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“The pr@blem of: esumatmg dlrectlons of-atrival (D.A) of’; radlatmg sources ‘from
fmeasurements prov1ded by a pass1ve array of 'sensors is frequently encouritéred in
radar, sonar, Tadio astronomy and seismology. In v'-th_ls.ist?u'dy ”var-l’ous robust 'm‘ethods”
for'the .DA"zestimaﬁO'n:ProbIem are-developed, whete the term 'rbbbusm‘esis 'rf'ef-ers‘-td; :

:'msensmvuy against ‘small -deviation -in the underlymg Gaussian noise assumptlon

The first ‘method : utihzes an ezgenvector ‘wiethod and mbust reconstuCtlon of the
‘correlation ‘matrix by time series vmoael-in"g:‘z’csf the 4rray data. “Secondly, a-deceniral-
ized processing scheme s considered for geographlcally distributed aitay sités. The
 method provides reliable stimates even when a few of the subairay sites are mal-
functioning. The sabove WO :téchhiques are useful for narrow 'band and iﬁcohereht
';sources The third: robust method, whwh utilizes Radon Trarisforin, is capable of han-
«dling both the narrow band and wide baiid sources as well as the 1ncoherent or
-coherent sources. The techmque is ‘also useful in situations -of very low SNR and
colored noise with wunknown correlation structiire. T-he foutth me‘thod is an efﬁclent
narrow band robust maximiim likelikood DOA estimation algorithm which is capable

- of hanﬂﬁn:g coherent signals as well as. the single snapshot --ca‘se's.' Furthérmore, rela-
Vﬁons;h-ips between eige‘ﬁvector methods and a ML DOA éstimation, where the source
s-i’-gnalisv are f&ea’tef‘d as s'éfnf)‘le futictions Of Gauss1an fandomn procésses; are investi-

- gated.



CHAPTER1
" INTRODUCTION AND OVERVIEW

1.1. Introduction.and Literature Review

Array -processving‘ idéaiSWith the proCesé»i-ng of signals carried by vprop-agating '
 wave phenomena. The received signal is obtained by means ~o’f an array of sensors
located at different points in rspace' in the field of interest. The aim of array process-
ing 1s to ‘extract useful »Chvaractéﬁstic's of the received signal field, -'e.,g‘.,\ dire(;tion of :
arrival (DOA), signature, speed of propagation. The sources of energy responsible
_for illuminating the array may assume a variefy of different forms. T:hey__may be nar-
row band or wide band. Furthermore, they may be incoherent, i.e., independent of
each other, or coherently related to each other. Equally, as seen. from the location of
the array, the radiation may be from diffused media and ftherefo_‘re distributed in
nature, or it may be from isolated sources of finite angular extent. The array itself
takes on a variety of different geometries depending on t’h‘evappli‘catvion of interest
{13,14]. The’ most commonly used configuration is the linear array, in which the sen-
sors are uniformly spaced along a straight line. Another common conﬁgﬁratiori is. a.
planar array, in which the sensors form a rectangular gnd or line on the concentric

circles.



- Different approaches have been followed for solv1ng the direction of amvalf_

‘ (DOA) estimation problem. One of the oldest ideas in array processmg for determm—*

- ing the DOA is beamforming [5,8,81]. The idea behind the beamformrng is to. ahgn o

the propagatron delays of a signal presumed to be propagating in a g1ven d1rectron so .j _

as to rernforce it, whrle signals propagating from other d1rectrons and the n01se are
not re1nforced Directions which exhibit the largest power corresponds to the DOA _ |
estimates. Beamformmg methods are computatronally efficient and yreld effectlve '
performance in low resolution appllcat10ns where the 1nc1dent source spatral separa- '
tions are sufficiently larger than the 1nverse of the array aperture [45]. Usmg this
class1cal approach 1ncreased beanng estimation accuracy can only be obtalned by.
1ncreas1ng the aperture of the array In addrtron beamformmg measures the energy
by purely deterministic method, which is liable to be erroneous because of the ran-
dom variation of sensor outputs caused by no1se. For these reasons, rnoder_n_spectral
analysis algorithms have been_considered. |

- Perhaps .the(rnost well-known so called high-resolution 'array. processlng algo-
rithm is the maximum likelihood methodg(MLM),ﬁrst report_ed by Capon [10,11].
The derivati‘on of this method does not correspond to the standard approach used in
‘maximum likelihood (ML) estimates. | Rather, thisestimate is derived by finding the
steering vector which yields the minimum bearn energy subject_to_ a constraint that the
processing gain for each 'direc_tion-of-look to beunity. Minirniiin_g the resulting beam
energy reduces the contn'butions to this energy from sources and noise not propagat-
‘1ng in the direction-of-look. The solution of thlS constrained optlrmzatron problem |

occurs often in the derivation of adaptrve array processmg algonthms
The hnear—predrctrve- (LP) spectral estrrnate commonly used in time series prob-
lems is also used in array processing problems [40,48,50]. The Fourier transform of

the output of a given sensor evaluated at a given frequency is estimated by a weighted



linear combmatlon of those of the other sensors. The LP method is based on ﬁndmg'
the welghts Wthh minimize the mean-squared predletlon €TTor. Another approach for
multiple DOA " estimation makes use of vector autoregressrve movmg avcrage’
(ARMA) modeling of senser output and combines a specxal ARMA parameter esu— |
mation method with a nonlinear optlznsllzauon procedure to estimate the relative time
delays [51,56]. ' |
" A class of spectral estimation p_roc.edurfes‘ based on zeigen&ec;tor-cigenliialiué
decomposition of the spatial correlation matrix has been developed recently [43264]
The eigenvector '.'rfne,thod,.also called ..the signal subepace* ‘method, makes use of the
algebraic property of the spatial covariance matrix that the eigenvetors corresponding |
1o I%hc largest eigenvalues span the same subspace (the :»sigrral sﬁbspae.e) as the source
direction veetiors.‘ Under the condition that the obfs.erva-.tion »perio.d is long and signal
tonoise ratio (SNR) is not too low, this approach has previously been rs.ho'ivn' to have vv
substantially higher resolutiori in estimating DOA’s than the .,con&ention:al beam-
former, CaponsMLM {11}, and autoregreSSiye (AR) spectral .estimators-;[lS]; As in
the case of principal factor :ana_:ly;s.is, an inforrnation criterion such :as the one
developed in [84] can be used to effec,rively»detemli-ne the n:umb.er- of '50urees; thus
avoiding a difficult multiple -hypothesis "tesr.ing approach as was done b'varess [57].
Eigenvector methods such as MUSIC [65] and ESPRIT [54] ha:ve become popu-
lar in applications requiring high resolution capability. However, eigenvector
- - methods are usually based on narrow band assumption of signals. One way of solv-
mg the wide band DOA estimation problem is to divide the wide frequency band into
,non-:.overlappi:n;g’narrow. bands, and »the,rr use narrow band signal subspace processing
‘as Was»,prop0~sed by Wax et al. .,[8.6].. Aiatema,t,-ively, Wang et al. [82] hvave_ considered
o eigenvector :rnethod where the estimates. are -obtained by the eigen-decomposition

of a frequeincy domain combination of modified narrow band covariance matrix



estimates. Instead of treating the wide band problem as a multitude of narrow band

emitter problems, Su and Morf [77] and Porat and Friedlander [56] have conSide'red i

usrng a multivarrate rational model for the sensor outputs Another approach for the -

DOA estimation problem is to consider it as a 2-D spectral estimation problem by .

_Halpney et al [19] An advantage of this approach is that it is applicable when both ,.

narrow band and wide band sources are present s1multaneously Jackson and Chlen -

[28] however, have pointed out the severe asymmetry and bras in the estlmated spec-

tra usrng a2-D quarter plane AR model for bearing estimation.

‘Although algorithms based on the signal subspace methods claim high resolutlon
capability, they do not perform well at -low' signal to noise ratio- (SNR) and 5
equlvalently, when -the number of data snapshots available is small Rapid target
movement may also limit the pro_spectlve estimation procedure.to workmg wrth asin-
gle snapshot so that the bearing information, along with range and velocity,' may be
’up‘dated contint‘musly.' In a low angle _radar tracking environment, the estimation
problem is complicated by _the fact that the signal returning from the target arrives via
.sea or ground reflection within a beamyvidth of the direct path echo. A renewed
interest in maximum-likelihood" (ML) estimationvprocedure, which is equally applica-
ble to single 'snapshot cases and coherent signals, explains this part:of the story. The
derivation of this method correspond to the standard approach used in ma)_(imum
likelihood (ML) estimation [6,7,24], 'l'he ML estimation techn_ique has not been very
popular until recently because of the'high ’computational load involved in the mul-
trvanate nonhnear maxxmization Recently, Ziskind and Wax [87] have presented a
,computatlonally attractlve method for computmg the ML est1mate of narrow band

© sources.



