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Abstract— In this paper, we address optimal control of non-
linear stochastic systems under motion and measurement uncer-
tainty with finite control input and measurement spaces. Such
problems can be formalized as partially-observable Markov
decision processes where the goal is to find policies via dy-
namic programming that map the information available to the
controller to control inputs while optimizing a performance
criterion. However, they suffer from intractability in scenarios
with continuous state spaces and partial observability which
makes approximations necessary. Point-based value iteration
methods are a class of global approximate methods that regress
the value function given the values at a set of reference points.
In this paper, we present a novel point-based value iteration
approach for continuous state spaces that uses Gaussian pro-
cesses defined over probability distribution for the regression.
The main advantages of the proposed approach is that it is
nonparametric and therefore approximation quality can be
adjusted by choosing the number and the position of reference
points in the space of probability distributions. In addition, it
provides a notion of approximation quality in terms of variance.

I. INTRODUCTION

Real-world control problems such as robot navigation are
generally affected by disturbances that often can be modeled
as a stochastic process. In the case of robot navigation,
uncertainties can arise, e.g., from external sources such as
roughness of the underground or slip of the wheels. But
also uncertainties in the theoretical assumptions such as
imprecise dynamic models or incomplete information of the
surroundings can have an impact. In addition, observations
of the robot’s state and its environment are usually available
in form of measurements that are also subject to disturbances
and only provide partial observability of relevant quantities.
Stochastic optimal control and partially-observable Markov
decision processes (POMDPs), respectively, are common
frameworks to address such problems.

Both approaches determine policies that map the infor-
mation available at a certain time step to control inputs by
optimizing a performance criterion. In the stochastic optimal
control framework, a cost function is minimized that not
only takes into account the cost at the current time step but
also future costs. Please note that in the POMDP framework
usually a value function is maximized in an analogous manner.
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In this paper, we will refer to the term value function without
loss of generality.

A solution to a stochastic control problem can be found
using the dynamic programming (DP) algorithm that is based
on Bellman’s principle of optimality [1]. This algorithm relies
on two key principles. First, it assumes the existence of
sufficient statistics in form of a probability distribution that
encompasses all the information up to the moment of policy
evaluation. And second, it computes the policy by starting at
the end of the planning horizon and going backwards in time
to the current time step and at every time step choosing a
control input that minimize the cumulative costs maintained
in form of the value function from this time step to the end
of the optimization horizon.

In general, DP for POMDPs is computationally intractable
but for very few cases, e.g., if the state, control, and
measurement spaces are finite and small [2], [3]. Under the
assumptions of linear system and measurement equation, a
quadratic cost function with deterministic parameters, and
independent and identically distributed Gaussian system
and measurement noises, DP can also be solved. This
class of problems is referred as linear quadratic Gaussian
control (LQG) [4]. For more general scenarios, approximate
DP approaches are required.

The approaches available in literature can be classified
into local and global methods. Local approaches operate on a
single trajectory. First, an initial policy is chosen and executed.
Then, going backward in time from the end of the optimization
horizon, the policy is improved using local approximations
of the value function. This procedure is repeated until a local
optimum is found. Therefore this method is also known as
trajectory optimization. For nonlinear control problems, a
popular method is to extend the LQG using a second-order
Taylor expansion of the value function and a linearization of
the system equation [5]. An extension to partially-observable
systems is given in [6]. The authors use an extended Kalman
filter (EKF) as state estimator assuming measurement and
process noise to be Gaussian.

Global value function approximations on the other hand use
interpolation methods to determine the expected future costs
at a state estimate from values available at a certain set of state
estimates. Most approaches of this class are so called point-
based value iteration methods. One important approach was
given by Pineau et al. [7] where discrete state, measurement,
and control spaces were assumed. An extension of this concept
to problems with continuous state, control, and measurements
spaces was done by Porta et al. [8], where the so-called α-
vectors that represent the value function in discrete problems



