1,096 research outputs found

    Learning Locally Minimax Optimal Bayesian Networks

    Get PDF
    We consider the problem of learning Bayesian network models in a non-informative setting, where the only available information is a set of observational data, and no background knowledge is available. The problem can be divided into two different subtasks: learning the structure of the network (a set of independence relations), and learning the parameters of the model (that fix the probability distribution from the set of all distributions consistent with the chosen structure). There are not many theoretical frameworks that consistently handle both these problems together, the Bayesian framework being an exception. In this paper we propose an alternative, information-theoretic framework which sidesteps some of the technical problems facing the Bayesian approach. The framework is based on the minimax-optimal Normalized Maximum Likelihood (NML) distribution, which is motivated by the Minimum Description Length (MDL) principle. The resulting model selection criterion is consistent, and it provides a way to construct highly predictive Bayesian network models. Our empirical tests show that the proposed method compares favorably with alternative approaches in both model selection and prediction tasks.

    Extrinsic local regression on manifold-valued data

    Get PDF
    We propose an extrinsic regression framework for modeling data with manifold valued responses and Euclidean predictors. Regression with manifold responses has wide applications in shape analysis, neuroscience, medical imaging and many other areas. Our approach embeds the manifold where the responses lie onto a higher dimensional Euclidean space, obtains a local regression estimate in that space, and then projects this estimate back onto the image of the manifold. Outside the regression setting both intrinsic and extrinsic approaches have been proposed for modeling i.i.d manifold-valued data. However, to our knowledge our work is the first to take an extrinsic approach to the regression problem. The proposed extrinsic regression framework is general, computationally efficient and theoretically appealing. Asymptotic distributions and convergence rates of the extrinsic regression estimates are derived and a large class of examples are considered indicating the wide applicability of our approach
    • …
    corecore