1.2. vRob_ust Estimation

An important issue in array processing is concérning the structure of the noise
model. Previously, it was frequently assumed tha-t the noise prdcéss was an indepen-
dent and idcnticaliy distributed (IID) Gaussian. This_.'assumpt;ibn‘ has been widely
adopted. f,or'rundcrlyirigf noise structures and still is used very often 'in many different
applications since it usually re_,dl'lces' the c_orriplexity of thé problem from both theoret-
ical and.vempiﬁ.(;al: standpoints. Tﬁe assumpﬁon, of normaity is often based on empir-
ical evidence or justified in theory by application of ‘a suitable central limit theorem.
But in practical empirical situations, the observed s-ignals contain undesirable irhper- |
fections or noise which is inherent to the system under study or which occur because
of méasureme_n.t: errors or isolated phenomena. |

In maﬂn»'y-k situations the coxrupting noise itself can be considered Gaussian' with
the result that the observations remain Gaussian but with a more complicated- struc-
ture. However, measurement errors and. isolated errors can cause observed data sets
to- contain. small fraction of unusual data poiﬁts., which are not consistent with a
strictly. Gaussian assumption. It may not be hard to-spot such potentially troublesome
data points in the lower dimension, but it becomes exceedingly difficult with higher

~dimensions, or with multiparameter problems. |

An outlier in a set of data is defined as an observation which appears to be
inconsistcﬁtz with the remainder of that set of data. The phrase ’appears to be incon- |
sistent’ is crucial. It may be a matter of subjective judgement on the part of the
observer ththcr or not he picks o,ut_son:lc observation for scrutiny. The" important
qués;tion is whether or not some observations are genuine membcr’s of the méin popu-
lation., The next Question is h_ow should one react to the outliers, and what methods

can be used to support rejecting them, or adjusting their values, prior to processing. -



‘the principal mass of the data. The ansWer depends on the form of the population,
ie., Gauss1an techmques w1ll be conditioned by the postulated model for that popu-

| 'lation 2).

Such data in prmclple can be modeled as hav1ng a dlstnbution Wthh is nearly

, Gauss1an in the central reg1on but with heav1er tails. For thls reason, minor dev1atlons ‘. '
from the Gauss1an n01se are often modeled by the mixture model for noise [80]. One

particular”mixture model of interest is tlie slippage model with the Gkaussian distribu- |
tion as the dominant distril)ution. Ifu (i ) is a sequence of random variables obeying

'such a shppage model, then any u (l) is distributed e1ther as a Gaussian d1str1but1on of

2ero mean and variance G2 with probab111ty 1—8 or as an unknown d1str1bution of

much hlgher_ variance with probability €. In general €< 0.1, and the mean of the |

unknown distribution 1, an unknown constant, is of the order of a multiple of . This
represents a family of distributions characterized by t'li‘e mixing parameter e. For =0,
itreduces to a Gaussian distribution\._ R

In this report, robustness refers to. insensitivity against a small de\:'iation; in the
underlying Gaussian noise assumption. ‘Funhermore, in evaluating DOA estimation
‘methods, the term resolution refers to.the ability’ of an algorithm to reveal the pres-
ence of two equal-energy sources‘ whicll have nearly equal bearings. M0st previous
.techniquesiwhich claim high resolution',capability were developed and tested under
the Gaussian assumption. These methods no longer provide high resolution estimates
when' the underlying noise distributionde’viates_ even slightly from the assumed Gaus-
sian. For an example, e\}env- a small deviation from the assumed Gaussian noise model
can create havoc with Gaussian maximum likelihood (ML) estimators since the Gausf
_— si_an ML es_timators"are -extr-emely sensitive to outliers. Such methods need not and
usua‘ll:yldo not possess the robust property' when the underlying noise distribution is

‘an outlier contaminated Gaussian, which is a mixture of Gaussian distribution and a



small portion of unknown outliers.

1.3. Robust Direction-of-Arrival Estimation by Correlation Matrix -

< Recenstruction

A new narrow band eigenvector method for robust direction-of-arrival (DOA)
estimation is considered. The MUTltiple SIgnal Classification (MUSIC) algorithm,
one of the1 eigenvector method_s, has been shown to yield results which are asymptoti- |
cally unbiased and efficient by Barabell et al. [1]. An ‘importanlt feature of the above
method is the decomposition of an estimate of tt_re received ‘isignal» correlation matrix
onto orthogonal signal and noise subspaces and the forrnullation» of the DOA estimator
in the noise subspace. The DOA estimates are given by the positions of the spectral
peaks. Thus, SOurces are resolved if the estimated spectrum contains. maxima at-orin
the immediate neighborhoods of the true DOA’s. |

When the exact ensernble spatial correlation matrix is used, MUSIC results in
unbiased: values for the null spectrum of uncorrelated plane waves at the true DOA’s
irrespective of the SNR and angular separations of the sources. In this category of
- applications, the noise is usually assumed to be Gaussian, and it is known that a small
deviation in the_noise distribution from the assumed Gaussian noise rnodel may intro-
duce significant errors into the eigenstructure of the sample correlation matrix esti-
mate, which in turn deteriorates the quality of the DOA estimates.

- The focus of this study is to explore an altematlve way for estlmatlng the DOA’s
- u51ng elgenvector method in the presence of outher contammated Gauss1an n01se A
.multlvanate autoregresswe (AR) model w1th proper order is systematlcally chosen,
'and the parameters are estimated using a robust technique. Once all the parameters

- ‘are estlmated the correlatlon matrix correspondmg to the model can be reconstructed



The number of signal sources and the'corresponding DQA’s are then estimated using
S a conventional eigenvector ‘method such as MUSIC. | |
Slmulatlon results show that the new scheme performs cons1stently even when(
- the outher n01se is present whereas the performance of the correspondlng nonrobust
method de'teriorates qurckly w1th a slight change of the norse environment. This is

especially significant at a low signal to noise ratio (SNR).
1.4. Decentralized Direction-of-Arrival Estimation

There has been an increasiing interest in decentralized arrays of s_ensors, mainly
motivated by military requirements. The general scheme of decentralized array pro-'
cessing is as follows. Each subarray is a unit that receives ,observatio_ns ;and.estimates
p'arameters using"onl;y its own observations. Estimating parameters at each subarray
site is a totally independent process from the estimation process at other subarray
,sites. Each subarray site then provides its estimates and other necessary information
' to the fusion center, where the estimates are combined to form a more reliable esti- |

mate than the individual estimates from different_subarray sites.

If it were pos31ble to transmit all the subarray observatlons to the central pro-
~ cessing unit with- trivial delay, the classical theory and the advantages of using the
.array processing are applicable; However because of such considerations as cost,
rehabllity, survivality, communlcatlon bandwidth, compartmentallzatlon sensors on.
: platforms under emission control or even simply the. problem of ﬂoodmg the fusion
: center w1th more mformatlon than 1t can process there is never total centralization of
mformation in practlce [78] Furthermore, the central processmg un1t has no means _
of reallzmg the malfunctlomng subarray 31tes But w1th decentrallzed processmg itis

' _pos31ble for the fuswn center to recogmze the data from malfunct1on1ng subarray s1tes



or at least mmlmlze the harmful ‘rc'onu‘*i‘f‘bu-ti,on from"‘.those -su-barray‘ 81tes

‘ In th1s study, a robust decentrahzed scheme for esumatmg the d1rect10ns of- :
B amval (DOA) w1ll be cons1dered At each subarray 51te, a multlvanate autoregresswe
(AR) model w1th proper order is systematlcally chosen and the parameters are
estimated using a robust technique. Once all the parameters are estrmated the corre-
' lation matrix corresponding to the «model can be :ﬁoiund ‘Each subarray site then esti-
' ’mates the number of signal sources, and the estlmate is'sent to the fusion center along
with ithe StatIStICS for computing the estlmate S relatlve conﬁdence measure. At the -
fu-sron ;cen:ter, the estimates of the number of sources are comb-med based on their
relative .sconﬁdence- measures then the result is sent back to-each of vthe‘ selecte'd
subarray s1tes for their reliability. Each of the chosen subarray snes then prov1des the
-determrned number of DOA estlmates whrch are then combmed usmg a robust com- 7'

bmmg techmque at the: fusmn center.

“The algorlthm comblnes the best features of robust parameter estimation tech-
-n’i:qu:e and the aforementioned advantages of ‘the decentralized processing. One can
;st;iil»l'bohtai:n reliable =esﬁmates »_wihen a few of the subarray sites are mal}functioning in
;additi:o?n to the possible deviation of the noise from the assumed Gaussian model.
Fuﬂhe@ore, 'the -commu-nicati:on loads between =di.ffer.ent subarray sites are com-
‘ pletely ehmrnated while those between each subarray s1te and the fusion center are.