were transformed into α-functions. As foundation, the authors
showed that the value function over continuous state space is
convex in the state estimates and piecewise-linear convex for
discrete control inputs and measurements. In this approach,
the measurement, system, and reward models were described
by Gaussian mixtures and the state estimates by Gaussian
mixtures or particle sets. Another important contribution
to POMDPs for continuous state space was presented by
Thrun [9]. In his Monte Carlo POMDP algorithm, the state
estimates are represented by sets of particles. The value
function is learned using a nearest neighbor method based
on the Kullback-Leibler (KL) divergence. In [10] a finite-
state controller is used to represent the policy. The policy
is determined by sampling the state space and applying
Monte Carlo simulations. This approach was extended in [11]
by employing macro-actions and in [12] by pruning and
optimizing the policy graph. Another extension is to utilize
inductive learning in order to learn an effective discrete
representation of the continuous state space parallel to the
evaluation of the control problem [13]. In the field of
Gaussian mixture continuous POMDPs, Burks et al. [14], [15]
presented an approach for efficient hybrid continuous–discrete
probabilistic observation likelihood models using softmax
models. Besides, they also proposed a fast and scalable
clustering-based Gaussian mixture condensation technique
for large mixtures.

In this paper, we present a new point-based value iteration
method that estimates the value function using Gaussian
processes for regression. As we consider a stochastic control
problem with imperfect state information, we work with
probability distributions instead of states. To this end, a
Gaussian process approach is required that can operate on
inputs in form of probability distributions. For this purpose,
we will use the approach from [16], a short description is
given in section III. In the evaluation, we will compare the
results of our approach with the results from Porta et al. [8].

II. PROBLEM FORMULATION

In this paper, we consider a finite-horizon stochastic control
problem over a continuous state space and finite sets of control
inputs U ∈ Rnu and measurements Y ∈ Rny . The discrete-
time stochastic system may be described by the following
dynamics

xk+1 = ak(xk, uk) + wk, wk ∼ fwk ,
y
k+1

= hk+1(xk+1, uk) + vk+1, vk ∼ fvk .
(1)

Affected by the control input uk ∈ U the system state
xk ∈ Rnx changes according to the time-variant nonlinear
function ak and the system noise wk ∈ Rnx with probability
distribution fwk . The feedback to the controller is given in
form of measurements y

k
∈ Y that are related to the state

xk via the time-variant nonlinear measurement function hk
and the measurement noise vk ∈ Rny distributed according
to fvk . We assume independent and identically distributed
noise processes. Furthermore, drawing samples from the
distributions should be possible.

Given the dynamics (1), the goal consists in finding a
function or policy that maps the information available to the
controller while minimizing the cumulative cost function

J = E

{
cK(xK) +

K−1∑
k=0

ck(xk, uk)

∣∣∣∣Ik
}
, (2)

where ck gives the costs at time step k and cK the costs
at the end of the planning horizon K ∈ N, respectively.
The cost function (2) is conditioned on the information set
I0 = {fx0 (x)} that contains the probability distribution of
the initial state x0 and the model (1). At time step k, the
information set available to the controller is given by

Ik = {y
k
, uk−1, Ik−1} .

The control problem (1), (2) can be solved via dynamic
programming (DP) where an estimate of the future perfor-
mance criterion is maintained in form of value functions [17].
To this end, it first has to be reformulated in terms of sufficient
statistics that condense the measurements y

1:k
, control inputs

u1:k−1 and the initial distribution fx0 (x) into an estimate of
the state at time step k in form of the probability distribution
fxk (x). Under this reformulation, the policy computed using
DP becomes a function of the state estimates, i.e., the goal
is to find πk(fxk (x)). Then, the Bellman recursion of DP can
be formulated according to

V ∗K(fxK(x)) = E
xK∼fx

K

{
cK(xK)

∣∣IK}
V ∗k (fxk (x)) = min

uk

E
xk∼fx

k

{
ck(xk, uk) + γV ∗k+1(fxk+1)

∣∣Ik} ,(3)

where V ∗K denotes the optimal value function at the end of
the planning horizon and V ∗k the optimal value function at
time step k, and γ ∈ [0, 1] is a discount factor that reduces
the influence of far future incidences on the costs. The policy
can then be recovered via

πk(fxk (x)) = arg min
uk

E
xk∼fx

k

{
ck(xk, uk) + γV ∗k+1(fxk+1)

∣∣Ik} .

For continuous state spaces, (3) yields

V ∗K(fxK) =

∫
ck(xK)fxK(xK)dxK , (4)

and

V ∗k (fxk ) = min
uk∈U

∫ [
ck (xk, uk)

+ γ

|Y|∑
j=1

p(y
k+1,j

|xk, uk)V ∗k+1(fxk+1,y
j
,u)
]
fxk (xk) dxk .

