567 research outputs found

    Signal Processing and Propagation for Aeroacoustic Sensor Networking,” Ch

    Get PDF
    Passive sensing of acoustic sources is attractive in many respects, including the relatively low signal bandwidth of sound waves, the loudness of most sources of interest, and the inherent difficulty of disguising or concealing emitted acoustic signals. The availability of inexpensive, low-power sensing and signal-processing hardware enables application of sophisticated real-time signal processing. Among th

    Robust Techniques for Bearing Estimation in Contaminated Gaussian Noise

    Get PDF
    The problem of estimating directions-of-arrival (DOA) of radiating sources from measurements provided by a passive array of sensors is frequently encountered in radar, sonar, radio astronomy and seismology. In this study various robust methods for the DOA estimation problem are developed, where the term robustness refers to insensitivity against small deviation in the underlying Gaussian noise assumption. The first method utilizes an eigenvector method and robust reconstruction of the correlation matrix by time series modeling of the array data; Secondly, a decentralized processing scheme is considered for geographically distributed array sites. The method provides reliable estimates even when a few of the subarray sites are malfunctioning. The above two techniques are useful for narrow band and incoherent sources. The third robust method, which utilizes Radon Transform, is capable of handling both the narrow band and wide band sources as well as the incoherent or coherent sources. The technique is also Useful in situations of very low SNR and colored noise with unknown correlation structure. The fourth method is an efficient narrow band robust maximum likelihood DOA estimation algorithm which is capable of handling coherent signals as well as the single snapshot cases. Furthermore, relationships between eigenvector methods and a ML DOA estimation, where the source signals are treated as sample functions of Gaussian random processes, are investigate

    EXPERIMENTAL EVALUATION OF MODIFIED PHASE TRANSFORM FOR SOUND SOURCE DETECTION

    Get PDF
    The detection of sound sources with microphone arrays can be enhanced through processing individual microphone signals prior to the delay and sum operation. One method in particular, the Phase Transform (PHAT) has demonstrated improvement in sound source location images, especially in reverberant and noisy environments. Recent work proposed a modification to the PHAT transform that allows varying degrees of spectral whitening through a single parameter, andamp;acirc;, which has shown positive improvement in target detection in simulation results. This work focuses on experimental evaluation of the modified SRP-PHAT algorithm. Performance results are computed from actual experimental setup of an 8-element perimeter array with a receiver operating characteristic (ROC) analysis for detecting sound sources. The results verified simulation results of PHAT- andamp;acirc; in improving target detection probabilities. The ROC analysis demonstrated the relationships between various target types (narrowband and broadband), room reverberation levels (high and low) and noise levels (different SNR) with respect to optimal andamp;acirc;. Results from experiment strongly agree with those of simulations on the effect of PHAT in significantly improving detection performance for narrowband and broadband signals especially at low SNR and in the presence of high levels of reverberation

    Underwater Direction-of-Arrival Finding: Maximum Likelihood Estimation and Performance Analysis

    Get PDF
    In this dissertation, we consider the problems of direction-of-arrival: DOA) finding using acoustic sensor arrays in underwater scenarios, and develop novel signal models, maximum likelihood: ML) estimation methods, and performance analysis results. We first examine the underwater scenarios where the noise on sensor arrays are spatially correlated, for which we consider using sparse sensor arrays consisting of widely separated sub-arrays and develop ML DOA estimators based on the Expectation-Maximization scheme. We examine both zero-mean and non-zero-mean Gaussian incident signals and provide detailed estimation performance analysis. Our results show that non-zero means in signals improve the accuracy of DOA estimation. Then we consider the problem of DOA estimation of marine vessel sources such as ships, submarines, or torpedoes, which emit acoustic signals containing both sinusoidal and random components. We propose a mixed signal model and develop an ML estimator for narrow-band DOA finding of such signals and then generalize the results to the wide-band case. We provide thorough performance analysis for the proposed signal model and estimators. We show that our mixed signal model and ML estimators improve the DOA estimation performance in comparison with the typical stochastic ones assuming zero-mean Gaussian signals. At last, we derive a Barankin-type bound: BTB) on the mean-square error of DOA estimation using acoustic sensor arrays. The typical DOA estimation performance evaluation are usually based on the Cram\u27{e}r-Rao Bound: CRB), which cannot predict the threshold region of signal-to-noise ratio: SNR), below which the accuracy of the ML estimation degrades rapidly. Identification of the threshold region has important applications for DOA estimation in practice. Our derived BTB provides an approximation to the SNR threshold region

    Detection of Wideband Signal Number Based on Bootstrap Resampling

    Get PDF
    Knowing source number correctly is the precondition for most spatial spectrum estimation methods; however, many snapshots are needed when we determine number of wideband signals. Therefore, a new method based on Bootstrap resampling is proposed in this paper. First, signals are divided into some nonoverlapping subbands; apply coherent signal methods (CSM) to focus them on the single frequency. Then, fuse the eigenvalues with the corresponding eigenvectors of the focused covariance matrix. Subsequently, use Bootstrap to construct the new resampling matrix. Finally, the number of wideband signals can be calculated with obtained vector sequences according to clustering technique. The method has a high probability of success under low signal to noise ratio (SNR) and small number of snapshots