[

‘ .mrmmlzed

1.5. Direction-of-Arrival Estimati'on using Radon Transform

A robust method for. the d1rect10n of—amval (DOA) esumatlon when there are
'muluple sources each of whlch is either narrow band or w1de band ST} consrdered in

this study One 1mportance of thls method is that it does not requlre any 1nformat10n"
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about the number of rece1ved source s1gnals, structure and frequency of the 51gnals .

o and the correlatlon structure of sensor no1se The techmque is capable of handlmg E

‘ »narrow band and w1de band sources: s1multaneously at low SNR’s, and performs )

g equally well in the presence of colored norse w1th unknown correlat1on structure The
"proposed DOA estrmatron scheme wh10h ut111zes a 2—D spectral estlmatron is also

,useful in outller contammated Gaussran norse

‘ Recently, anew approach of 2-D spectral estlmatlon ut1hzmg 1-D autoregress1ve

5 (AR). models in the Radon space was 1nvest1gated by Srmlvasa»et al [71 75). The2-

D PSD is estrmated from a ﬁmte set of observatlons of a2- D statlonary random field -
" (SRF) usmg the Radon transform In partlcular, the 2—D PSD est1mat1on problem is
"converted mto a set of 1 D mdependent problems us1ng the mod1ﬁed central SllCCI

,theorem for SRF 1ntroduced by J a1n and Ansan [29]

The 2-D array- data is. transformed 1nto a set of 1 D sequences, or prOJectlons by
'the Radon transform ‘Then an est1mate of the 2—D spectrum is: obta1ned ona polar
'raster by modeling the pI'O]CCtIOD w1th a 1 D autoregress1ve (AR) model where the
parameters are est1mated by a robust technlque, ie.; Huber s M—est1mators [27]. The ‘_

DOA estrmates are obtamed by locatmg the peaks in the resultmg 2-D spectrum

" ‘Another 1mportant aspect of the work presented here is the use of- robust l-D _'
autoregresswe (AR) parameter- estrmatlon method in the Radon space to obtain - a
__-:robust 2¢ D PSD estlmate “This- reduces the number of parameters to be’ estlmated
’ 951multaneously, thus allowmg the robust 2—D PSD estimation feas1ble Though the |
: -DOA estlmatlon method presented in thlS study is somewhat related to the tradl-uonal __
beamforrmng, 1t has a much better resolvrng capabrllty as we use the spectral dens1ty, .
H,wh1ch isin tum estlmated by usmg a model to measure the average power Rough
’ _analys1s 1ndlcates that the resolutlon of thls method is much h1gher nearly double v

N than that of the trad1tronal beamformmg method ThlS algorrthm is hlghly amenable
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for parallel processihg'as well. Furthermore, any particular range of directions of

interest can be probed for detecting the presence or absence of sources.

1.6. Robust Maximum Likelihood D’irectioh-‘of-Arriva‘l Estimation

Itis well 'kﬁowh that even a small deviation in the noise from.‘the' asSufhed Gaus-
sién can creat havoc with Gaussian maximum ﬁkélihood (ML) estimates. Therefore,
a robust technique is considered for ’maximufh' likgiihpod (ML) narrow band
directi-on-of-axﬁVal (DOA) estimation problem - against outliers and distributional
uncertainties. The algoﬁthm empibys a robustified Gaussian ML estimator which
performs almost as well as a Gaussian ML estimator in puré Gaussian noise, and
much better in the 'presencbe of outliers. The algorithm is also capable of handling
coherent signals as weli as single .s}napshot cases.

The DOA’s are estimated By a robust technique baéed on the so called M-
estimators, a g.eneralizatiom of classical ML éstimator by'Huber [27]. Performances
Of the estimator in both the gGau-ssiah and outlier confaminated Gaussian noise are
‘evaluated using the Cramer Rao Lower Bound (CRLB) and variance derived from the
Influence Function (IF), followed by resolution analysis regarding the ability of the

algorithm in resolving two closely spaced sources with equal power.

1.7. Generalization of Eigenspace Methods for Bearing Estimation

using Maximum Likelihood |

A maximum likelihood (ML) direction-of-arrival (DOA)' estimation problem is
"consideféd where the source signals are treated as sample functions vofv random

processes instead of unknown deterministic sequences as assumed in most of the
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previous approaches. The study reveals a special relationship between this ML DOA
estimation scheme 'and eigenvectOr methods for estimating DOAs In particular the
focus is on interconnecting the notlons of DOA estimation usmg e1genvector methods'
to a more quantltatlve Gauss1an ML approach, i.e., choosmg the DOA estlmates to be.
1n the dlrecuons of the elgenvectors wh1ch corresponds to the largest elgenvalues in

the sxgnal subspace

When the number of sources is one it can be. shown that maximiz‘ing the likeli-
hood function with respect to the DOA angle is equlvalent to choosmg the steermg
vector to be in the direction of the elgenvector which corresponds to the largest eigen-
“value in the s1gnal subspace The equlvalence however, does not hold exactly for
multlple sources. The mam dtfferences between the elgenvector methods and this

ML method for est1mat1ng DOA’s can be clearly seen for two source cases.
1.8. Layout of the Report -

Various aspectsof the robust'direction-of-arriVal (DO_A) iestimation have been |
.investigated throughout the rep_ort.!_. An important aim of this study is to develop
robust DOA estimation techniques Suitable in many different environments_and appli-
| cat:ions. In e{{aluating DOA es_timation: methods, the term resolution vrefe'rs to the
.ability.of an algorithm to reveal- the pre‘sence of two equal-'en'ergy sources which have

nearly equal bearings. The robust DOA estlmatlon schemes developed here perform
much better than the -conventional hlgh resolutton methods whlch were developed
. and tested under., the Gauss1an noise assumptlon in the presence of outliers. In the
| presence of pure Gaussian n01se, the robust DOA estxmatlon methods st111 perform

. almost as well as the Gaussmn based methods. »\
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The orgamzatlon of the report isas follows In chapter 2;a robust narrow band
DOA estimation technique, which utrhzes an elgenvector method and robust recon-_
struction. of correlatlon matrix by a t1me series modehng of the array data, is
presented Chapter 3 is an extension of the robust technrque developed in chapter 2
The chapter presents a decentralized DOA estimation scheme that can prov1de rnuch
‘more reliable DOA estimates than those from a similar centralized scherne when a
few of the subarray sites are malfuncti_oning. Chapter 4 then,pre’sents va robust wide
band DOA estimation method which utilfiies a2-D spectrum estimationvapproach
us-ing Radon TranSform The technique is capable‘of handling the narrow band and
- the w1de band sources 51multaneously, and st111 performs well in situations of low
SNR, and colored notise wrth unknown correlations. In Chapter 5, a robust maximum
likelihood (ML) DOA estimation algorithm, which employs a robustified Gaussian
ML es'timator, is presented.v The technique is equally capable of handling coherent
signals as well as the single snapshot cases. Chapter 6 interconnects the notions of
DOA estimation using eigenvector methods to a rnore quantitative ‘Gaussian ML
approach, followed by chapter 7 which concludes the report along with topics of the

future research.



14

| CHAPTER 2
ROBUST DIRECTION-OF-ARRIVAL ESTIMATION
BY CORRELATION MATRIX RECONSTRUCTION

2.1. Introduction

‘The problcm of ‘estimating the direction-of-arrival (DOA) of radiating sources
- from measurements '}prov‘idc'd by a passive array of sensors is frequently encountered
in radar, sonar, radib astronomy and seismology. In most cases the number of incident
p’lane waves and their DOA’s are to be estimated from incident source induced sensor
signals. In the case of applications which require high resolution capability and the
signal to ﬁoisc ratio (SNR) is not too low,’ the éigénspacc methods were generally
~known to perform better than the coﬁvcntional beam forming, autoregressive (AR)
" methods, etc. .
The MUltiple SIgnal Classification (MUSIC) algorithm, one such method, is
- shown to yield results which are asyrhptotically unbiased and efficient by Barabell et
al. [1]. An important feature of the above method is the decomposition of an estimate
~of the received signal correlation matrix onto orthogonal signal and ndise subspaces
and the formulation of the DOA estimator in the noi-sé subspace. The DOA estimates

are given by the positions of the spectral peaks. Thus, sources are "resolved" if the
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estlmated spectrum contains maxima at or in the 1mmed1ate nelghborhoods of the true
DOA’s. |

_When the exact' ensemble'spatial‘oorrelation matrix is used, MUSIC results in -
 unbiased values for the null speett’trm of uncorrelated plane waves at the true DOA’s
H inespective of the SNR and angular separationsofl the sources. In this category of -
apphcatxons the noise is usually assumed to be Gaussran, and it is known that a small'
deviation in the noise distribution from the assumed Gaussian noise model may mtro-
duce S1gn1ﬁca.nt errors. into the elgenstructure of the correlauon matrix estimate,
which in turn detenorates the quallty of the DOA estimates. For tlns reason, we
‘choose to use the 50 called "outher contarmnated Gau551an noise model" asit appears

to be more realistic than a sxmple Gaussian model.