(5)

The state estimate at the time step k + 1

fxk+1,y,u = p(xk+1|uk, yk+1
)

is defined by Bayes’ law

fx
k+1,y,u =

p(y
k+1

|xk+1)
∫
p(xk+1|xk, uk)f

x
k (xk)dxk∫∫

p(y
k+1

|xk+1)p(xk+1|xk, uk)f
x
k (xk)dxkdxk+1

(6)



and the probability of observing the measurement y
k+1

according to the previous state xk and executed control input
uk is given by

p(y
k+1
|xk, uk) =

∫
p(y

k+1
|xk+1, uk)p(xk+1|xk, uk)dxk+1.

One method to solve (5) is point-based value iteration where
the value function at each time step is only maintained for a
finite set of reference points f̂x0:k, the reference state estimates.
To compute the values at the reference points f̂xk at time step
k using Bellman recursion (3), we need to know the values at
points fxk+1 that result from f̂xk after applying uk. In general,
the points fxk+1 do not correspond to the reference points
f̂xk+1 for which the values are known and thus have to be
determined by regression methods. As the state estimates
are probability distributions, interpolating the exact value
function can only be done by regression methods that can
deal with inputs in form of probability distributions. In this
work, we present a new approach using Gaussian processes
over probability distributions to handle the regression problem
in point-based value iteration.

III. PRELIMINARIES: GAUSSIAN PROCESSES
OVER PROBABILITY DISTRIBUTIONS

An approach for Gaussian processes over probability distri-
butions is given in [16]. In this work, distance measures for
probability distributions are used to construct the covariance
functions of the Gaussian process.

A. Gaussian Processes with Deterministic Inputs

First, we introduce Gaussian processes with deterministic
inputs. A Gaussian process is a nonparametric regression
method for nonlinear mappings

y = g(x) + w ,

where a real-valued vector x is mapped to a scalar y. The
model imperfections and other disturbances are modeled with
an independent zero-mean normal noise w with variance σ2.
A Gaussian process models the output y with a Gaussian
distribution with mean m(x) and covariance C(x) that are
both functions of x. Thus, we can write

y ∼ GP(m(x), C(x)) .

Given a training dataset D = {(x1, y1), . . . , (xN , yN )},
we can estimate a Gaussian process and then use it to regress
the output g∗ at an input vector x∗. To this end, we first
construct the sample mean vector µ and the sample covariance
Σ according to

µ =
[
µ(x1)> µ(x2)> . . . µ(xN )>

]>
,

Σ =

κ(x1, x1) . . . κ(x1, xN )
...

. . .
...

κ(xN , x1) . . . κ(xN , xN )

 ,

where µ(x) denotes the mean function and κ(x, x′) the co-
variance function. Then, the hyperparameters of the Gaussian

process, i.e., the parameters of the mean and the covariance
functions, are determined by maximizing either the posterior
or the likelihood of the training outputs at the training inputs.
Finally, the mean m∗ and the variance σ2

∗ of the prediction
g∗ at x∗ can be calculated via

m∗ = µ(x∗) +K>
[
Σ + σ2I

]−1 (
y − µ

)
,

σ2
∗ = κ(x∗, x∗)−K>

[
Σ + σ2I

]−1
K ,

where K> =
[
κ(x∗, x1) κ(x∗, x2) . . . κ(x∗, xN )

]
.

An important advantage of Gaussian processes compared
to many other regression methods is that they provide the
variance σ2

∗ of the regressed output g∗ that reflects the
estimation quality. Furthermore, Gaussian processes usually
perform better compared to parametric methods such as neural
networks in problems where little training data is available
because they tend to overfit less. A more detailed introduction
to Gaussian processes is available in [18].

B. Gaussian Processes over Probability Distributions

While classical Gaussian process formalism only allows
for real-valued vectors as inputs, our application requires
Gaussian processes that can regress a real scalar function
over probability distributions. To this end, we will use
the framework presented in [16]. The main idea of this
framework is to employ covariance functions that are based
on distances between probability distributions. To visualize
this concept, consider the stationary squared exponential
covariance function

κ(xi, xj) = α2 exp

(
−1

2

(xi − xj)T (xi − xj)
l2

)

for deterministic vector-valued inputs. This function is re-
ferred to as stationary because it only depends on the squared
Euclidean distance (xi − xj)T (xi − xj) between the inputs.
The main notion of [16] is to substitute the Euclidean distance
for a distance measure between probability distributions
d(fxi , f

x
j ), which yields the new covariance function

κ(fxi , f
x
j ) = α2 exp

(
−1

2

d(fxi , f
x
j )2

l2

)
. (7)

Other covariance functions that depend on the distance
between the inputs can be extended in the same way. Further-
more, a combination of such stationary covariance functions
with non-stationary ones can be done as in the classical
Gaussian process formalism. Finally, the hyperparameter
estimation of the Gaussian process and the prediction remain
also the same.