    Source localization via time difference of arrival

    Get PDF
    Accurate localization of a signal source, based on the signals collected by a number of receiving sensors deployed in the source surrounding area is a problem of interest in various fields. This dissertation aims at exploring different techniques to improve the localization accuracy of non-cooperative sources, i.e., sources for which the specific transmitted symbols and the time of the transmitted signal are unknown to the receiving sensors. With the localization of non-cooperative sources, time difference of arrival (TDOA) of the signals received at pairs of sensors is typically employed. A two-stage localization method in multipath environments is proposed. During the first stage, TDOA of the signals received at pairs of sensors is estimated. In the second stage, the actual location is computed from the TDOA estimates. This later stage is referred to as hyperbolic localization and it generally involves a non-convex optimization. For the first stage, a TDOA estimation method that exploits the sparsity of multipath channels is proposed. This is formulated as an f1-regularization problem, where the f1-norm is used as channel sparsity constraint. For the second stage, three methods are proposed to offer high accuracy at different computational costs. The first method takes a semi-definite relaxation (SDR) approach to relax the hyperbolic localization to a convex optimization. The second method follows a linearized formulation of the problem and seeks a biased estimate of improved accuracy. A third method is proposed to exploit the source sparsity. With this, the hyperbolic localization is formulated as an an f1-regularization problem, where the f1-norm is used as source sparsity constraint. The proposed methods compare favorably to other existing methods, each of them having its own advantages. The SDR method has the advantage of simplicity and low computational cost. The second method may perform better than the SDR approach in some situations, but at the price of higher computational cost. The l1-regularization may outperform the first two methods, but is sensitive to the choice of a regularization parameter. The proposed two-stage localization approach is shown to deliver higher accuracy and robustness to noise, compared to existing TDOA localization methods. A single-stage source localization method is explored. The approach is coherent in the sense that, in addition to the TDOA information, it utilizes the relative carrier phases of the received signals among pairs of sensors. A location estimator is constructed based on a maximum likelihood metric. The potential of accuracy improvement by the coherent approach is shown through the Cramer Rao lower bound (CRB). However, the technique has to contend with high peak sidelobes in the localization metric, especially at low signal-to-noise ratio (SNR). Employing a small antenna array at each sensor is shown to lower the sidelobes level in the localization metric. Finally, the performance of time delay and amplitude estimation from samples of the received signal taken at rates lower than the conventional Nyquist rate is evaluated. To this end, a CRB is developed and its variation with system parameters is analyzed. It is shown that while with noiseless low rate sampling there is no estimation accuracy loss compared to Nyquist sampling, in the presence of additive noise the performance degrades significantly. However, increasing the low sampling rate by a small factor leads to significant performance improvement, especially for time delay estimation

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on sixteen research projects and a list of publications.Bose CorporationMIT-Woods Hole Oceanographic Institution Joint Graduate Program in Oceanographic EngineeringAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-93-1-0686Lockheed Sanders, Inc./U.S. Navy - Office of Naval Research Contract N00014-91-C-0125U.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034AT&T Laboratories Doctoral Support ProgramAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation FellowshipMaryland Procurement Office Contract MDA904-93-C-4180U.S. Navy - Office of Naval Research Grant N00014-91-J-162

    Analysis of the structure of time-frequency information in electromagnetic brain signals

    Get PDF
    This thesis encompasses methodological developments and experimental work aimed at revealing information contained in time, frequency, and time–frequency representations of electromagnetic, specifically magnetoencephalographic, brain signals. The work can be divided into six endeavors. First, it was shown that sound slopes increasing in intensity from undetectable to audible elicit event-related responses (ERRs) that predict behavioral sound detection. This provides an opportunity to use non-invasive brain measures in hearing assessment. Second, the actively debated generation mechanism of ERRs was examined using novel analysis techniques, which showed that auditory stimulation did not result in phase reorganization of ongoing neural oscillations, and that processes additive to the oscillations accounted for the generation of ERRs. Third, the prerequisites for the use of continuous wavelet transform in the interrogation of event-related brain processes were established. Subsequently, it was found that auditory stimulation resulted in an intermittent dampening of ongoing oscillations. Fourth, information on the time–frequency structure of ERRs was used to reveal that, depending on measurement condition, amplitude differences in averaged ERRs were due to changes in temporal alignment or in amplitudes of the single-trial ERRs. Fifth, a method that exploits mutual information of spectral estimates obtained with several window lengths was introduced. It allows the removal of frequency-dependent noise slopes and the accentuation of spectral peaks. Finally, a two-dimensional statistical data representation was developed, wherein all frequency components of a signal are made directly comparable according to spectral distribution of their envelope modulations by using the fractal property of the wavelet transform. This representation reveals noise buried processes and describes their envelope behavior. These examinations provide for two general conjectures. The stability of structures, or the level of stationarity, in a signal determines the appropriate analysis method and can be used as a measure to reveal processes that may not be observable with other available analysis approaches. The results also indicate that transient neural activity, reflected in ERRs, is a viable means of representing information in the human brain.reviewe
    corecore