This. chapter explores an alternanve way of estimating the. DOA'’s in the pres-
ence of outlier contammated Gau551an noise. The following scheme is proposed A
multtva.nate autoregressrve (AR) model and its proper order is systematlcally chosen,
and. the parameters: are estlmated usmg a robust techmque from the available array
output snapshots where robustness refers to insensitivity agamst a small deviation in
the underlymg noise assumption. Once: a.ll the parameters are estlmated the correla-
tion matrix comresponding to the model_. can be found. The standard MUSIC algo-
‘r‘ith‘m is then utilized to_estimate the number of sources, and- the corresponding
DOA’s. | |
The organization of the chapter is as follows. In_section 2.2, the basic signal
model and the formulation of the problem is pr,esenteda Section 2.3 introduces the
details of the new scheme. Secuon 24 then presents some of the s1mulatlons carried -
out o compare the performanee of the proposed algonthm with that of a s1mllar non-

robust algorithm, 1.e.,.MUSIC, followed by the concluding remarks in section 2.5.
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© 2.2." Array Model for Direction-of-Arrival Estimation

The bas1c problem under cons1deratxon is- that of the esttmatlon of parameters of L

;ﬁnlte dlmensmnal srgnal processes gtven measurements from a: sensor array “In par-:
ticular, the discussion will be in terms of the problem of muluple mcoherent source _?
directions-of-arrival (DOA) \esumauon from.a equispaced linear array. Even vthough '
at'ihe»v-'di'scussion and'results presented here "Sdeal only with the""sing‘le dimensiOnal‘
‘_parameter space, ie., azunuth only d1rect10n ﬁndmg of far-ﬁeld pomt sources, the
| ';techmque can be easily generalrzed to hlgher dlmensmnal parameter spaces A DOA _

~estimation’ problem is classrﬁed as narrow band if sxgnal bandwxdth is: small compared »

o the inverse of the transit ttme of a wavefront across the array For sxmphcxty we

assume that the mcommg srgnals are narrow band even though the techmque can be

,;extended 1o the wide: band ‘cases.:

ConS1der a planar array composed of L identical sensors translatlonally separated o

‘ by a known constant.dtsplacement -8 Assume’ that there are d <L narrow »band station-

' ary :Zero mean sources located sufﬁcxently far from the an'ay such that in ‘homogene-

- ous 1sotroplc transrrussron media, the wavefronts i 1mp1ng1ng on the array are planar

Addltwe noise is present at each sensor of the array and is assumed tobea stattonary
Zero mean cornplex outher contammated Gaussran, whtch is uncorrelated from sen-

sorto. sensor with equal vanances : | | o |

. ‘Frequently, the speckle type noise in signal processing and Other patchy distur- -
vbances are modeled by the mixture model for noise [80] One parttcular rmxture

v model of i 1nterest is the shppage model with a Gaussian dJstnbuuon as the parent dts-

-tnbutton If w(t). t=1,..,Nisa -sequence of random vanables obeym-g such a shp- N -

‘ | ;page model then any w(t) is distributed elther as N (O 02) with probabxltty (l—e) or
-.as an unknown distnbutton o, aoz) with probabxhty £, where u and ao‘2 are the ‘



i mean and the variance of the unknown dlsmbutlon 0. In general a>1 and e<<1 and_i

u, an unknown constant is of the order of a mulnple of o. The norse drstnbutxon in
S -‘thls example can be expressed as’ o - - , | L

| p(w) (l—e)N (0 0'2)+£Q (a et (-2.2.1)

“ and represents a famlly of dlstnbutlons charactenzed by the rmxmg parameter E. For

(
-
The recelved 51gna1 at the lth sensor of the array is denoted as x;(t), l-l oLy

| 8‘0 (2 2. l) reduces toa Gauss1an dlsmbuuon C

vand gwen by _

' x,(t)—Zsk(t)exp(J 21t81s1n9k/ ?»)+w1(t) ) “ _ (2;2,2)' |
k= 1 g L .

B “where sk(t) is the known complex smusordal s1gna.1 assocrated w1th the kth source, Yy
o 1s the known radar wavelength 8 is the known umform spacmg between the array :
sensors, and w,(t) is the addmve n01se at the Ith sensor of the array wh1ch is the,‘ | ’
- outlier: contarmnated Gaussran explamed above Our obJecnve here is to esumate dv '

" the unknown number of s1gna1 sources, and O, k 1, »d, the unknown DOA’s with

,, respect to the vertlcal axxs stretched above sensor number one as shown in Flgure 21.

The L-vanate signal vector recerved by the array is denoted by

. ;.11,(01": »Sl(lf_) ) le(t)‘."

x0=| . |=|a@a@|| I |+] © I @23

4 b . L o d

i) [ fse] (me)
‘Whm, ARG IR
a(ek) coz [1 exp(j 2u8smek/7t) ,exp(, 2n (L—I)SSlnlek)]
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Figire 2.1. A Simple Sketch of a Subarray Site

In other Wwords the waveforms received at the L array elements are linear combi-
hations of d iricident wavefronts and noise. The class of eigenspace based algorithms
such 45 MUSIC can achieve high resolution performance only if the quality of the

estimated correlation marrix is good. If X () ; {=1,...,N, are N independent observa-

tions from a complex multivariate normal distribution, then the maximum likelihood

&tiinate OF th Teiiired cofelation miatrik 6 Bivet by
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wherc H denotes Herrnman u'anspose

Unfortuna&ely, X (t,) i=1,....N are the N snapshot vectors which may not always
“be mdependent from each other, and the Gaussian assumpuon no longer holds in the
presence of even a few outhers in the presumably Gaussian sensor noise. If we insist
on usmg the estimate R,a as in (2.2,5), the con‘espondmg DOA estimates will no
longer be reliable since the perfofmance of an eStimauZGn scheme is critically
influenced by the Vali‘dity of its underlying neise assumption. 'The common Gaussianb _
assurnption, which usually leads te computational and analy_gical simplicity, is often
ieasily violated, in which case the perfonnance of the estimaters based on the assump-
tibn mey dete’;'io,rate: seriously. “The focus of this chapter is en the remedies for fhis.

kind of p.erfonna‘nce'vdegradation. '
2.3. Robust Estimation of the Correlation Matrix

- Every model may have a.fe‘w specific pnfposes, and the mddel needs c‘)nly‘ have
just enough significant detail to satisfy theee purposes. ‘Thus the basic premise in
modellbuilding,iis that cofnplicafed Systclhs do not always need complicated models.
Our scheme ’uti]izes a multivari’ate’ autoreg'ressive ,(AR) 'model for. computing the
robust. correianon matnx estimates. - In particular, the robust parameter estimates of
~the muluvanate AR. model are the M-estimates, a generahzanon of the Max1mumn

| :Lakehhood esmnates by Huber [27]. When all the parameters of the chosen mulnvan-
“ate AR model are esnmated from the. avaJIable set of data, many of its vital statistics

' such as its correlatlon matnx can be remeved from the model.



Three d1fferent canomcal representauons of system equatlons, whrch are useful N

o .v*for parameter ‘estimation under dlfferent condmons, are drscussed by Kashyap et al

;[37] One of the pnncrpal reasons for the lugh degree of computauonal complexlty in " '

. the parameter esumatton in L-vanate AR model is' that all the unknowns in the system .

are estlmated srmultaneously One method of reducmg -the computauonal complexxty -

is to consider the possrblhty of separately esnmatmg the unknowns in-each of the: L' -

»mdrvrdual d1fference equatlons, ie., consxder the poss1b111ty of replacmg one huge:
-estimation problem w1th L relattvely smrple esumatron problems ‘For each of the L
B :umvanate parameter estlmatton problems, we consider obtammg the parameter esti-

. ‘mates that .are robust agaJnst outhers and dxstnbutronal uncertamtres

" 2.3.1. The Parametric Model

Many ‘deterministic and stochastlc discrete time processes‘encountered in prac-

tice -are well approxnnated by a ratlonal transfer functlon model. The ‘most general -

, vlmear :model is termed an autoregressrve moving . average (ARMA) model and the

: .mterest inthis model stems from 1ts relatronshrp to linear ﬁlters w1th rauonal transfer
;funcuons Ttis assumed that the observatlon, sinusoids plus whlte ‘noise, obeys a sta-

L tlonary stochastlc process: whose spectral densrty has peaks at the relevant frequencres ”

and the senes can. be represented by astationary ARMA model | '

Typically, if a *proces-s obeys an ARMA model, it can be .}equivalently‘
represented as an infinite autoregressive (AR) process [35] The »pr'edicti»ve abi'lity of

B :the truncated model could be made approxlmately equal to that of the ongmal ARMA -
- process by choosmg a sufﬁcrently large number of terms in the truncated AR model