Different distance measures exist in literature [19] that can
be used in the described framework. In this paper, we will
refer to the modified Cramér – von Mises distance (mCvMd)
[20] because it allows for computation of distances between
distributions given in form of Dirac mixtures [21].



IV. PROPOSED APPROACH

As mentioned in the introduction, we address the con-
sidered control problem using a point-based value iteration
approach where the value is maintained only at a set of
reference state estimates f̂xk that are given in form of
probability distributions. The main idea of our approach is to
approximate the value function V ∗k+1(fxk+1,y

j

) in (5) that is
required to determine the value function at a time step k using
Gaussian processes over probability distributions. Details of
the implementation are given in Algorithm 1.

Algorithm 1 Stochastic Optimal Control with Gaussian
Processes

1: k = K
2: Generate set of state estimates f̂xi,k, i = 1, ..., N

3: Initialize value function V ∗K(f̂xi,k) . (8)
4: while k > 1 do
5: New training data{

f̂x
1,k, ..., f̂

x
N,k

}
,
{
V ∗
k (f̂x

1,k), ..., V
∗
k (f̂x

N,k)
}

for GP
6: Estimate hyperparameters of GP
7: k = k − 1
8: for i = 1, ..., N do
9: Filter - prediction → fpi,k+1,u

10: Filter - update → fxi,k+1,y,u

11: Apply GP on test data fxi,k+1,y,u and
12: get V ∗k+1(fxi,k+1,y,u)

13: Calculate V ∗k (f̂xi,k) → πk(f̂xi,k) . (9)
14: end for
15: end while

In order to perform Bellman recursion (3), we need to find a
set of suitable reference state estimates in form of probability
distributions that sufficiently cover the relevant state space.
For this purpose, we use the Monte-Carlo approach of Porta
et al. [8] where random control inputs from the control
input set are applied on the state estimate alternating with
filter steps using random admissible measurements from
the measurement set. To get an optimal coverage of the
considered continuous space by a predetermined number of
state estimates N , we use the modified Cramér – von Mises
distance (mCvMd), introduced in section III-B, keeping only
state estimates with a predetermined minimum distance. We
utilize the same set of reference state estimates f̂x1,K , ..., f̂

x
N,K

in every time step, but for better understanding we will keep
the index k in the equations.

The value function V ∗k (f̂xi,k) at each time step k depends
on the value function V ∗k+1(fxi,k+1,y,u) of the future time
step k + 1 (5). As mentioned in Sec. II, fxi,k+1,y,u is the
posterior distribution of the prior reference state estimate
f̂xk,i, applying control input uk and measurement y

k
. It can

be easily seen that the state estimates at time step k in
general do not correspond to the state estimates at time step
k + 1 as illustrated in Fig. 1. To overcome this issue, we
regress the value function at the posterior state estimates
V ∗k+1(fxi,k+1,y,u) using Gaussian processes over probability

1
y 2

y
3
y4

y

1,+1k
xf

1
,y+1k

xf
2
,y+1k

xf 2,+1k
xf

4
,y+1k

xf
3
,y+1k

xf3,+1k
xf

xf

xf
k
xf

+1k
∗V

)+1,1k
xf(+1k

∗V )2,+1k
xf(+1k

∗V

)3,+1k
xf(+1k

∗V

k
∗V

Fig. 1: Evolution of the state estimates from one time step
to the next applying one action and several measurements.

distributions, introduced in section III-B. The values of the
reference state estimates calculated at the previous recursion
step (5) are used as training data for the Gaussian processes.
This is reasonable because they describe the system at the
same time step as the values of the posterior distributions
V ∗k+1(fxi,k+1,y,u) of the current recursion step.

So far the state estimates were only specified as arbitrary
probability distributions. For the implementation, we have
to utilize a tractable representation of the probability dis-
tributions. For reasons of clarity, we will omit the index i
for the state estimate in the following section. We choose
Dirac mixtures to represent the state estimates, i.e., a set of
weighted samples

fxk (x) =

M∑
m=1

wk,mδ(xk − xk,m) ,

where xk,m are the sample positions and 0 < wk,m ≤ 1 the
corresponding weights with

∑M
m=1 wk,m = 1. Dirac mixtures

can be used as approximations for arbitrary probability
distributions. Alternative representations include Gaussians
or Gaussian mixtures.

