facilities, the

objective is computed and, if its value is better than before the trade, the new set of

locations is stored.  Otherwise, the old solution is restored.  The procedure is

executed for all facilities and potential locations, until no improvement is obtained.

Since the one-opt algorithm only considers vertices that improve the objective, the

heuristic may end in a local optimum.  In order to avoid being trapped in a local

optimum, a tabu search procedure is developed, similar to the one presented by

Benati and Laporte (1994).  In essence, this tabu search explores a part of the



solution space by repeatedly examining all neighbors of the current solution, and

moving to the best neighbor even if this causes the objective function to

deteriorate. To avoid cycling, recently examined solutions are inserted in a

constantly updated tabu list.  At each iteration, a facility is selected, the  m vertices

that are closest to it are considered candidate nodes for it.  For each of the

candidates the objective is computed and the one that is not declared tabu with the

highest objective is chosen.  If the value of the new solution improves the objective,

the new solution is stored as the best one, and the vertices where the facility has

moved to is declared tabu for t iterations.  Otherwise, the new solution is still

implemented but it is not considered as the best solution so far.  If all neighbor

vertices are declared tabu, then the one with the lowest tabu tag is chosen as the

new solution.  The number of one opt trades needs to be fixed a priori.

Once the number of one-opt trades is reached, the tabu procedure is re-started

using as initial solution the pl nodes that were least visited in the previous tabu

phase.  This is known as the diversification step.

Observe that in each one opt trade a new solution is found.  This solution may not

be feasible due the nature of the capacity-like constraint (the deterministic

constraints).  If this happens, a penalty is added to the objective.  The penalty

value is proportional to the extent of the total violation of the  capacity –like

constraints and is added to the final objective.

Observe that we have assumed that the number of airports (hubs) that need to be

located is known, but in fact, when solving the MoLoCH, we do not know how

many airports we are going to locate. Therefore, the heuristic has to be modified in

the following way:  The procedure starts with 2 hubs and the algorithm is applied



and the best solution (if any) is stored.  Then, a new hub is added and the new

solution is stored if it is better than the best one so far.  We keep adding hubs until

a feasible solution is found. Once the feasible solution is found, we keep on adding

hubs until the objective value is greater than a given percentage of the best

solution so far.  The rational for this procedure is the following: as we increase the

number of hubs, the fixed cost component of the objective function increases while

the transportation cost component decreases.  If both functions are convex, the

total cost function is also convex and there is only one minimum that is global.  But

if the fixed cost function decreases as the number hubs increases, but is not

convex, and/or if the transportation cost function increases as the number of hubs

increases but is not convex, the total cost function to minimize may present some

local minima.   Therefore, it is necessary to explore the neighborhoud of the best

solution to see if we are in a local  minimum.

Computational experience

In order to test the heuristic, we randomly generated 900 instances on a 30-vertex

square grid, with uniform flow distributions between vertices in [0,5].   The right

hand side of the capacity-like constraint was set to 1200, 1400 and 1600 to see

how the tightness of the constraint affects the solution of the algorithm.   The

transportation costs between vertices  were obtained by computing their euclidean

distance.  Savings in hub-to-hub transportation were set to 50%.  Fixed costs were

set to 10.000, 25.000 and 50.000.



The number of one opt trades in the tabu phase of the heuristic was set to 200*(30-

p), where p is the number of hubs to locate.  The diversification phase was set to 3.

The size of the neiborhood was set to between 4 and 8.

For each generated network, the model was also solved to optimality using

complete enumeration.  That is, all possible combinations of hub locations were

found for p=2,3,4…until no improvement of the objective.  Therefore, we were able

to examine the performance of the heuristic in terms of accuracy. Results are

presented in Table 1.

In this table, the first column indicates the fixed cost parameter for each hub used

in the objective.  That is, the fixed cost was the same for all candidate nodes.  In

the second column, the value of the right hand side (RHS) of the capacity-like

constraint used.  Again, the same capacity was considered for all potential hub

locations. In the third column the average left hand side of the capacity-like

constraint is shown for each fixed cost and RHS.  The average value of the total

transportation cost is indicated in the fourth column.  The fifth one shows the

average number of hubs that are finally located.  Finally, the last three columns

indicate the performance of the heuristic in terms of optimality.  The sixth column

shows the number of times that the one-opt heuristic found the optimal solution,

while in the next column indicates the number of times that the tabu phase

improved the solution of the one-opt phase and obtained the optimal solution.

Finally, the eighth column shows the number of times that the algorithm did not find

the solution and the ninth one the percentage of the average deviation of the

objective value when its optimal value was not found.