. ‘Smce accurate esttmatton of parameters ina system mvolvmg movmg average terms‘

is cons_lderably more difficult than the estimation problem in a system,wlthout
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movmg average terms, an AR model of hlgher order . is substltuted for the ARMA |
model | ’ | | . |
Suppose that the output samples, X (t) 1= 1 ,N, objcy:. an L—Variate AR .
model w1th orderp, ie, - o

X(t) AIX(t—1)+ +A‘X(t—‘p)+W(t‘),':" @3y

'where X (t) denotes the L-vanate output vector of the array at time 1. W(t) denotes
' the vaanate nmse vector whose elements correspond to the nolse at each sensor of
"_ the array at ume t. It is “also assumed that the elements of W(t) are uncorrelated from
each other and in tnne t, w1th zero mean and equal vanance Ak,k 1,...p,is the L by
‘L coefﬁc1ent mamx of the kth order term Our 1rnmed1ate obJectlve at thls pomt is to

'esumate all the components of the Ak s, and the vanances of the 1nd1v1dua1 com-

. .ponents of W(t) Let us denote
X(t) coI (xl(t), Loax@®))

o9 afp

B
WOmwlnO.mO. 03y

Note that t2 /3 l) can bevbroken mtoLum\tanate rnodets.‘ .‘ 1 ‘b | .‘
‘ %0’) ATZO D+, et },L ey

""jA}:fco’l;.",(,qﬁ‘l’;".-.,h( ...... <P), ,a,,,) j=1,. L.' @34
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Z(tv—l)z=eol. (‘xl(z%l),..,xL(t—l),;......,xl(i—p‘)‘,..,xL(t'fp)").,’ : (233.5)

For each of the L. u-nivariateitime series model in (2.3.3), we apply a robust p‘ararr]eter |
estimation: technique. analogous'» to the .,or:le u,tiliz'e_d,"' by Bhargava et al. 13} for e'stimat- |
~ ing parameters of real ARMA modelr Since the parameters to be lestimated are com-
plex quantities, proper modifications have to be followed. The iparameter estirnatiori
algonthm presented here involves substantlal modifications in the cost function and-

the gradlent finding procedure associated with complex parameters
~ 2.3.2. Model Order Determination

Robﬁs’t estir_natio‘ri methods are cornputation»al_ly feasible »’or.xly When the number
of quantities to be estimated i's._small c0mpa'red to the number of available observa-
tions. Even when the number of parameters to be estimated is small, the minimiza-
tion of vrobustiﬁed criterion functions often leads to local minima. The situation is
very critical if the number of parameters is large. It is also well known that the larger
the number of unknown parameters to be estimated for the same number of measure-
ments, the lower is the accuracy of the estimates, the so called principle of parsimony.
The chorce of orders in the L-variate AR model was done by using the order selection

“critetion due to Kashyap [34].
~ 2.3.3. Complex Parameter Estimates
1In[3], a short review of a robust approach relevant to our problem was presented

~ - with an algorithm for implementing the Huber’s procedure in parameter estimation.

The convergence issues involved in the associated numerical .optimization problem
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has been also addrcssed. The following is a modification of the above real parameter

estimation algorithm into the complex parameter estimation case.

For each of the L univariate models as shown in (2.3.3), the following robust

estimation scheme is proposed. Let the estimate of the true parameter vector, Ag, be

given by
| Ro(N:J) = argumens minJ (N) @39
where
= S Hw@A). @37)
—p+1 '

. I

“The function H (x) is given by -

and w(t,A) is the residual defined by
w(t, A) = x(i) ~ATZ(@-1),. (23.9)

which is consistent with (2.3.3). w(z,A) is also hnders.tood as an estimate of w(z)

based on the observation set Z (k) up to time k=7-1 as if A is the correct value, Ag.

The choice oi‘ cis important. Since the appréach of Huber [27] is applicable to

this case, the constant ¢ has the following expression
c= 506 | (2.3.10)
where cg, which depends one, the fracnon of contaﬂnnanon, is glvcn by -
2®0(co) -1+ 2¢(co)/c0 =1/(1- e) | (2.3.11)

and o2 is the variance of the dominant Gaussian dcnsny. ®(co) is the standard cumu-

lative Gaussian distribution with zero mean and unit variance, and ¢(cg) is the
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' correspondmg Gaussian dénsi-ty“ Usually co“i’s chosen to lie «be‘tweén 1 andz which
corrcsponds to’ the e-mtcrval [0 0083 0. 1428] by (2 3 11) In pracnce, however, both
- o and the exact’ valuc of € are unknown Huber replaccd Lo by a factor callcd scale
factor, and dlscusses in detaﬂ the choice of thrs scahng factor for the esumauon of the
* location parameter which depends on scale. Howcver, in the above case the parame-
ter vector A is mdependent of the scale due to thc nature of the AR model under con-
»"sxdcranon, ie., the scalmg affccts th sxdcs of (2.3.3) to thc same degrec, and SO

 these ‘methods are not relevant.- Instead, wé choose ¢ as follows:

c= [ - ] » (23.12)
.p+l ' o ‘

where ¢ is a constant between 1 and 2}. Note that ¢ changes from iteration to itera-

‘tion.
2.3.4. Computation Prpcfedure :

For computational clarity let us denote

"_'”v,\‘:,.(,.)f_'_'_Re x@] -
- xi'(t)=1m[x'.(tz)] o
Arv.=Re-[A‘]>‘
Az =lm [A]
Zr@-1)=Re [Z‘(z-.l‘)e] :

Zie-v=mge-vl. - @31

* " 'Then we may write
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WOAWGA =Ty 4T @314
‘where | h
Tl—[xr(t) ArTZr(t-l)+A1T21(t 1)]2
[xl(t) ArTZI(t 1)+AzTZr(t 1)]2 @3y
| ’Then (23 8) becomes

(Tl+T2)/2 WA sc
e fri+Ts-c2n ’;iﬂ”"”‘.)l>"' ,. (2'3'.116) |

. H(W(t,A))={ |

The usual approach of ﬁndmg the gradlent of H w (A)) w1th respect to A must, ‘
: be used w1th cautlon smce the vector Ai 1s complex One can evaluate the gradtents 1
'w1th respect to the A and its conjugate as mdependent vanables, or the real and 1ma- |
», gmary parts: as mdependent vanables [31] The gradtent vector and the Hessian

| r matnx of the H (w (t A)) is gtven by |
| VAH(w « A)) VA,H w @ A)) + ]VNH(W @A) - (‘2'_."3'.'17')‘
VpaH (w @ )= -v? A,A,H (w @A)+ ;V%A,H we M (i.é-"l'S)
where the real and 1mag1nary parts of A are assumed to be mdependent | o

A Newton-Raphson based algonthm is utthzed for the rmmrmzatlon of J (N ).in
o (2.3. 7) since its convergence propemes are well estabhshed 69,701 The bas1c step '

.::_for t}ns method is glven by
Ao+1)_ (z)_ a[ Z VZMH(WQ, A))] [ z VAH(w(t A))] (23 19) .
B dEpAb sl “p“ SR

- where a is the step size parameter.for"itefation. S




:2:3:5. “Corrélation’Matrix Gomputation ,'
For computanonal simphcity ‘an: eqmvalcnt 'state vanable model ‘i uuhzed in’'the

-icomputauon of the ‘corrélation sthatrix. Gwen the followmgf pth-order: bvanate ‘AR

" emel as"was: also shown:ini(2.311),

- where A’s :are ‘the complex coefficient ‘matrices ‘estimated in ‘the previous robust |

- scheme, an equivalent state variable model is found ; ie.,

Y ) =AY @=1)+BW (@)

| uon mamx of Y(t), knowmg that one can retneve a]l the eletiients of Rx (0), the corre-

flanon matrix of X (1), from Ry(.)

From (2 3 21), Ry(O) may be wntten as

Ry(0) '2"5‘[?1’7(?7-)}"(51)”;]

=ARyO)A¥+BTBY . 32
~ where F E [W (t)W (t)”] and H denotes Herrmnan u'ansse

The problem now is to solve for Ry(O) glven all the other terms in (2 3 22) In

[33], it was shown that the components of Ry(O) can be easily obtainéd by solving
(I=A®A*)R =D S 2.3.23)
e where © denotes the k:ronecker product and * denote the complex conjugate, R and

Dare column vectors formed from thc rows of Ry(0) and E respecuvely, e,
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"Ri=‘COI_.v A(.r‘"lvl,_..',rl_Lﬂ,-..b..,f"Ll,‘..,FLL) - ) o . (2324) vv
 D=coleysmeimelrme) 2329
where
B 'E;-.BABH,@ A (2.3.26) |

Solvmg for the vector R from the hnear equauon (2 3. 23) yields: all the com-
) ponent ofRy(O), thus RX(O) can alsobeobtamed ‘ -

2.4, Numerical Simulation - |

The objective of thls slmulanon study is to investigate and confirm the effectlve-

» _.ness of the new robust DOA esnmatxon techmque in many deferent noise environ-

J'ments In the slmulatlon, it 1s assumed that there are eight sensors in the array w1th

~ jdentical spacmgs between them There are two s1gna1 sources with 9;=0. 7854 and |

}92—1 0472 denotmg the first and second true DOA s in radlans with respect to the -

ﬁ: vemcal auus su'etched above sensor number one in Flgure 2. 1 The slgnal sources are
chosen as ' | | | |

sl(t) e (o 4m) ‘and sg(t) =exp (0 81::) 4

For sunphclty, it is also assumed that 8 the spaclng between sensors, is exactly one

half of L the signal wavelength then (2 4 1) becomes
L x,(z)=exp [_11:(0 4r+1 sme,)] + exp [_m(O 8t+l s1n92)] + w,(t) ’ ”(2.4."21) ‘
‘from whxch the data m the s1mulatlon is generated |

The order p of the 8-vanate complex AR modcl i ¢. 8 sensor array, is. deter-

mmed usmg the followmg declsxon statxsuc for multwanate AR model.



