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Abstract

We propose an extrinsic regression framework for modeling data with manifold valued responses 

and Euclidean predictors. Regression with manifold responses has wide applications in shape 

analysis, neuroscience, medical imaging and many other areas. Our approach embeds the manifold 

where the responses lie onto a higher dimensional Euclidean space, obtains a local regression 

estimate in that space, and then projects this estimate back onto the image of the manifold. Outside 

the regression setting both intrinsic and extrinsic approaches have been proposed for modeling i.i.d 

manifold-valued data. However, to our knowledge our work is the first to take an extrinsic 

approach to the regression problem. The proposed extrinsic regression framework is general, 

computationally efficient and theoretically appealing. Asymptotic distributions and convergence 

rates of the extrinsic regression estimates are derived and a large class of examples are considered 

indicating the wide applicability of our approach.
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1 Introduction

Although the main focus in statistics has been on data belonging to Euclidean spaces, it is 

common for data to have support on non-Euclidean geometric spaces. Perhaps the simplest 

example is to directional data, which lie on circles or spheres. Directional statistics dates 

back to R.A. Fisher's seminal paper (Fisher, 1953) on analyzing the directions of the earth's 

magnetic poles, with key later developments by Watson (1983), Mardia and Jupp (2000), 

Fisher et al. (1987) among others. Technological advances in science and engineering have 

led to the routine collection of more complex geometric data. For example, diffusion tensor 
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imaging (DTI) obtains local information on the directions of neural activity through 3 × 3 

positive definite matrices at each voxel (Alexander et al., 2007). In machine vision, a digital 

image can be represented by a set of k-landmarks, the collection of which form landmark 
based shape spaces (Kendall, 1984). In engineering and machine learning, images are often 

preprocessed or reduced to a collection of subspaces, with each data point (an image) in the 

sample data represented by a subspace. One may also encounter data that are stored as 

orthonormal frames, surfaces, curves, and networks.

Statistical analysis of data sets whose basic elements are geometric objects requires a precise 

mathematical characterization of the underlying space and inference is dependent on the 

geometry of the space. In many cases (e.g., space of positive definite matrices, spheres, 

shape spaces, etc), the underlying space corresponds to a manifold. Manifolds are general 

topological spaces equipped with a differentiable/smooth structure which induces a 

geometry that does not in general adhere to the usual Euclidean geometry. Therefore, new 

statistical theory and models have to be developed for statistical inference of manifold-

valued data. There have been some developments on inferences based on i.i.d (independent 

and identically distributed) observations on a known manifold. Such approaches are mainly 

based on obtaining statistical estimators for appropriate notions of location and spread on the 

manifold. For example, one could base inference on the center of a distribution on the 

Fréchet mean, with the asymptotic distribution of sample estimates obtained (Bhattacharya 

and Patrangenaru, 2003, 2005; Bhattacharya and Lin, 2016). There has also been some 

consideration of nonparametric density estimation on manifolds (Bhattacharya and Dunson, 

2010; Lin et al., 2016; Pelletier, 2005). Bhattacharya and Bhattacharya (2012) provides a 

recent overview of such developments.

There has also been a growing interest in modeling the relationship between a manifold-

valued response Y and Euclidean predictors X. For example, many studies are devoted to 

investigating how brain shape changes with age, demographic factors, IQ and other 

variables. It is essential to take into account the underlying geometry of the manifold for 

proper inference. Approaches that ignore the geometry of the data can potentially lead to 

highly misleading predictions and inferences. Some geometric approaches have been 

developed in the literature. For example, Fletcher (2011) develops a geodesic regression 

model on Riemannian manifolds, which can be viewed as a counterpart of linear regression 

on manifolds, and subsequent work of Hinkle et al. (2012) generalizes polynomial 

regression model to the manifold. These parametric and semi-parametric models are elegant, 

but may lack sufficient flexibility in certain applications. Shi et al. (2009) proposes a semi-

parametric intrinsic regression model on manifolds, and Davis et al. (2007) generalizes an 

intrinsic kernel regression method on the Riemannian manifold, considering applications in 

modeling changes in brain shape over time. Yuan et al. (2012) develops an intrinsic local 

polynomial model on the space of symmetric positive definite matrices, which has 

applications in diffusion tensor imaging. A drawback of intrinsic models is the heavy 

computational burden incurred by minimizing a complex objective function along geodesics, 

typically requiring evaluation of an expensive gradient in an iterated algorithm. The 

objective functions often have multiple modes, leading to large sensitivity to start points. 

Further, existence and uniqueness of the population regression function holds only under 
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relatively restrictive support conditions. Therefore, usual descent algorithms used in 

estimation are not guaranteed to converge to a global optima.

With the motivation of developing general purpose computationally efficient, theoretically 

sound and practically useful regression modeling frameworks for manifold-valued response 

data, we propose a nonparametric extrinsic regression model by first embedding the 

manifold where the response resides onto some higher-dimensional Euclidean spaces. We 

use equivariant embeddings, which preserve a great deal of geometry for the images. A local 

regression estimate (such as a local polynomial estimate) of the regression function is 

obtained after embedding, which is then projected back onto the image of the manifold. 

