303 research outputs found

    The Design of Medium Access Control (MAC) Protocols for Energy Efficient and QoS Provision in Wireless Sensor Networks

    Get PDF
    This thesis work focuses on innovative design of media access control (MAC) protocols in wireless sensor networks (WNSs). The characteristics of the WSN inquire that the network service design considers both energy efficiency and the associated application requirement. However, most existing protocols address only the issue of energy efficiency. In this thesis, a MAC protocol has been proposed (referred to as Q-MAC) that not only minimized the energy consumption in multi-hop WSNs, but also provides Quality of Service (QoS) by differentiating network services based on priority levels prescribed by different applications. The priority levels reflect the state of system resources including residual energy and queue occupancies. Q-MAC contains both intra- and inter- node arbitration mechanisms. The intra-node packet scheduling employs a multiple queuing architectures, and applies a scheduling scheme consisting of packet classification and weighted arbitration. We introduce the Power Conservation MACAW (PC-MACAW), a power-aware scheduling mechanism which, together with the Loosely Prioritized Random Access (LPRA) algorithm, govern the inter-node scheduling. Performance evaluation are conducted between Q-MAC and S-MAC with respect to two performance metrics: energy consumption and average latency. Simulation results indicate Q-MAC achieves comparable performance to that of S-MAC in non-prioritized traffic scenarios. When packets with different priorities are introduced, Q-MAC yields noticeable average latency differentiations between the classes of service, while preserving the same degree of energy consumption as that of S-MAC. Since the high density nature of WSN may introduce heavy traffic load and thus consume large amount of energy for communication, another MAC protocol, referred to as the Deployment-oriented MAC (D-MAC)has been further proposed. D-MAC minimalizes both sensing and communication redundancy by putting majority of redundant nodes into the sleep state. The idea is to establish a sensing and communication backbone covering the whole sensing field with the least sensing and communication redundancy. In specific, we use equal-size rectangular cells to partition the sensing field and chose the size of each cell in a way such that regardless of the actual location within the cell, a node can always sense the whole cell and communicate with all the nodes in neighboring cells. Once the sensing field has been partitioned using these cells, a localized Location-aware Selection Algorithm (LSA) is carried out to pick up only one node within each cell to be active for a fixed amount of period. This selection is energy-oriented, only nodes with a maximum energy will be on and the rest of nodes will be put into the sleep state once the selection process is over. To balance the energy consumption, the selection algorithm is periodically conducted until all the nodes are out of power. Simulation results indicated that D-MAC saves around 80% energy compared to that of S-MAC and Q-MAC, while maintaining 99% coverage. D-MAC is also superior to S-MAC and Q-MAC in terms of average latency. However, the use of GPS in D-MAC in identifying the nodes within the same cell, would cause extra cost and complexity for the design of sensor nodes

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    A Crosslayer Routing Protocol (XLRP) for Wireless Sensor Networks

    Get PDF
    The advent of wireless sensor networks with emphasis on the information being routed, rather than routing information has redefined networking from that of conventional wireless networked systems. Demanding that need for contnt based routing techniques and development of low cost network modules, built to operate in large numbers in a networked fashion with limited resources and capabilities. The unique characteristics of wireless sensor networks have the applicability and effectiveness of conventional algorithms defined for wireless ad-hoc networks, leading to the design and development of protocols specific to wireless sensor network. Many network layer protocols have been proposed for wireless sensor networks, identifying and addressing factors influencing network layer design, this thesis defines a cross layer routing protocol (XLRP) for sensor networks. The submitted work is suggestive of a network layer design with knowledge of application layer information and efficient utilization of physical layer capabilities onboard the sensor modules. Network layer decisions are made based on the quantity of information (size of the data) that needs to be routed and accordingly transmitter power leels are switched as an energy efficient routing strategy. The proposed routing protocol switches radio states based on the received signal strength (RSSI) acquiring only relevant information and piggybacks information in data packets for reduced controlled information exchange. The proposed algorithm has been implemented in Network Simulator (NS2) and the effectiveness of the protocol has been proved in comparison with diffusion paradigm

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Delay Optimized Time Slot Assignment for Data Gathering Applications in Wireless Sensor Networks

    Get PDF
    International audienceWireless sensor networks, WSNs, are an efficient way to deal with low-rate communications in confined environments such as mines or nuclear power plants because of their simplicity of deployment and low cost. In these application domains, WSNs are used to gather data from sensor nodes towards a sink in a multi-hop convergecast structure. In this paper, we focus on a traffic-aware time slot assignment minimizing the schedule length for tree topologies and for two special deployments (i.e. linear and multi-linear) representative of unusual environments. We formalize the problem as a linear program and provide results on the optimal number of slots. We then propose a delay optimized algorithm with two heuristics that minimize on the one hand the energy consumption and on the other hand the storage capacity as secondary criteria

