197 research outputs found

    Nondestructive Testing in Composite Materials

    Get PDF
    In this era of technological progress and given the need for welfare and safety, everything that is manufactured and maintained must comply with such needs. We would all like to live in a safe house that will not collapse on us. We would all like to walk on a safe road and never see a chasm open in front of us. We would all like to cross a bridge and reach the other side safely. We all would like to feel safe and secure when taking a plane, ship, train, or using any equipment. All this may be possible with the adoption of adequate manufacturing processes, with non-destructive inspection of final parts and monitoring during the in-service life of components. Above all, maintenance should be imperative. This requires effective non-destructive testing techniques and procedures. This Special Issue is a collection of some of the latest research in these areas, aiming to highlight new ideas and ways to deal with challenging issues worldwide. Different types of materials and structures are considered, different non-destructive testing techniques are employed with new approaches for data treatment proposed as well as numerical simulations. This can serve as food for thought for the community involved in the inspection of materials and structures as well as condition monitoring

    Overview of potential methods for corrosion monitoring

    Get PDF

    A Review of Structural Health Monitoring Techniques as Applied to Composite Structures.

    Get PDF
    Structural Health Monitoring (SHM) is the process of collecting, interpreting, and analysing data from structures in order to determine its health status and the remaining life span. Composite materials have been extensively use in recent years in several industries with the aim at reducing the total weight of structures while improving their mechanical properties. However, composite materials are prone to develop damage when subjected to low to medium impacts (ie 1 – 10 m/s and 11 – 30 m/s respectively). Hence, the need to use SHM techniques to detect damage at the incipient initiation in composite materials is of high importance. Despite the availability of several SHM methods for the damage identification in composite structures, no single technique has proven suitable for all circumstances. Therefore, this paper offers some updated guidelines for the users of composites on some of the recent advances in SHM applied to composite structures; also, most of the studies reported in the literature seem to have concentrated on the flat composite plates and reinforced with synthetic fibre. There are relatively fewer stories on other structural configurations such as single or double curve structures and hybridised composites reinforced with natural and synthetic fibres as regards SHM

    Detecting Structural Defects Using Novel Smart Sensory and Sensor-less Approaches

    Get PDF
    Monitoring the mechanical integrity of critical structures is extremely important, as mechanical defects can potentially have adverse impacts on their safe operability throughout their service life. Structural defects can be detected by using active structural health monitoring (SHM) approaches, in which a given structure is excited with harmonic mechanical waves generated by actuators. The response of the structure is then collected using sensor(s) and is analyzed for possible defects, with various active SHM approaches available for analyzing the response of a structure to single- or multi-frequency harmonic excitations. In order to identify the appropriate excitation frequency, however, the majority of such methods require a priori knowledge of the characteristics of the defects under consideration. This makes the whole enterprise of detecting structural defects logically circular, as there is usually limited a priori information about the characteristics and the locations of defects that are yet to be detected. Furthermore, the majority of SHM techniques rely on sensors for response collection, with the very same sensors also prone to structural damage. The Surface Response to Excitation (SuRE) method is a broadband frequency method that has high sensitivity to different types of defects, but it requires a baseline. In this study, initially, theoretical justification was provided for the validity of the SuRE method and it was implemented for detection of internal and external defects in pipes. Then, the Comprehensive Heterodyne Effect Based Inspection (CHEBI) method was developed based on the SuRE method to eliminate the need for any baseline. Unlike traditional approaches, the CHEBI method requires no a priori knowledge of defect characteristics for the selection of the excitation frequency. In addition, the proposed heterodyne effect-based approach constitutes the very first sensor-less smart monitoring technique, in which the emergence of mechanical defect(s) triggers an audible alarm in the structure with the defect. Finally, a novel compact phased array (CPA) method was developed for locating defects using only three transducers. The CPA approach provides an image of most probable defected areas in the structure in three steps. The techniques developed in this study were used to detect and/or locate different types of mechanical damages in structures with various geometries
    • …
    corecore