A nonlinear estimator, working with state estimates in the
form of Dirac mixtures, is needed to perform the state estima-
tion (6). We use the sampling importance resampling (SIR)
particle filter [22], but in general every particle filter can be
used.

Applying Dirac mixtures to the value function (4) and (5)
yields

V ∗K(f̂xK) =

M∑
m=1

wK,mcK(xK,m) (8)

and

V ∗k (f̂xk ) = min
uk∈U

[ L∑
l=1

wk,lck
(
xk,l, uk

)
+ γ

|Y |∑
j=1

M∑
m=1

wk+1,mp(yk+1,j
|xk+1,m, uk)V ∗k+1(fxk+1,y,u)

]
,

(9)



where the state estimates at the current time step k are
approximated by

f̂xk =

L∑
l=1

wk,lδ(xk − xk,l) .

The state estimates at the prediction step of the particle filter
after executing control input uk are

fpk+1 =

M∑
m=1

wk+1,mδ(xk+1 − xk+1,m) .

As before, the state estimates after the update step of the
particle filter are referred to as fxk+1,y,u.

We determine V ∗k+1(fxk+1,y,u) using Gaussian processes
over probability distributions. The covariance function of
the Gaussian process depends on the distance between the
probability distributions, see section III-B.

By executing Algorithm 1, the policy πK(f̂xi,k) for horizon
K is determined. Now the agent can act according to the
policy. The information about the agent’s initial position is
given to the agent in form of a initial state estimate, e.g.,
if the position is unknown a uniform distribution will be
assumed. To reach its goal the agent will execute actions
according to the policy. As the policy maps the state estimates
to actions, the agent needs to determine his current state
estimate in every time step. Knowing the initial state estimate,
the executed actions and the measurements taken in every time
step the current position of the agent can be estimated using
a particle filter. As mentioned before, the state estimates
after executing the filter are in general not corresponding
to the state estimates before. As we determined the policy
only for a fixed set of state estimates, we have to find
the corresponding control input for the calculated state
estimate at every time step. Therefore we determine the
nearest reference state estimate according to the mCvMd and
execute the control input that is mapped by the policy on this
reference state estimate.

V. EVALUATION

For the evaluation we implemented the corridor problem
from Porta et al. [8]. The properties of the experiment are
shown in Fig. 2. In this problem, a robot acts in a one-
dimensional corridor and its mission is to open one particular
door out of four doors, while its position is only known
uncertainly. The target door is the second from the right in
Fig. 2a. In our algorithm the state estimate of the robot
is given in form of Dirac mixtures. In the approach of
Porta et al. [8] the state estimate is approximated as well by
Dirac mixtures or alternatively by Gaussian mixtures. The
robot can execute three different control inputs: “move left”,
“move right”, and “open door”. In Fig. 2b, the measurement
model is shown. In contrast to the assumptions in the
problem formulation, where the likelihood is derived from the
measurement equation (1), here the likelihood is given directly
by Gaussian mixtures. Furthermore, in this experiment the
measurements are assumed to be independent of the control
inputs, which means the measurement function hk+1 in (1) is

(a) Setup of corridor problem.
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(b) Measurement model.
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(c) Reward model.

Fig. 2: Properties of the corridor problem invented by Porta
et al. [8].

independent of uk. As this problem was invented in a POMDP
framework, maximum rewards instead of minimum costs
are aimed. The reward model is also modeled by Gaussian
mixtures for every control input, see Fig. 2c. Our algorithm
is working optimally only for small system noise, therefore
we consider zero-mean Gaussian noise with covariance 10−5.
All other parameters are adopted from the online available
implementation of Porta et al. [8]. We consider 200 reference
state estimates each represented by a Dirac mixture with
40 samples. Their evolution, applying control inputs and
measurements, is calculated using the SIR particle filter of the
Nonlinear Estimation Toolbox [23]. In the Gaussian process,
we use the squared exponential covariance function (7).

In the next section we first give a proof-of-concept for
our approach solving the corridor problem, then we compare
our results to the results of Porta et al. [8]. The corridor
problem has a discount factor of 0.95, thus the value function
is supposed to converge after a finite number of time steps. In
Fig. 3a, the sum of the values of all reference state estimates∑N

i=1 V
∗
k (f̂xi ) for every time step is shown. It can be seen,

that the value function converges after approximately 80 time
steps. The policy converges even faster after approximately
eight time steps, which is presented in Fig. 3b.
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(b) Number of changes in the policy per time step.

