48 research outputs found

    Localized Cumulative Distributions and a Multivariate Generalization of the Cramér-von Mises Distance

    Get PDF
    This paper is concerned with distances for comparing multivariate random vectors with a special focus on the case that at least one of the random vectors is of discrete type, i.e., assumes values from a discrete set only. The first contribution is a new type of characterization of multivariate random quantities, the so called Localized Cumulative Distribution (LCD) that, in contrast to the conventional definition of a cumulative distribution, is unique and symmetric. Based on the LCDs of the random vectors under consideration, the second contribution is the definition of generalized distance measures that are suitable for the multivariate case. These distances are used for both analysis and synthesis purposes. Analysis is concerned with assessing whether a given sample stems from a given continuous distribution. Synthesis is concerned with both density estimation, i.e., calculating a suitable continuous approximation of a given sample, and density discretization, i.e., approximation of a given continuous random vector by a discrete one

    Efficient Deterministic Gibbs Sampling of Multivariate Gaussian Densities

    Get PDF

    Discrete approximations of continuous probability distributions obtained by minimizing Cramér-von Mises-type distances

    Get PDF
    We consider the problem of approximating a continuous random variable, characterized by a cumulative distribution function (cdf) F(x), by means of k points, x1< x2< ⋯ < xk, with probabilities pi, i= 1 , ⋯ , k. For a given k, a criterion for determining the xi and pi of the approximating k-point discrete distribution can be the minimization of some distance to the original distribution. Here we consider the weighted Cramér-von Mises distance between the original cdf F(x) and the step-wise cdf F^ (x) of the approximating discrete distribution, characterized by a non-negative weighting function w(x). This problem has been already solved analytically when w(x) corresponds to the probability density function of the continuous random variable, w(x) = F′(x) , and when w(x) is a piece-wise constant function, through a numerical iterative procedure based on a homotopy continuation approach. In this paper, we propose and implement a solution to the problem for different choices of the weighting function w(x), highlighting how the results are affected by w(x) itself and by the number of approximating points k, in addition to F(x); although an analytic solution is not usually available, yet the problem can be numerically solved through an iterative method, which alternately updates the two sub-sets of k unknowns, the xi’s (or a transformation thereof) and the pi’s, till convergence. The main apparent advantage of these discrete approximations is their universality, since they can be applied to most continuous distributions, whether they possess or not the first moments. In order to shed some light on the proposed approaches, applications to several well-known continuous distributions (among them, the normal and the exponential) and to a practical problem where discretization is a useful tool are also illustrated

    On-Manifold Recursive Bayesian Estimation for Directional Domains

    Get PDF

    Sequence-based receding horizon control over networks with delays and data losses

    Get PDF

    Non-linear dependences in finance

    Full text link
    The thesis is composed of three parts. Part I introduces the mathematical and statistical tools that are relevant for the study of dependences, as well as statistical tests of Goodness-of-fit for empirical probability distributions. I propose two extensions of usual tests when dependence is present in the sample data and when observations have a fat-tailed distribution. The financial content of the thesis starts in Part II. I present there my studies regarding the "cross-sectional" dependences among the time series of daily stock returns, i.e. the instantaneous forces that link several stocks together and make them behave somewhat collectively rather than purely independently. A calibration of a new factor model is presented here, together with a comparison to measurements on real data. Finally, Part III investigates the temporal dependences of single time series, using the same tools and measures of correlation. I propose two contributions to the study of the origin and description of "volatility clustering": one is a generalization of the ARCH-like feedback construction where the returns are self-exciting, and the other one is a more original description of self-dependences in terms of copulas. The latter can be formulated model-free and is not specific to financial time series. In fact, I also show here how concepts like recurrences, records, aftershocks and waiting times, that characterize the dynamics in a time series can be written in the unifying framework of the copula.Comment: PhD Thesi
    corecore