Outside the regression setting, both intrinsic and extrinsic approaches have been proposed 

for modeling of manifold-valued data and for mathematically studying the properties of 

manifolds. However, to our knowledge, our work is the first in taking an extrinsic approach 

in the regression modeling context. Our approach is general, has elegant asymptotic theory 

and outperforms intrinsic models in terms of computation efficiency. In addition, there is 

essentially no difference in inference with the examples considered.

The article is organized as follows. Section 2 introduces the extrinsic regression framework. 

In Section 3, we explore the full utilities of our method through applications to three 

examples in which the response resides on different manifolds. A simulation study is carried 

out for data on the sphere (example 1) applying both intrinsic and extrinsic models. The 

results indicate the overall superiority of our extrinsic method in terms of computational 

complexity and time compared to that of intrinsic methods. The extrinsic models are also 

applied to planar shape manifolds in example 2, with applications considered to simulated 

data and to modeling the brain shape of the Corpus Callosum from an ADHD (Attention 

Deficit/Hyperactivity Disorder) study. In example 3, our method is applied to data on the 

Grassmannian considering both simulated and real data. Section 4 is devoted to studying the 

asymptotic properties of our estimators in terms of asymptotic distribution and convergence 

rate.

2 Extrinsic local regression on manifolds

Let Y ∈ M be the response variable in a regression model where (M, ρ) is a general metric 

space with distance metric ρ. Let X ∈ ℝm be the covariate or predictor variable which can be 

random or fixed. Given data (xi, yi) (i = 1, …, n), the goal is to model a regression 

relationship between Y and X. The typical regression framework with yi = F(xi) + ∊i is not 

appropriate here as expressions like yi – F(xi) are not well-defined due to the fact that the 

space M (e.g., a manifold) where the response variable lies is in general not a vector space. 

Let P(x, y) be the joint distribution of (X, Y) and P(x) be the marginal distribution of X with 

marginal density fX(x). Denote P(y|x) as the conditional distribution of Y given X with 

conditional density p(y|x). One can define the population regression function or map F(x) (if 

it exists) as

(1)
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where ρ is a distance metric on M.

Let M be a d-dimensional differentiable or smooth manifold. A manifold M is a topological 

space that locally behaves like a Euclidean space. In order to equip M with a metric space 

structure, one can employ a Riemannian structure, with ρ taken to be the geodesic distance, 

which defines an intrinsic regression function. Alternatively, one can embed the manifold 

onto some higher dimensional Euclidean space via an embedding map J and use the 

Euclidean distance ‖ · ‖ instead. The latter model is referred to as an extrinsic regression 
model. One of the potential hurdles for carrying out intrinsic analysis is that uniqueness of 

the population regression function in (1) (with ρ taken to be the geodesic distance) can be 

hard to verify. Le and Barden (2014) establish several interesting results for the regression 

framework and provide broader conditions for verifying the uniqueness of the population 

regression function. Intrinsic models can be computationally expensive, since minimizing 

their complex objective functions typically require a gradient descent type algorithm. In 

general, this requires fine tuning at each step, which results in an excessive computational 

burden. Further, these gradient descent algorithms are not always guaranteed to converge to 

a global minimum or only converge under very restrictive conditions. In contrast, the 

uniqueness of the population regression holds under very general conditions for extrinsic 

models. Extrinsic models are extremely easy to evaluate and are orders of magnitude faster 

than intrinsic models.

Let J : M → ED be an embedding of M onto some higher dimensional (D ≥ d) Euclidean 

space ED and denote the image of the embedding as M̃ = J(M). By the definition of 

embedding, the differential of J is a map between the tangent space of M at q and the tangent 

space of ED at J(q); that is, dqJ : TqM → TJ(q)ED is an injective map and J is a 

homeomorphism of M onto its image M̃. Here TqM is the tangent space of M at q and 

TJ(q)ED is the tangent space of ED at J(q). Let ‖ · ‖ be the Euclidean norm. In an extrinsic 

model, the true extrinsic regression function is defined as

(2)

where P̃(· | x) = P(- | x) ○ J−1 is the conditional probability measure on J(M) given x 
induced by the conditional probability measure P(· | x) via the embedding J.

We now proceed to propose an estimator for F(x). Let K : ℝm → ℝ be a multivariate kernel 

function such that ∫ℝm K(x)dx = 1 and ∫ℝm xK(x)dx = 0. One can take K to be a product of 

m one-dimensional kernel functions for example. Let H = Diag(h1, …, hm) with hi > 0 (i = 1, 

…, m) be the bandwidth vector and |H| = h1 … hm. Let  and

(3)
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which is basically a weighted average of points J(y1), …, J(yn). We are now ready to define 

the extrinsic kernel estimate of the regression function F(x) as

(4)

where  denotes the projection map onto the image M̃. Basically, our estimation procedure 

consists of two steps. In step one, it calculates a local regression estimate on the Euclidean 

space after embedding. In step two, the estimate obtained in step one is projected back onto 

the image of the manifold. Although we assume the projection is unique, uniqueness needs 

to be verified for each manifold and embedding. In general, we require that the image M̃ is 

closed in the Euclidean space. These conditions tend to be straightforward to show, as is 

illustrated for the examples considered in Section 3.

Note that, alternatively, we can obtain some robust estimator under our proposed framework 

by first proposing a robust estimator of F̃
E(x). This can be done by replacing the terms with ‖ 

· ‖2 in equation (3) with a term using ‖ · ‖.