.KlC(p) Nzlnp (‘)+npln(N/27t) S :(:‘2..421.,:3;)'

where Nis the number of avarlable 8-variate data, Pj j is the Jjth d1agonal componem of
the resrdual covariance matnx of the fitted AR(p) model and n, isthe: total ‘number of
parameters to be estimated for the pth order model. The order, p,is ch‘_osen to ‘minim-
ize KIC(p). Details of the decision «staﬁstres can be found in [34,35] Wn.h N=100, the
decision criterion (2.4.3) is minimized when p=1 or p=2 in most cases, depending on
the quality of the additive noise. e .

At the given array, the compl'exb':paranreters of the 8-variate AR ‘odel are
estimated using the technique developed in secﬁon 2.3, and the corfelation matrix
v -WhiCh cOrreSponds-»to the 8-variate complex AR model is c:or’nputed using the state
variable model method. The MDL cntenon by Wax et al. [84] is then utilized to find
~the esnmate of the number of slgnal sources and the directions-of-arrival estimates at

- each: subarray site. .~

Table 2 1 shows the performance companson of the nonrobust and the robust
approach for each of the ten expenmental runs when the SNR is 13 dB and there v
exrsts:one percent outher Gaussian noise, whrch has ﬁve tinés the variance of the
| parent Gaussian. For the nonrobust method mentioned above, -th‘e correlation matrix

: esnmate is provided by 2.2. 5), m which the addmve noise is assumed to be a pure
Gaussian. * denotes the case where the MUSIC spectrum doés not exhxbrt the any
: correspondmg spectral peaks |

Table 2.2 shows the RMSE’s of the available e*stii:m‘a‘tes taken frorn ten indepen-
‘dent experimental runs in the presence of one percent ontl’iers wnh five times the vari-
ance of dominant Gaussian noise for different values of sfi’gna'll t noise ratios (SNR) f
’Figure 22 shows the average RMSE (average of the two RMSE s whlch corresponds |

) to the two DOA estlmates) vs. SNR plot in the pure Gaussian noxse for the MUSIC
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and for the robust estimates taken from ten independent experiments, while Figure 2.3

shows the similar plot taken in the presence of outliers mentioned above.

‘The robu#t method guarantees lcl;onsistem performance even when the outlier
noise is present whereas the performarice of the nonrobust method deteriorates very
quickly with a slight change of the noise environment. In the following list of tables,
d denotes the estirﬁate of the number of source signals, € denotes the percent ﬁrobabil-
ity of the outlier noise, and a denotes the ratio of the outlier noise variance vs. the
dominant Gaussian noise variance. §1 and 9} denote the estimates of the two

directions-of-arrival.



Table 2 1. Companson of nonrobust and robust estlmates for ten mdependent runs

 when €=0.01, a=5, and the SNR is equal to 13dB. * denotes. the case ‘where the
MUSIC spectrum does not exhibit the correspondmg spectral pcaks Thc truc
DOA’s are 91—0 7854 and 62—1 0472 in radJans ' .

| ’-:Nonrobusiti and Rob_ust Résuits for Each "Expcﬁmenta] Run o

- nomrobust - |

. robust

| runno. |

A

. P

4| 08388

13108242 |1

| 07901 | 1.

- | 0.7791

| 08137 |

09959 |

| 08624 |

4 | 0.8184

1.0414

.| 09912 |

4| 07885

| 1.0556

07807

10414 | 2

07791

».'1?.0430-

| 0.7854

10524 |

| 07885 |

1.0524 |

| 09299 |

| 08011

1 1.0147

| 0.7587

1.0509 | 6

0.7901

- 1.0540 |

10

107854

11,0446 |

09739 |
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Tablc 2 2 Avcrages of the DOA estimates for ten mdependent runs, when e—O 01

“‘and a=5 for many different SNR’s. Shown in the associated parenthcses are the

RMSE values of the DOA Estimates taken from the the ten mdepcndent runs.. ’
The true DOA s are 61-0 7854 and 92-1 0472 in radxans ’ v

Aycfage of the vEstimates (RMSE)

”,

nonrobust - robust

SNR(dB)

~ .

91' ’

-~

6, -

~

1 6,

~

| 130

07854
| 0.0038)

10234
(0.0445)

0.7866

(0.0037)

| 1.0419 !
- (0.0032)

85

O 7866

 (00026).

| 10226
(0.0481)

07888

(0.0026) |

10851 |
(0.0082) |- C

04.7825 .
| ©.0084)

(0.0688)

1.0051

0.7876

(0.0047) |

10506 |
(0.0049)

) 07838 
N () 0092)-

10215
(0.0828)

(0.0065) |.

10454

©0.0058) |

10.7882
©.0123)

| 10131
©.1547)

07873 |
0.0126)

10484 |

(0.()’118){

1.5

| 07920
(0.0101)

10498

©.0357) |

107580

| 09981

©0173).

"(_0.0}451') -
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Figure 2.3. Contaminated Gaussian Noise Case: Average RMSE vs. SNR for .
the MUSIC DOA estimates (dotted line) and for the robust DOA estimates (solid
line). The contamination is caused by replacing one percent (€=0.01) of the
Gaussian data with outliers which has five times the variance (2=5) of the parent
Gaussian distribution. The true DOA’s dre 6,=0.7854 and 6,=1.0472 in radians.
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‘Figure 2.2. Gaussian Noise Case: Average RMSE vs. SNR plot of the DOA
estimates for the MUSIC DOA estimates (dotted line) .and for the robust DOA

- estimates (solid line) from ten .independent experiments. The true DOA’s are -
. 9;=0.7854 and 6,=1.0472 in radians. ' -
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2.5. Conelusfi’ortj

A n'ew'- robust narrow band technique has been developedsforeSﬁmaringt the
number of signal sources and their djrect'ions-’of‘-arrivd T}tei 'seheme- utilizes anv
elgenvector method and the correlatxon matrix esnmate reconsu'ucted from robust
‘time senes modehng of the array data. The robust scheme provides estimates that are
robust against outliers and fdtstnbunonal ‘uncertainties m the noxse envu'onment.
Simulation results a.lso conﬁrm that the robust scheme perfonns almost as well as the
nonrobust scheme in the pure Gaussran no:se and much better in the presence of

outliers, where the nonrobust.,;method often completely fails to provide any estimates.




I CHAPTER3 Sl
DECENTRALIZED DIRECTION-OF-ARRIVAL ESTIMATION o

31 Introduction -~ -

" There is also a concern thatin many cases the centralized scheme is untractive, ’
_ .vsuch as in the case of many subarrays at geographlcally dlspersed sites [83] -For an
example, the central processmg unit has no means of locanng the malfuncnonmg
-‘ subarray sites. But w1th decentralized processmg, it is p0551ble for the fusion center_ :
. torecognize datavfrom-malfuncnonmg subarray sncs}or at least lmmrmze theharmful-»
v"-contnbuuon from such subarray s1tes o | |
The general scheme of decentrahzcd processmg is as follows Each subarx'ay is
K a unit that repewes the vobs_ervanon and esnmates a set of pammetexs using only 1ts‘ |
. own observations. Estimating parameteré at each subarray ’.si;e is a totally indepen-
dent process from those of other su'Bam\,-y'sites. Each s:ubafray ~sitevthen seods its own .
: set of estimates to the fusion center; where the sets of esiimates fi'om different subar-
" _ray sites are combmed to form a more rehable set of csumates than each mdmdual

set of esumates before the combmm g

The following decentralized schemc is proposed At each subarray site, a mul-v

tivariate autoregressive (AR) model wnh proper order is systernaucally chosen and |
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the parameters are 'estimate'd using a robust tet:hnique Once all the parameters are
estimated, the correlatxon matnx correspondmg to the model can be found. Each

'subarray s1te then esttmates the number of srgnal sources, and the esumate is sent. to :

o the fusion center along w1th the stausﬁcs for computmg the esnmate s relatlve'