Fig. 3: Evolution of the value function and the number of
policy changes for horizon K = 90.

The regression of the value function using Gaussian
processes is illustrated in Fig. 4. As we mentioned in section
IV, the training data are the values at the reference state
estimates calculated at the previous recursion step (blue
circles). For the current recursion step k, we need the values of
the state estimates at time step k+ 1, see equation (9). Those
state estimates are determined by applying all combinations
of actions and measurements on the reference state estimates
and act as test data in the Gaussian process. In Fig. 4, we
show the regressed values for those state estimates belonging
to one reference state estimate at the current recursion step
k (red crosses). Please note, the state estimates are given in
form of Dirac mixtures. In the Gaussian process, for every
input in form of a Dirac mixture a output in form of a scalar
value is determined. For simplicity, the value function is
drawn over the means and covariances of the Dirac mixtures
in Fig. 4.

Finally, we compare the results of our approach with the
results of Porta et al. [8]. Their algorithm solves the control
problem for an infinite horizon. For this, they determine the
policy by approximating the value function iteratively. As
shown before, the policy determined by our algorithm as
well gets stationary after some time steps. For this reason
the results after the first time steps may not be comparable,
but after the policy converged, they are.

For the simulation of the robot walk, we assume contrary
to the Porta et al. [8] corridor problem, that the starting
point of the robot is known with a small uncertainty, here
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Fig. 4: Values over mean and covariance of the state estimates.
The blue circled are the training data and the red crosses
are the values determined at the test data using Gaussian
processes over probability distributions.

the initial state estimate is a Gaussian distribution with
covariance 0.2. In our algorithm, we convert the Gaussian
distribution into a Dirac mixture. Therefore we use the
GaussianSamplingLCD of the Nonlinear Estimation Toolbox
[23], which is a Gaussian sampling technique based on
the localized cumulative distribution (LCD). In Fig. 5, we
show the results for a start state estimate with mean −2
assuming a 30 time steps robot walk. We determined the
policy for different run times executing our algorithm ten
times. Afterwards we simulated the robot walk 200 times
per policy. The results of Porta et al. [8] were calculated
running the solver ten times and executing the simulation 20
times per ascertained policy at different run times. As they
presented two different approaches for state estimates in form
of Gaussian mixtures and Dirac mixtures, we determined
the results for both. The simulation was implemented in
MATLAB R2018a and run on a Intel Core i5-3570 at
3.40 GHz under Windows 10.

Even though our approach is intended for finite horizon
problems, we achieve better results for small run times than
Porta et al. [8]. After a solver run time of approximate
300 s, our results are equal to the results of Porta et al.
[8] using Gaussian mixtures to represent the state estimates.
Comparing the approaches that use states estimates in form
of Dirac mixtures which allows a representation of arbitrary
distributions, we outperform the approach of Porta et al. [8].

VI. CONCLUSIONS

In this paper, we introduced a novel point-based value
iteration algorithm for problems with continuous state spaces
and finite control and measurement spaces. Due to partial
observability, the problem is addressed in the space of
probability distributions that constitute sufficient statistics
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Fig. 5: Results of a 30 time steps robot walk simulation using
policies determined after different solver run times.

obtained via filtering. In order to regress the value function
during Bellman recursion, we use Gaussian processes that
are defined over probability distributions. The presented
approximation method does not pose restrictive assumptions
onto the class of probability distributions. In our experiments,
the proposed algorithm showed competitive performance to
state-of-the-art approaches, in the case that the starting point
is known with a small uncertainty.

For more complex value functions more reference state
estimates might be needed. In this case, not only the Bellman
update have to be executed more often in every recursion
step, but also the number of training points in the Gaussian
process increase. As the Gaussian process has a complexity
of O(N3), using scalable Gaussian processes [24] might be
necessary.

In future work, we intend to improve the algorithm by
(1) actively placing reference points for value function
approximation, (2) performing a more sophisticated value
update that, for example, considers attraction of certain
state space areas and updates these areas more often, and
(3) consideration of value approximation quality that is
available in form of variance during Bellman recursion. This
improvements should lead to a sufficient performance also in
case of larger system noise. In addition, we plan to extend
our approach to continuous spaces of control inputs and
measurements.
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