A kernel estimate is obtained first in (3) before projection. However, the framework can be 

easily generalized using higher order local polynomial regression estimates (of degree p)

(Fan and Gijbels, 1996). For example, one can have a local linear estimator (Fan, 1993) for 

F̂(x) before projection. That is, for any x, let

(5)

Then, we have

(6)

(7)

The properties of the estimator F̂
E(x) where F̂(x) is given by the general pth local 

polynomial estimator of J(yi), …, J(yn) are explored in Theorem 4.4.

Remark 1

The embedding J used in the extrinsic regression model is in general not unique. It is 

desirable to have an embedding that preserves as much geometry as possible. An equivariant 
embedding preserves a substantial amount of geometry. Let G be some large Lie group 
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acting on M. We say that J is an equivariant embedding if we can find a group 

homomorphism ϕ : G → GL(D, ℝ) from G to the general linear group GL(D, ℝ) of degree 

D such that

for any g ∈ G and q ∈ M. The intuition behind equivariant embedding is that the image of M 
under the group action of the Lie group G is preserved by the group action of ϕ(G) on the 

image, thus preserving many geometric features. Note that the choice of embedding is not 

unique and in some cases constructing an equivariant embedding can be a non-trivial task, 

but in most of the cases a natural embedding arises and such embeddings can often be 

verified as equivariant.

Note that our work addresses different problems from that of Cheng and Wu (2013), which 

provides an elegant framework for high dimensional data analysis and manifold learning by 

first performing local linear regression on a tangent plane estimate of a lower-dimensional 

manifold where the high-dimensional data concentrate.

3 Examples and applications

The proposed extrinsic regression framework is very general and has appealing asymptotic 

properties as will be shown in Section 4. To illustrate the wide applicability of our approach 

and validate its finite sample performance, we carry out a study by applying our method to 

various examples with the response taking values in different well-known manifolds. For 

each of the examples considered, we provide details on the embeddings, verify such 

embeddings are equivariant, and give explicit expressions for the projections to obtain the 

final estimate in each case. In example 1, we simulate data from a 2-dimensional sphere and 

compare the estimates from our extrinsic regression model with that of an intrinsic model. 

The result indicates that the extrinsic models clearly outperform the intrinsic models by 

orders of magnitude in terms of computational complexity and time. In example 2, we first 

study a simulated example where a comparison study shows even greater computational gain 

for the extrinsic model over the intrinsic one compared with the sphere case. We then 

consider a data example with response a planar shape, in which the brain shape of the 

subjects are represented by landmarks on the boundary. Example 3 provides details of the 

estimator when the responses take values on a Stiefel or Grassmann manifold. The method is 

illustrated with a synthetic data set and a solar flare data set, both of which have subspace 

responses of possibly mixed dimension and covariates, which are the corresponding time 

points.

We will not consider an example with DTI responses below due to page concerns, but the 

extrinsic model can be applied in a similar fashion by using the log matrix map as the 

embedding. Yuan et al. (2013) considers varying coefficient model in which the log matrix 

map is also used.
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Example 1

Statistics on the 2-dimensional sphere S2, often called directional statistics, has a long 

history (Fisher, 1953; Watson, 1983; Mardia and Jupp, 2000; Fisher et al., 1987). Marzio et 

al. (2014) considers a smoothing model for regression with both predictors and responses on 

spheres. Recently, Wang and Lerman (2015) applied a nonparametric Bayesian regression 

model to an example with response on the circle S1. We first work out the details for the 

extrinsic regression method with the responses lying on a d-dimensional sphere Sd, then 

illustrate the model with simulation data {(xi, yi), i = 1, …, n}, where yi ∈ S2, the 2-

dimensional sphere.

Note that Sd is a submanifold of ℝd+1; therefore, the inclusion map ι : Sd → ℝd+1, where 

ι(y) = y serves as a natural embedding onto ℝd+1. It is easy to check that the embedding is 

an equivariant embedding. The intuition behind this embedding is that it preserves a lot of 

the symmetry of the sphere. Given J(y1), …, J(yn) with the embedding J = ι, one first 

obtains F̂(x) as given in (3). Its projection onto the image M̃ is given by

In the following, we consider a simulation study for a regression model with responses on 

the 2-dimensional unit sphere. The objective of this simulation study is to illustrate the 

application of the proposed extrinsic regression framework to data with sphere-valued 

response and to demonstrate the computational advantages over the intrinsic methods via a 

comparison study. To simulate the data, first consider a common and useful distribution, the 

von Mises-Fisher distribution (Fisher, 1953) on the unit sphere, which has the following 

density:

where κ is a concentration parameter with μ a location parameter. We simulate the data (the 

y values) from the unit sphere by letting the mean function be covariate-dependent. In 

particular, for this example, we will use data generated by the following model

(9)

where β ○ x is the Hadamard product (β1x1, …, βmxm).

As an example of what the data looks like, we generate one thousand (n = 1000) 

observations from the above model with κ = 10 so that realizations are near their expected 

value. Figure 1 shows this example in which 100 predictions from the extrinsic model are 

plotted against their true values using 900 training points. To select the bandwidth h we use 
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10-fold cross-validation with h ranging from [.1, .2, …, 1.9, 2] and choose the value that 

gives minimum average mean square error. Residuals for the mean square error are 

measured using the intrinsic distance, or great circle distance, on the sphere.