: conﬁdence measure At the fusron center, the esnmates of the number of sources are
: 'comblned usmg their confidence: measures then the result is sent back to each of thc o
selected subarray sites. Each of the selected subarray sites then prov1des the same.
nurnber of DOA estimates, Wh.ICh are then combined using a robust combining tech-

: mque at the fusion center

ThlS scheme combmes the best features of robust estlmatton techmque and the
: reh_abthty of de_cenu'a_hzed processmg, For example, one may still v.,obta_,m reliable ,e,stt.-.
‘mates. when ‘a few of the subarray sites are malfuncﬁoning in addition to the possible
,_devratlon of the n01se from the assumed Gaussian model Furthermore, one can ehm-'-
v_ inate the commumcanon loads between subarray s1tes, and rmmmlze those between

€ each subarray. s1te and the fu51on center

_“The organization of the chapter is as follows Sectlon 3 2 mtroduces the new
robust decentrahzed scheme for the estimation of dlrecuons-of-amvals, and Secuon
3, 3 through. 3. 4 mtroduce the detalls of the new scheme Section 3.5 then presents
vsome of the s1mulat10ns camed out to compare the performance of the proposed algo- '

rithm. w1th that.of a srmllar nonrobust comblnmg algonthm followed by concludmg

-remarks in section 3. 6
32, The Robust,.l‘)fec__.en_tralizedi Scheréie_}.,._, :

'I‘he decentrahzed scheme at the fusron center mvolves rmportant 1ntegrat1ng

‘.steps for the estlmates of the number of source slgnals and for the DOA estlmates



from dtfferent subarray s1tes Wax et al [83] suggested a method of rntegratmg the’ '

esttmates of the number of source s1gnals, whtch takes advantage of the aprzort infor-

mauon that all the subarrays recexve the same number of source s1gnals However, o

‘ there is linde ehanee of . avoxdtng catastrophrc error on the estmate of the number of '
| v source 51gnals with this method 1f any of the subarray s1tes are malfuncnomng
| He‘n.ee, we prose'the followmg robust"combtnmg ‘scher-ne 'Whl_C'h :take-sw-advanta.ge of
the apriori knowledge that ‘v.th'e‘fadch'zti’ve ..nols,e at 'each{.ls‘?ensor’_'of."a given subarray. haS

bthesamevanance B A v | e R
At each subarray site, the estimate of the number of sources is ﬁrst obtamed |
from the aforementtoned correlauon rnatnx estlmate usmg the MDL cntenon by Wax'

etal [84] a dec1s1on cntenon for determmmg the muluphctty of the smallest eigen-

values of a glven correlatlon matrix. The number of s1gnals is determmed as the value

for ‘which the YMDL'cn;tenon 1s_' rmmrm:z-ed: The-esttmate .from each of the subarray

- sites is sent to the 'ﬁu’s-ion center alon:g with the statistics for computinag the reliability‘

measure of th:-e'estimate The robu-st ':estimate of the number of sources. is determined
. with the aid of the rehabxhty measure at the fuslon center.’ The result is sent to back'

1o each of those subarray srtes whose mmal esumate of the number of sources is equal
- or. very close to the fusion esttmate Usmg the MUSIC algonthm by Schmldt [64],

: .;the selected subar:ray s1tes then. computes the DOA esttmates to be combrned at the '

fusion center by a,-robu.st..techmque.
’ 33 In*tegratl-ngv the Estimates of the Number of Signal'S.ourcw -

Let ﬁ, be the es-timate of the number of source signals computed at the zth subar-

~ray site and d® be'the true valhe*of the number of sources. Then we vmfjay‘wri:te d;as




d=dn LM I ,g_v(3.’3.1)

‘where n, 1s consxdered to be an 1nteger drsturbance term o d,, and M is the total :

o number of suban'ay snes Our ob_]ecttve at thls pomt is.to ﬁnd a robust esnmate of d

| Even though t.here exlsts methods for ﬁndmg such estimates [38], none of them seem o
“ to prowde the desued performances for thls case smce the mteger dlsturbance term n; |
doesn t necessanly have zero mean; i.e., there may be a tendency of overestlmanon of :
the number of source s1gnals What we need is some type of rehablhty measure
associated W1th each subarray site on. the estimate of the number of sources Such a
' ._ 'rehablhty. rneasure should indicate ‘how rehable the con'e_spondmg estimate of the
-number of sources is. N | | b |
- The estlmate quahty of the nurnber of sources is dependent upon the quahty of -

the. correlanon matnx esumate, Wthh is enurely deterrmned from a rnultwanate AR
. :'model the raw data obey. In parucular, the. esumate quahty of the number of sources}
1s heav11y reﬂected upon:| the consxstency of the variance esnmate of the additive noise
-at each sensor of the glven subarray, assurmng the aprzort knowledge that the add.mve

noxse has equal vana.nce at, all sensors ot

: ‘We propose a scheme Wthh uses a rehablhty measure for combmmg the esu-'
mate of the. number of signal s sources from the subarray s1tes, each of them consists of
L equl-spaced Sensors. At each subarray site, the least square ™S) estlmate of the A,
~which wﬂl be used as a. startmg value for 1terauon steps, is computed Then the.
‘ robust estimate of the A for the L-vanate AR model 1s obtamed by the procedure |
descnbed m the prevrous secuon After the model ﬁttmg at each subarray s1te, we
| v,compute t.he estimate, of the sensor noxse vanance for each sensor by takmg the aver-

age of 1he magm'ude square of the resrduals The esumate of the jth- sensor noise

o vanance atith subarray is denoted by p,(’) ie.,
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S where M is the total number of subarray srtes L is the nurnber of sensors at each o |

| subarray wj (‘)(t Ao) is the res1dual deﬁned by (2 3 9) for the ]th unlvanate rnodel asf. '

| shown in (2' 3. 3) for 'thC‘lth subarray site, and Ao is the esnmate of the true parameter .

vector AO Then RS i) the rehabrhty staustlc of the zth subarray site whrch approxr- :
: mately measures the rehabrhty of the esnrnate of the number of source srgnals at the
'snharraysrte,_rs definedas | " |
- (Ll)Sm et oM ey
S(,)———z——‘-. » C =LMoo ’(3~3e-3);'.
| e SR
~where S (,-;)"*" is the sérnhle_' var-iance of the p,® taken from the vithblsu"barr'a'y, sensors

 only,ie.,

S S(i.)»2 =‘L-l-—lz[ (‘) ]2 ’ S n (3.3:4)
' j=l ~ ‘ _ L
i) 1 L )
p _Lzlpl 0

6 =——3 T ;-1 o (335
.5‘ ML-I,%,E(‘)J-“) SRR ( ‘ )
p==3p -
Mi:l'

o can be easrly shown that the asymptouc drstnbutlon of the test statrsuc RS @) .

: wﬂl be X2 w1th L1 degrees of freedorn ie.,
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| RS(,) X2 - 1) B € & YOI
| A nsk a and threshold B(a) can now be selected such that |
- Prob (RS(,)>[3(a)) o L ('3.3.7.) |
.»Typlcally, a va.lue of 0. 05 is chosen for a. Then the above criterion rejects the est1- ‘v
" mate of the number of sources from the tth subarray site if RS (,) > ﬁ(a) For given L,
this is con51stent with the 1dea that the smaller values of RS ;) demonstrate the con-.

sistency of the esnmates thh the aprtort knowledge that the add.mve noise at each

sensor has the same vanance

The reasonmg here is that as a stronger safeguard agamst outhers, one does not_ o

- want to 1nclude any obv1ously unrehable esumates of the number of source s1gnals in
.the comblmng scheme There are many dxfferent vanants of the robust method which -
combmes the remammg esumates, but the median va]ue of the selected reliable esti-
,mates is chosen as the robust esnmate of the number of source slgnals to reduce the

. .complextty of. computauon The median is deﬁned by

[d(H-l )] , Cif l—odd E

- (338)
- [-—(d(__) +d(_+1))] 5 lf l —even. O

' where d(,) is the jth order stattsuc of: d,, 1-1, ,M’ and [ 1s the closest mteger toa

real number of any argument M s the number of selected subarray sites. .