    A Real-Time Communication Framework for Wireless Sensor Networks

    Get PDF
    Recent advances in miniaturization and low power design have led to a flurry of activity in wireless sensor networks. Sensor networks have different constraints than traditional wired networks. A wireless sensor network is a special network with large numbers of nodes equipped with embedded processors, sensors, and radios. These nodes collaborate to accomplish a common task such as environment monitoring or asset tracking. In many applications, sensor nodes will be deployed in an ad-hoc fashion without careful planning. They must organize themselves to form a multihop, wireless communication network. In sensor network environments, much research has been conducted in areas such as power consumption, self-organisation techniques, routing between the sensors, and the communication between the sensor and the sink. On the other hand, real-time communication with the Quality of Service (QoS) concept in wireless sensor networks is still an open research field. Most protocols either ignore real time or simply attempt to process as fast as possible and hope that this speed is sufficient to meet the deadline. However, the introduction of real-time communication has created additional challenges in this area. The sensor node spends most of its life routing packets from one node to another until the packet reaches the sink; therefore, the node functions as a small router most of the time. Since sensor networks deal with time-critical applications, it is often necessary for communication to meet real time constraints. However, research that deals with providing QoS guarantees for real-time traffic in sensor networks is still in its infancy.This thesis presents a real-time communication framework to provide quality of service in sensor networks environments. The proposed framework consists of four components: First, present an analytical model for implementing Priority Queuing (PQ) in a sensor node to calculate the queuing delay. The exact packet delay for corresponding classes is calculated. Further, the analytical results are validated through an extensive simulation study. Second, report on a novel analytical model based on a limited service polling discipline. The model is based on an M/D/1 queuing system (a special class of M/G/1 queuing systems), which takes into account two different classes of traffic in a sensor node. The proposed model implements two queues in a sensor node that are served in a round robin fashion. The exact queuing delay in a sensor node for corresponding classes is calculated. Then, the analytical results are validated through an extensive simulation study. Third, exhibit a novel packet delivery mechanism, namely the Multiple Level Stateless Protocol (MLSP), as a real-time protocol for sensor networks to guarantee the traffic in wireless sensor networks. MLSP improves the packet loss rate and the handling of holes in sensor network much better than its counterpart, MMSPEED. It also introduces the k-limited polling model for the first time. In addition, the whole sending packets dropped significantly compared to MMSPEED, which it leads to decrease the consumption power. Fourth, explain a new framework for moving data from the sink to the user, at a low cost and low power, using the Universal Mobile Telecommunication System (UMTS), which is standard for the Third Generation Mobile System (3G). The integration of sensor networks with the 3G mobile network infrastructure will reduce the cost of building new infrastructures and enable the large-scale deployment of sensor network

    A Service Oriented Architecture Approach for Global Positioning System Quality of Service Monitoring

    Get PDF
    This research focuses on the development of a Service Oriented Architecture (SOA) for monitoring the Global Positioning System (GPS) Standard Positioning Service (SPS) in near real time utilizing a Mobile Crowd Sensing (MCS) technique. A unique approach to developing the MCS SOA was developed that utilized both the Depart- ment of Defense Architecture Framework (DoDAF) and the SOA Modeling Language (SoaML) guidance. The combination of these two frameworks resulted in generation of all the architecture products required to evaluate the SOA through the use of Model Based System Engineering (MBSE) techniques. Ultimately this research provides a feasibility analysis for utilization of mobile distributed sensors to provide situational awareness of the GPS Quality of Service (QoS). First this research provides justification for development of a new monitoring architecture and defines the scope of the SOA. Then an exploration of current SOA, MBSE, and Geospatial System Information (GIS) research was conducted. Next a Discrete Event Simulation (DES) of the MCS participant interactions was developed and simulated within AGI\u27s Systems Toolkit. The architecture performance analysis was executed using a GIS software package known as ArcMap. Finally, this research concludes with a suitability analysis of the proposed architecture for detecting sources of GPS interference within an Area of Interest (AoI)

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalámbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portátiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalámbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalámbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemáticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes más adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMárquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17869Palanci

    Energy Efficient Designs for Collaborative Signal and Information Processing inWireless Sensor Networks

    Get PDF
    Collaborative signal and information processing (CSIP) plays an important role in the deployment of wireless sensor networks. Since each sensor has limited computing capability, constrained power usage, and limited sensing range, collaboration among sensor nodes is important in order to compensate for each other’s limitation as well as to improve the degree of fault tolerance. In order to support the execution of CSIP algorithms, distributed computing paradigm and clustering protocols, are needed, which are the major concentrations of this dissertation. In order to facilitate collaboration among sensor nodes, we present a mobile-agent computing paradigm, where instead of each sensor node sending local information to a processing center, as is typical in the client/server-based computing, the processing code is moved to the sensor nodes through mobile agents. We further conduct extensive performance evaluation versus the traditional client/server-based computing. Experimental results show that the mobile agent paradigm performs much better when the number of nodes is large while the client/server paradigm is advantageous when the number of nodes is small. Based on this result, we propose a hybrid computing paradigm that adopts different computing models within different clusters of sensor nodes. Either the client/server or the mobile agent paradigm can be employed within clusters or between clusters according to the different cluster configurations. This new computing paradigm can take full advantages of both client/server and mobile agent computing paradigms. Simulations show that the hybrid computing paradigm performs better than either the client/server or the mobile agent computing. The mobile agent itinerary has a significant impact on the overall performance of the sensor network. We thus formulate both the static mobile agent planning and the dynamic mobile agent planning as optimization problems. Based on the models, we present three itinerary planning algorithms. We have showed, through simulation, that the predictive dynamic itinerary performs the best under a wide range of conditions, thus making it particularly suitable for CSIP in wireless sensor networks. In order to facilitate the deployment of hybrid computing paradigm, we proposed a decentralized reactive clustering (DRC) protocol to cluster the sensor network in an energy-efficient way. The clustering process is only invoked by events occur in the sensor network. Nodes that do not detect the events are put into the sleep state to save energy. In addition, power control technique is used to minimize the transmission power needed. The advantages of DRC protocol are demonstrated through simulations
    • …
    corecore