To illustrate the utility and advantages of extrinsic regression models, we compare our 

method to an intrinsic kernel regression model that uses intrinsic distance of the sphere to 

minimize the objective function. Computations on the sphere are in general not as intensive 

compared to more complicated manifolds such as shape spaces, etc, but it still requires an 

iterative algorithm, such as gradient descent, for the intrinsic model in order to obtain a 

kernel regression estimate. The following simulation results demonstrate extrinsic kernel 

regression gives at least as accurate estimates as intrinsic kernel regression but in much less 

computation time even for S2.

The intrinsic kernel regression estimate minimizes objective function 

, where y and yi are points on the sphere S2, Wi are determined by 

the Gaussian kernel function, and d(·, ·) in this case is the great circle distance. Then the 

gradient of f on the sphere is given by

where logy(yi) is the log map or the inverse exponential map on the sphere. Estimates for y 
can be obtained through a gradient descent algorithm with step size δ and error threshold ∊. 

We applied the intrinsic and extrinsic models to the same set of data using the Gaussian 

kernel function.

Twenty different data sets of 2000 observations were generated from the above sphere 

regression model with von-Mises Fisher concentration parameter κ = {1, 2, …, 20}. Of the 

2000 observations, 50 were used to check the accuracy of the extrinsic and intrinsic 

estimates. To see the effect of training sample size on the quality of the estimates, the 

estimates were also made on subsets of the 1950 training observations, starting with 2 

observations and increasing to all 1950 observations. The same training observations were 

always used for both models. In both models, the bandwidth was chosen through 10-fold 

cross validation. The intrinsic kernel regression was fit with step size δ = .01 and error 

threshold ∈ = .001. The performance of the two methods is compared in terms of MSE and 

predictive MSE. The MSE is calculated using the great circle distance between predicted 

values and the true expected value, while predictive MSE is calculated using the great circle 

distance between the predicted values and the realized values. The performance results using 

50 hold out observations can be seen in Figure 2.

Predictive MSE does not converge to 0 because the generating distribution has a high 

variance; however, as the concentration increases, the predictive MSE does approach 0. The 

extrinsic and intrinsic kernel regressions perform similarly with large sample sizes. The 

extrinsic kernel regression drops in predictive MSE faster than the intrinsic model, which 
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may stem from only having the kernel bandwidth as a tuning parameter which can be 

selected more easily than choosing the bandwidth, step-size, and error thresholds even 

through cross-validation.

A significant advantage of the extrinsic kernel regression is the speed of computation. Both 

methods were implemented in C++ using Rcpp (Eddelbuettel and Fran¸cois, 2011), and 

resulted in up to a 60× improvement in speed in making a single prediction using all of the 

training observations. For speed comparisons, a single prediction was made given the same 

number of test observations, and the time to produce the estimate was recorded. Each of 

these trials was done five times, and we compare the mean time to producing the estimate in 

Figure 3.

Note that the same kernel weights are computed in both algorithms, so the difference is 

attributable to the gradient descent versus extrinsic optimization procedures. Since the speed 

comparisons were done for computing a single prediction and the difference is due almost 

entirely to the gradient descent steps, making multiple predictions results in an even more 

favorable comparison for the extrinsic model. This experiment shows that the extrinsic 

kernel regression applied to sphere data performs at least as well on prediction and can be 

computed significantly faster.

Example 2

We now consider an example with responses on planar shapes. Planar shapes are one of the 

most important classes of landmark based shapes spaces. Such spaces were defined by 

Kendall (1977, 1984) with pioneering work by Bookstein (1978) motivated from 

applications on biological shapes. We now describe the geometry of the space which will be 

used in obtaining regression estimates for our model. Roughly speaking, the planar shape 

consists of a collection of k-landmarks modulo the action of Euclidean motions such as 

translations, scalings and rotations. Let z = (z1, …, zk) with z1, …, zk ∈ ℝ2 be a set of k 

landmarks, and < z >= (z̄, …, z̄) where . We first center and normalize z to get 

. u can be viewed as an element on some high-dimensional sphere S2k−3, 

which is called the pre-shape. The planar shape  can now be represented as the quotient 

of the pre-shape under the action of the rotation group SO(2), or the 2 by 2 special 

orthogonal group. Therefore, a point on the planar shape can be identified as the orbit or 

equivalent of z which we denote by σ(z). Viewing z as elements in the complex plane, one 

can embed  onto the S(k, ℂ), the space of k × k complex Hermitian matrices via the 

Veronese-Whitney embedding (see e.g. Bhattacharya and Bhattacharya (2012)):

(10)
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where u* is the conjugate transpose of u and ūj is the conjugate of uj. One can verify the 

embedding is equivariant (see Kendall (1984)) by taking the Lie group G to be the special 

unitary group SU(k) = {A ∈ GL(k, ℂ), AA* = I, det(A) = I}.

We now describe the projection after F̂(x) is given by (3), where J(yi) (i = 1, …, n) are 

obtained using the embedding given in (10). Letting υ(x) be the eigenvector corresponding 

to largest eigenvalue of F̂(x), by a careful calculation, one can show that the projection of 

F̂(x) is given by

Therefore, the extrinsic kernel regression estimate is given by

(11)

Comparison to Intrinsic model on synthetic data set—We compare the extrinsic 

model to an intrinsic model on synthetic planar shape data to understand if the great 

computational benefits observed for sphere data extend to other manifolds. Intuitively, as the 

Log map on a manifold grows in complexity, we would expect that the gains from using the 

extrinsic method would also grow, since we can avoid iteratively computing the Log map.