As expected, as the fixed cost increases, the average cost also increases, since

less hubs are located.  For each RHS, the behaviour of all instances in terms of

transport costs, average number of hubs and the average left hand side of the

capacity-like constraint was very similar.

The performance of the heuristic in computing terms was quite satisfactory, as

shown in Table 1.  The worst perfomance was obtained when the fixed cost was

set to 10.000 and the RHS to 1200, were 6% of the runs (6 out of 100) did not

obtain the optimal solution.  In this instance, the average deviation from optimality

was equal to 6%.  In general, as the number of hubs decreases, the performance

of the heuristic tends to improve, as it is usual when one-opt heuristics are used in

location models.

Computing time was very similar across the different instances.  On average, the

heuristic took 25 seconds on a Pentium II 366 PC with 256 Mb of RAM.

Conclusions

In this paper a new hub location model has been formulated.  This model locates

hubs so as to minimize total costs (Fixed and transportation costs) while taking into

account congestion.  The model also considers the number of runways to open in

each hub.  Two versions of the model are offered:  in the first one, the number of

runways is fixed a priori, while in the second one the number of runways to open in

each hub is determined by the model itself.  The key feature of the model is the

transformation of the probabilistic constraint that states that the amount of

congestion in a hub cannot exceed a  given threshold with a probability alpha into a



deterministic linear constraint. Note that the hubs are modeled as M/D/c queuing

systems, and a novel procedure is developed for solving exactly such systems.

A one-opt meta-heuristic has been used to obtain model solutions.  This heuristic

has two phases.  The first one finds an initial solution to the problem and the

second one tries to improve it, by using first the well known Teitz and Bart (1968)

one-opt heuristic, and then executing a tabu search.  The heuristic was tested in

900 different 30 nodes-networks with success.

Further research on congested hub systems could include more exact models of

the congestion, although any improvement on these could lead to intractable

formulations.
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 Appendixes

A.1. The roots of equation

01 )1( =− −zTcez λ (12)

are, in general, complex numbers. Some of them may have real values. If zj is a
complex a root of the equation, so is z*

j, the conjugate complex. In effect, if

θi
j meibaz =+=

is a root of equation (12), then

01 )1( =− −− ibaTicc eem λθ

01 )1()( =− −− aTTbcic eem λλθ

[ ] 0)sen()cos(1 )1( =−+−− −aTc eTbciTbcm λλθλθ

0)sen()cos(1 )1()1( =−+−− −− TbcieTbcem aTaTc λθλθ λλ (A1)

both the real and the imaginary part of the left-hand side of the equation must
vanish, for the equation to hold. Since both vanish, the same happens for z*

j, the
conjugate of zj, since for this conjugate, the left-hand side of equation (12) is just
the conjugate of equation (A1).

In order to compute the parameters and vi, we use the equations (10) and (11).
Since zj and z*

j, are roots of equation (12), the following two equations are part of
the set (11):

0... 1
1

2
210 =++++ −

−
c
jcjj zvzvzvv

and

0... 1*
1

2*
2

*
10 =++++ −

−
c

jcjj zvzvzvv .

Note that z*s
j is the conjugate of zs

j. We can replace these equations for the sum of
them and the difference of them. The sum of both equations is an equation whose
coefficients are real (the imaginary part vanishes). The difference is an equation
whose coefficients are purely imaginary. If we divide the equation by i, the root of (-
1), the equation is entirely real. Thus, all the equations are real. Since the right-
hand side of these equations, as well as equation (10) are real, so are the values
of the parameters vi and, consequently, the values of the probabilities ps.



A.2. In order to solve equation (12), write z = β/α, with α = λT/c, and plug in the
equation (12), which can be then put in the following form (Syski, 1986):

ac ee αβ β 1= .

The cth root of 1 is:

c roots
1 1
2 1, -1
3 1, 

oie 120 ,
oie 120−

4 1, -1, 
oie 90 ,

oie 90−

and so on.
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Table 1:  Results 30-node network

% of optimal
solutionsFixed

Cost
RHS Avge.

LHS

Avge.
transport

cost
Avge #
of hubs T&B Tabu

% of non-
opt

solutions
%

deviation
10000 1200

1400
1600

1002
1325
1443

88376
100245
102224

3,8
3,16
2,72

85%
90%
94%

9%
6%
3%

6%
4%
3%

6%
3%
5%

25000 1200
1400
1600

1061
1395
1480

145945
156128
165607

3,08
2,52
2,16

89%
92%
95%

5%
5%
5%

6%
3%
0%

1%
2%
0%

50000 1200
1400
1600

152833
172375
182278

2,88
2,12
2,00

91%
93%
98%

7%
7%
2%

2%
0%
0%

4%
0%
0%