Planar shape data were generated using a scheme for polar coordinates. First, we generate 

m-dimensional covariates for the observation that will be linked to the responding shape. For 

each of the k landmarks that are in the data set, we generate an intercept for that landmark 

by getting one angle in [0, 2π] and one radius in ℝ+. Together, these specify an intercept 

shape. We add random noise, centered at a function of the covariates, to the angle and 

radius, potentially using different functions. This procedure generates K (k = 1, …, K) 

landmarks linked to m-dimensional (j = 1, …, m) covariates for N (n = 1, …, N) 

observations.

Here yn = (zn,1, …, zn,K) is the nth response on the planar shape for covariate xn = (xn,1, xn,2, 

xn,3). In our case, we simplified testing by letting σr = σϕ for values in {0.1, 0.2, …, 2}. See 

Figure 4 for an example of planar shapes resulting from this procedure with a low level of 

noise (σ = 0.1).
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For the intrinsic model, we can use the same method as before in the sphere example with a 

gradient descent type algorithm for obtaining the estimate. We replace the log map on the 

sphere with a log map for the planar shape. If pỹ(y) = ỹ〈ỹ, y〉/‖ỹ‖2 is the projection of y 
onto ỹ, the Log map between two points ỹ, y on the planar shape is defined as

We simulated 2000 observations with 3 covariates and 20 landmarks from our synthetic data 

procedure, and held 50 out as a validation set for measuring the predictive error. The kernel 

bandwidth was chosen for each model using 10-fold cross validation on the full training set. 

We measured the training error and predictive error for training sample sizes starting at 100, 

increasing to 1950 by steps of 25. When predicting the holdout sample of 50, we tracked the 

computation time to make the estimate. The results are shown in Figure 5.

The results are consistent with what we expected from both theory and what we observed 

from the sphere example. The performance in terms of root mean squared error, which is 

measured intrinsically on the shape space for both models, is similar. However, the 

computation time is drastically reduced for the extrinsic model, with the extrinsic model 

being hundreds of times faster than the intrinsic model.

We also noticed in this example that the intrinsic model was much more sensitive to the 

choice of bandwidth. When inspecting the RMSE results of each validation test, the extrinsic 

RMSE results could vary from 1 - 2, while the intrinsic RMSE could vary from 1 - 15 over 

the same bandwidth range. Because the choice of intrinsic bandwidth is so important, this 

might explain why the intrinsic model seems to slightly over fit on lower training sample 

sizes, leading to the slightly worse predictive RMSE and slightly better training RMSE.

Corpus Callosum (CC) data set—We study ADHD-200 dataset 1 in which the shape 

contour of the brain Corpus Callosum is recorded for each subject along with variables such 

as gender, age, and ADHD diagnosis. 50 landmarks were placed outlining the CC shape for 

647 patients for the ADHD-200 dataset. The age of the patients range from 7 to 21 years old, 

with 404 typically developing children and 243 individuals diagnosed with some form of 

ADHD. The original data set differentiates between types of ADHD diagnoses, and we 

simplify the problem of choosing a kernel by using a binary response for an ADHD 

diagnosis.

According to the findings in Huang et al. (2015), there is not a significant effect of gender on 

the area of different segments of the CC; however diagnosis and the interaction between 

diagnosis and age were found to be statistically significant (p < .01). With knowledge of 

these results, we performed the extrinsic kernel regression method for the CC planar shape 

response using diagnosis, x1, and age, x2, as covariates. Therefore, one is interested in the 

1http://fcon_1000.projects.nitrc.org/indi/adhd200/
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regression analysis of y (the planar shape) as a function of age and diagnostic status. The 

choice of kernel between two sets of covariates  and  is

The motivation for using this kernel is that one wishes to essentially run local smoothing 

within each diagnostic group given the significant diagnostic variable. We visualize how the 

CC shape develops over time by making predictions at different time points. We show 

predictions for ages 9, 12, 16, and 19 year old children of ADHD diagnosis or typical 

development. The results can be seen in Figure 6.

What we can observe from the two plots is that the CC shapes for the 8 year olds seem to be 

close, but by age 12 the shapes have diverged substantially, with shrinking of the CC being 

apparent in later years in development. This quality of the CC shapes between ADHD and 

normal development is consistent with results found in the literature (Huang et al., 2015).

In previous studies, ADHD diagnoses were clustered using the shape information to predict 

the diagnosis class, and the centroid of the cluster is the predicted shape for that class 

(Huang et al., 2015). Our method adds to this analysis from a regression perspective and 

predicts the CC shape as a function of age and diagnosis. Our method also has the benefit of 

evaluating quickly, making selection of the bandwidth for the kernel through cross-

validation feasible.

Example 3

We now consider another two important manifolds, the Stiefel manifolds and Grassman 

manifolds (Grassmannians). The Stiefel manifold, Vk(ℝm), is the collection of k 
orthonormal frames in ℝm, which consists of k ordered unit vectors in ℝm that are 

orthonormal to each other. That is, Vk(ℝm) = {X ∈ S(m, k), XXT = Im}. The Stiefel 

manifold includes the m dimensional sphere Sm as a special case with k=1 and O(m) the 

orthogonal group when k = m. The Stiefel manifold is a compact manifold of dimension km 
– k – k(k – 1)/2 and it is a submanifold of ℝkm. The inclusion map onto ℝkm can be further 

shown to be an equivariant embedding. Applications of Stiefel manifold are present in earth 

sciences, medicine, astronomy, meteorology and biology. Examples of data on the Stiefel 

manifold include the orbit of the comets and the vector cardiogram. As stated in Chikuse 

(2003), the vector cardiogram is in general considered as an oriented closed-space curve 

generated by a point moving in time, and each point on the curve represents the resultant 

electrical activity of the heart at that instant. A vector cardiogram (the orientation) is 

represented by two orthonormal unit vectors in ℝ3, thus a point in V2,3. Similarly, the 

orientations of the orbits of the comets given by the direction of the perihelion and the 

directed unit normal vector to the orbit can also be represented by elements in V2,3.
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Considering the extrinsic regression method for Stifel manifold-valued response data, we 

first obtain F̂(x), and the next step is to obtain the projection of F̂(x) onto M̃ = J(M). We first 

make an orthogonal decomposition of F̂(x) by letting F̂(x) = U(x)S(x), where U(x) ∈ Vk,m, 

which can be viewed as the orientation of F̂(x) and S(x) is positive semi-definite, which has 

the same rank as F̂(x). Then the projection of F̂(x) (or projection set) is given by

See Theorem 10.2 in Bhattacharya and Bhattacharya (2012) for a proof of this result. The 

projection is unique, i.e., the above set is a singleton if and only if F̂(x) is of full rank.

The Grassmann manifold or the Grassmannian Grk(ℝm) is the space of all the subspaces of a 

fixed dimension k whose basis elements are k orthonormal unit vectors in ℝm, which is 

closely related to the Stiefel manifold Vk,m. The key difference between a point on the 

Grassmannian and a point on the Stiefel manifold is that the ordering of the k orthonormal 

vectors in ℝm does not matter for the former. The Grassmannian can be viewed as the 

quotient space of the Stiefel manifold modulo O(k), the k by k orthogonal group. That is, 

Grk(ℝm) = Vk(ℝm)/O(k). A point on the Stiefel manifold can be viewed as a representative 

of the orbits for the Grassmannian. The equivariant embedding for Grk(ℝm) also exists 

(Chikuse, 2003). Let X ∈ Vk,m be a representative element of any equivalent class in 

Grk(ℝm). So a point in the Grassmannian can be represented by the orbit σ(X) = XR where 

R ∈ O(k). Then an embedding can be given by

The collection of XXT forms a subspace of ℝm2. We can verify that J is an equivariant 

embedding under the group action of G = O(m).

There are many applications of Grassmann manifolds, in which the subspaces are the basic 

element in signal processing, machine learning and so on. We consider a regression model 

with subspace valued response. Given the estimate F̂(x), the next step is to derive the 

projection of F̂(x) onto M̃ = J(M). Since all XXT form a subspace, one can use the following 

procedure to calculate the projection map of F̂(x) to the Grassmann manifold by finding an 

orthonormal basis for the image. This algorithm is a special case of the projection via 

Conway embedding (St. Thomas et al., 2014).

1. Find the eigendecomposition F̂(x) = Q⋀Q−1

2. Take the k eigenvectors corresponding to the top k eigenvalues in ⋀ as an 

orthonormal basis for F̂
E(x), Q[1:k,].

We consider two illustrative examples, one synthetic and one from a series of images from a 

solar flare, for extrinsic kernel regression with subspace valued response variables. In the 

examples, we allow the responses to be subspaces of different dimensions. The technique is 
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unique compared to other subspace regression techniques because the extrinsic distance 

offers a well defined and principled distance between responses of different dimension. This 

avoids the need to constrain the responses to be a fixed dimension or hard coding a heuristic 

distance between subspaces of different dimension into the distance function.

We consider a synthetic example in which the predictors are the time points and the 

responses are points on the Grassmann manifold. We draw orthonormal bases from the 

Matrix von Mises-Fisher distribution as their representation. We generate N draws from the 

following process with concentration parameter κ, in which the first n1 draws are of 

dimension 4 and the last n2 draws are of dimension 5,

for 1 ≤ t ≤ N do

 Draw X ∼ MN(0, Im, I5)

 μ[,1] := t + X[,1], μ[,2] := t – X[,2], μ[,3] := t2 + X[,3], μ[,4] := tX[,4]

 if t > n1 then

  μ[,5] := t + tX[,5]

 end if

 Yt := vMF(κM)

end for

Here the only covariate associated with Yt is t. With a concentration of κ = 1, and n1 = n2 = 

50, we generate much noisier data than before, and are able to correctly predict the 

dimension of the subspace at each time point. The predicted dimension at each time point 

and the residuals are plotted in Figure 7.

The key advantage of this method is not requiring any constraints on the dimension of the 

input or output subspaces. This is important in some examples, such as the solar flare 

example we will illustrate. The solar flare data consists of a large quantity of images in a 

series that is difficult to analyze. By dividing the images into smaller sets, and summarizing 

each set of images as a subspace, we reduce the amount of data and processing power 

required to analyze when a solar flare may have activated. In some cases, because of 

sporadic activity, we are not guaranteed that the dimension of the subspace is the same, 

leading to substantial problems in implementing intrinsic methods.

We apply this method to a series of images from a solar flare in Hall and Willett (2015). The 

data contains 300 snapshots of 232 × 292 pixel data, which were collected from the Solar 

Data Observatory. For each set of ten images, we vectorize the pixel data and concatenate 

the vectors to obtain a matrix for subspace estimation. The left singular vectors give the 

subspace spanning the images, with the dimension chosen by the top d singular values 

explaining 90% of the total variation. The extrinsic kernel regression procedure is then 

applied to the 30 periods and their images are recovered treating the kernel estimate of the 

subspace as the new left singular vectors. The original data and the recovered estimates at 

the given time point (measured in snapshots) can be seen in Figure 8.

When there is no solar flare, the subspace describing each image set is fairly static, and the 

kernel regression can be trained to be quite smooth. When looking at the residuals of the 
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kernel regression, it becomes very obvious when the solar flare activity begins and ends. The 

residuals ‖Y – Ŷ‖2 of each image and the estimated image are shown in Figure 9.

For all the examples considered above for which equavariant embeddings are available, 

extrinsic approaches are in general advantageous over the intrinsic models. But there are 

complex manifolds such as higher-dimensional shape spaces for which good embedding are 

hard to construct. For these cases, we expect intrinsic models to perform better than extrinsic 

ones.

4 Asymptotic properties of the extrinsic regression model

In this section, we investigate the large sample properties of our extrinsic regression 

estimates. We assume the marginal density fX(x) is differentiable and the absolute value of 

any of the partial derivatives of fX(x) of order two are bounded by some constant C. In our 

proof, we assume our kernel function K takes a product form. That is, K(x) = K1(x1) … 

Km(xm) where x = (x1, …, xm) and K1, …, Km are one dimensional symmetric kernels such 

that ∫ℝ Ki(u)du = 1, ∫ℝ uKi(u)du = 0 and ∫ℝ u2Ki(u)du < ∞ for i = 1, …, m. The results 

can be generalized to kernels with arbitrary form and with H given by a more general 

positive definite matrix instead of a diagonal matrix. Theorem 4.1 derives the asymptotic 

distribution of the extrinsic regression estimate F̂
E(x) for any x.

Theorem 4.1

Let μ(x) = E (P̃(dy|x)), which is the conditional mean regression function of P̃ and assume 

μ(x) is differentiable. Assume n|H| → ∞. Denote x = (x1, …, xm). Let 

, where the ith component Zi(x) (i = 1, …, D) of Z(x) is given by

(12)

Assume the projection  of μ̃(x) onto M̃ = J(M) is unique and  is continuously 

differentiable in a neighborhood of μ̃(x). Then the following holds assuming P(dy | x) ○ J−1 

has finite second moments:

(13)

where dμ̃(x)  is the differential from Tμ̃(x)ℝD to T (μ̃(x))M̃ of the projection map  at 

. Here Σ̃(x) = BTΣ̄(x)B, where B is the D × d matrix of the differential 
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dμ̃(x)  with respect to given orthonormal bases of Tμ̃(x)ℝD and T (μ̃(x))M̃, and the (j, k)th 

entry of Σ̄(x) is given by (14) with

(14)

where σ(Jj(y), Jk(y)) = Cov(Jj, Jk), and Jj is the jth element of J(y). Here  indicates 

convergence in distribution.

Corollary 4.2 is on the mean integrated squared error of the estimates.

Corollary 4.2

Assuming the same conditions of Theorem 4.1 and the covariate space is bounded, the mean 

integrated squared error of F̂
E(x) is of the order O(n−4/(m+4)), with the choice of hi's (i = 1, 

…, m) to be of the same order, that is, of O(n−1/(m+4)).

Remark 2—Note that in nonparametric regression with both predictors (m-dimensional) 

and responses in the Euclidean space, the optimal order of the mean integrated squared error 

is O(n−4/(m+4)) under the assumption that the true regression function has bounded second 

derivative. Our method achieves the same rates. However, whether such rates are minimax in 

the context of manifold valued response is not known.

Theorem 4.3 shows some results on uniform convergence rates of the estimator.

Theorem 4.3

Assume the covariate space x ∈ χ ⊂ ℝm is compact and  has a continuous first derivative. 

Then

(15)

As pointed out in Section 2, it is ideal in many cases to fit a higher order (say pth order) 

local polynomial model in estimating μ(x) before projecting back onto the image of the 

manifold. Such estimates are more appealing especially when F(x) is more curved over a 

neighborhood of x. One can show that similar results as those of Theorem 4.1 hold, though 

with much more involved argument.

We now give details of such estimators and their asymptotic distributions are derived in 

Theorem 4.4. Recall F(x) = E (P (dy | x)) and μ(x) = E (P̃(dy | x)) and J(y1), …, J(yn) are the 

points on M̃ = J(M) after embedding J. We first obtain an estimate F̂(x) of μ(x) using pth 

order local polynomial estimation. The intermediate estimate F̃(x) is then projected back to 

M̃ to obtain the final estimate of F(x). The general framework is given as follows:
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(16)

Some of the notation used in (16) are given as follows:

When k = 0,  corresponds to the kernel estimator, which is the same as the 

estimator given in (3). When p = 1,  coincides with the estimator β̂0 in 

(5).

Finally, we have

(17)

(18)

Theorem 4.4 derives the asymptotic distribution of F̂
E(x), with F̂(x) obtained using pth order 

polynomial local regression of J(y1), …, J(yn) given in (17).

Theorem 4.4

Let F̂
E(x) be given in (18). Assume the (p + 2)th moment of the kernel function K(x) exists 

and μ(x) is (p + 2)th order differentiable in a neighborhood of x = (x1, …, xm). Assume the 

projection  of μ(x) onto M̃ = J(M) is unique and  is continuously differentiable in a 

neighborhood of μ̃(x), where μ̃(x) = μ(x) + Bias(x), with Bias(x) given in equations (20) and 

(21) of the web supplementary. If P(dy | x) ○ J−1 has finite second moments, then we have:
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(19)

where dμ̃(x)  is the differential from Tμ̃(x)ℝD to T μ̃(x)M̃ of the projection map  at μ̃(x). 

Here Σ(x) = BTΣ̄(x)B, where B is the D × d matrix of the differential dμ̃(x)  with respect to 

given orthonormal basis of tangent space Tμ̃(x)ℝD and tangent space T μ̃(x)M̃ and the jkth 

entry of Σ̄(x) is given by (14). Here  indicates convergence in distribution.

Remark 3—Note that the order of the bias term Bias(x) differs when p is even and when p 
is odd (see the web supplementary for more details).

Remark 4—Our theoretical results are characterized in terms of the integrated mean 

squared error and the asymptotic distribution of the regression estimate. Wang and Lerman 

(2015) uses a Bayesian nonparametric model which provides a posterior distribution on the 

regression function, and the theoretical results are quantified in terms of posterior 

contraction rates. Bayesian inference for regression on manifold is in general difficult due to 

the inherent difficulty in specifying a valid likelihood. Further, full Bayesian inference 

requires developing MCMC algorithms for sampling the posterior distribution which can be 

highly non-trivial and also computationally extensive.

5 Conclusion

We have proposed an extrinsic regression framework for modeling data with manifold 

valued responses and shown desirable asymptotic properties of the resulting estimators. We 

applied this framework to a variety of applications, such as responses restricted to the 

sphere, shape spaces, and linear subspaces. The principle motivating this framework is that 

kernel regression and Riemannian geometry both rely on locally Euclidean structures. This 

property allows us to construct inexpensive estimators without loss of predictive accuracy as 

demonstrated by the asymptotic behavior of the mean integrated square error, and also the 

empirical results. Empirical results even suggest that the extrinsic estimators may perform 

better due to their reduced complexity and ease of optimizing tuning parameters such as 

kernel bandwidth. Future work may also use this principle to guide sampling methodology 

when trying to sample parameters from a manifold or optimizing an EM-algorithm, where it 

may be computationally or mathematically difficult to restrict intermediate steps to the 

manifold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left The training values on the sphere. Middle The held out values to be predicted through 

extrinsic regression. Right The extrinsic predictions (blue) plotted against the true values 

(red).
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Figure 2. 
The performance of extrinsic and intrinsic regression models on 50 test observations from 

sphere regression models with concentration parameters from 1 to 20. Each color 

corresponds to a concentration parameter. The extrinsic and intrinsic models have similar 

performance in predictive MSE with low concentration parameters. However in terms of 

MSE, the extrinsic model appears to perform better with lower sample sizes even with lower 

concentration parameters.
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Figure 3. 
Speed comparisons between the extrinsic and intrinsic kernel regressions as a function of the 

number of training observations. The average seconds to produce an estimate for a single 

test observation are plotted in red for the intrinsic model, and black for the extrinsic model. 

The multiple between the speed for the intrinsic and extrinsic estimates plotted are also 

plotted for reference.
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Figure 4. 
Examples of synthetic planar shapes with 20 landmarks generated using σr = σϕ = 0.1. The 

variation in shape is driven by the covariates linked to each shape and the idiosyncratic error.
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Figure 5. 
Results from training Intrinsic and Extrinsic models on synthetic planar shape data. Each 

line in the RMSE plots correspond to synthetic data generated from the same variance level 

in {0.1, …, 2.0}. For computation time, the red line is the Intrinsic model, the black line is 

the Extrinsic model. Each point is the average computation time over all the variance levels 

tested. Like in the sphere model, performance is similar in terms of RMSE. The most 

noticeable difference between the two is the computation time (in minutes) for the intrinsic 

model to make estimates.
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Figure 6. 
Predicted CC shape for children ages 9, 12, 16, and 19. The black shape corresponds to 

typically developing children, while the red shape corresponds to children diagnosed with 

ADHD. Kernel regression allows us to visualize how CC shape changes through 

development.
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Figure 7. 
The estimated dimension and residual for the extrinsic kernel regression estimate at each 

time point t from data generated from the specified model. The regression estimate is 

accurate on the dimension of the subspace and prediction residuals are consistent with a 

concentration parameter κ = 1.
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Figure 8. 
Pixel representation of the data (left column) and the extrinsic kernel estimates (right 

column) for the 100th frame of the solar flare video (top row) when the flare is not active, 

and then the 218th frame of the video (bottom row) when the flare is at it's peak intensity.
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Figure 9. 
The residuals of the solar flare images and the extrinsic kernel estimates over time. The 

spikes indicate solar flare activity.
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