The proposed scheme can be bneﬂy summanzed mto the followmg steps usmg

“the notatlon used above Each (lth) subarray sne computes Pj O ; ]—1, ,L to be sent ‘

.. to'the fusion center along w1th its esnmate of the number of sources. The fusion

: -center then computes o S (,) N and RS (,)'l—l, ,M’ and eliminates any unrehable
estlmates of the number of sources us1ng the rejecnon cntenon (3 3.N. After choos-

ing the median of theremalmng esumates of the. number of sources as the fusion



estimate, the: fusion center- sends the fusmn esnmate tovt‘hose subarray srtes whose ini-
tial estimate of the number of sources is equal to the fusmn estlmate |
* Incases that only one or very few subarrays have reported tlus medlan number
of sources, we may also mclude those subarrays reporung very close results mstead of
requesung the DOA estimates only from the ones reporting this- median number of ‘
sources. The degree of closeness required for this inclusion can be subJecnvely deter- '
mmed accordmg 10 the accuracy and rehabxllty one ‘pursue from the decentrahzed
‘scheme. The selected subarray sites then computes: the: same number of DOA esu-v
mates using the MUSIC. al'gorithm. Finelly, the DOA festirnates from those subarray

sites are combined at the fusion center using a robust combining method.
- 34. ‘lntegrating the Direction-of-Arrival Estimates : |

At thlS point it is assumned that each selected subarray site computes exactly ds
‘DOA estimates, whlch correspond to the dy significant peaks in the corresponding .
MUS.‘IC lspec_,trum. ’Here, dydenotes the fusion estimate of the number of sources. Ifa
selected subarray site did not'choose exactly df DOA estimates, such DOA estimates
are ignored |
| Again, the combmmg scheme at the fusron center may requxre some sort of reli-
vablhty measure on the DOA esnmates from each subarray site, anda natural chorce of

| »such rehabrhty measure seems to be the variances of the correspondmg esnmates
Barabell et al. [1] derived the expressions for the average devratlon of the null spec-
S tra, which i is the inverse of the MUSI-C,spectrum unhzed in our scheme, at the true
'DOA’s for one and two signai source cases. However, such expressions is not be

; casily extended to arbrtrary number of signal cases. Therefore, we look for other prac-

. .uca] altemanves
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ln [38] a robust techmque is developed for combmmg the frequency estimates
. from d1fferent sensors, and one: may treat the DOA estimates smularly Smce the
number of DOA estimates from each subarray 51te is already known, to be 1denueal
"we do not con51der the case where the number of DOA esumates are dlfferent Let

01, Gd be a set of true DOA s in ascendmg order and 91 ,...,»é be the

"correspondmg set of dy DOA estlmates from the ith selected subarray site.

In general, such a set of ds DOA estimates is a set of angles with no particular
S significance to'order, and there is the potential for problems in applying vector com-
bining procedures or scalarized procedures based on picking single components from
fixed positions in the vector. The probability of such potential problems can be
‘minimized. by strictly eliminating the sets of DOA estimates from unreliable subarray
sites before the combining. 'Funherrn'ore, remaining sets of the DOA estimates are
‘com‘bined using a robust technique which is insensitive to the effect of outliers possi-
bly still remaining in the selected DOA estimates. It s assumed that each of the DOA
est_imate .vector are combined is a set of angles in ascending order, i.., (0.2123,
£ 0.3021, 0.4036). S | |

If the sourcelpowers are distinctly different from source to source, one can also
ra_nk the estimates according to th_eir cor“responding source strengths so that the com-
‘bination occurs among the .estimates of the same ranks. Anot_her possibility is that the
esumates exhrbmng the strongest SOurce power. can be combined first. For the esti-
~ mates’ exh1b1t1ng the next strongest source power, the differences between these and
those .of. the strongest source- power are combmed rather than the estimates them-
selves The cornbmed d1fferences can be added to the ﬁrst estlmate to get. the second

esumate exhlbmng the second strongest source, etc

- Since each DOA est1mate of a glven subarray site is a functxon of observatlons at

-each subarray srte, it can be represented as



‘where 9 1s the jth true DOA and 9 _ 1s the jth DOA estlmate from the lth selected _.', |
- subarray site. M is the number of selected subarray s1tes, and df is the fus1on estlmate, -
s of the number of sources The problem is to estImate 6 frorn é ‘1) 9 J(M) j= 1 df, ‘. .‘ .
but the mam problem hes in: the fact that the dlstnbutlon of the perturbatlon {’Y (‘)}
unknown. |
. - .An inmortant issue is whether the :quion -estimate ivs'hinsensitiveh toa few bad esti'-
»mates The bad estlmates may be the ones. Wthh are sent from a malfunctlonmg
- subarray sxte A necessary assumptlon on the perturbanon {'yl(‘)} is that it has a sym-

: metnc dlstnbutlon and can be approxlmated as a rmxture d13tnbutlon For example,

L “"y, may have the followmg dlstnbutlon

v~ (-e0+ey R ¥ %)
where €= 0 05, ¢ N(O P)s. and \y is an unknown outlier dlSIIlbllthﬂ w1th Zero mean

and the vanance of 9p. This is an example of the well known nnxture d1str1but10n

[30]’ and many robust estimation techmques are known to perform well for thls kmd

’of mlxture dtstnbutlons Even in the case where the parent d1stnbut10n is not Gaus-

-~ sian, one can st111 use such estimation techmques for comblnmg estxmates since the

brobust esurnatlon methods are not sensitive to dlstnbutxons B .

o The robust combmlng techmque is the locanon parameter estlmatlon problem
_ | Aexplored by Huber [27], Wthh is shown in the followmg F1nd 6 , , ]-1 df.kWthh |
N nnmrmzes | B "
| u (.‘)_gf S
ZH( sy ERENY . 343)

" where
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cis the breakdown pomt constant obtamed by (2 3 12), whrle v; i is the sample vari-
(1>A<2) 5.4 - : S

@',ancetakenfrome f«’;’ef ,,

3.5. Numerical Simulation ’

|  The obJectlve of thlS 51mulanon studv is to 1nvest1gate and conﬁrm the effectlve—
" ness of the robust decentrahzed DOA estlmatlon technlque 1n many dlfferent contam-
_’.mated noise srtuatlons For the srmulatton Iti is assumed that there are ten subarray
sites, each w1th eight equlspaced 1dent1¢al sensors There are two slgnal sources. w1th
»01—0 7854 and 0,=1. 0472 denotmg the ﬁrst and second true DOA s'in radlans, w1th
~-Tespect to the verncal ax15 stretched above sensor number one as was shown m Flgure

2.1. The source s1gnals are agam chosen as
| sl(t) exp G 04m) and sz(t) exp(l 0. Sm) L ‘(3-.5.1) |

| For srmphcuy, itis assumed that 8 the spacmg between sensors, is exactly one half of

A, the 51gnal wavelength then (2 2 2) becomes - 5
x,,,, (t)=exp [j7t(0 4t+l smel)] + exp [ut(O 8t+I sm92)] + wl,,,(t), (3 5 2)

- "from Wthh the data in the S1mulatlon 1s generated At thls pomt 1t is 1mportant to
‘: ,ljpomt out that dlfferent subarray sites have d1fferent true DOA $ s1mply because of -
- their geographlcal locatlon d1fferences If one knows the locatlons of all the subarray
'} "‘snes, this problem can be easﬂy overcome by accommodatmg the subarray location
| ’_‘dlfferences at each subarray sue For srmphcxty, 1t is assumed that the problem has

_ been already remedled at each subarray s1te
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‘The order p; of the S-Qariate complex AR’rnodel, i.e. 8 sensor drray,"at the ith
subarray site is determined using the followin’g» decisiOn statistic for multivari‘ate AR
model. | | [

KIC () = NZlnp Oy o N (353) _”
j=1 Lo o
where N is the number of available 8-variate data, p;® is defined by (3.3.2), and n,, is
the total number of parnmeters to be estimated for the p;th order model. We choose
the Order', Dis wbich minimizes KIC (p;). Details of the decision statistics 'are found in :
[34,35]. With N=100, the decision criterion (3.5.3) is minimized when p;=1 or p,=2 in
most of the subarray sites, d_ependin_g on the quality of the additive noise.
~~ At each of the ten subarray sites, the complex parameters' of the 8-variate AR
model are estimated using the technique developed m section III, and the correlation
matrix which corresponds to the 8-variate AR model is computed. The MDL cri-
terion by Wax et al. f[84'] is then utilized to find the estimate of the number of signal-
sources and the DOA estimates at each subarray site are computed.
" Estimation of the pararneters' which required ten.to twenty. iterations using the
Newton-Raphson algonthm for each of the L umvanate model as in (2.3. 3) is pro-
cessed in parallel at each subarray sne only once. Incorporatmg this into a real time
.k . procedure would requrre addmonal computauon bllt the trade off is worth whtle in

situations of contaminated norse.

: Tabl.e 3.1 shows the performance comparison of the nonrobust and the robust

~ approach at each of the ten subarray sites when the SNR is 13 dB and there ex1sts one

| percent outlier Gaussra.n noise, wh1ch has five tlmes the variance of the parent Gaus-
sian. For the nonrobust method mentroned above, the correlatxon matnx estimate is
provrded by (2.2.5), in whlch the addmve noise is assumed to be a pure Gaussran

: »'Note that the correct estlmates of the number of sources Wthh is denoted by +, are
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‘ always assocmted w1th smaller values of RS values, i.e., 2.17 is used as the threshold'
' for -005 * denotes the case where the MUSIC spectrum does not exhibit the

" bcorresponding spectral peaks

' Table 3.2 shows the ﬁnal DOA estimates for the nonrobust and the robust
approach after the combimng, and the root mean square error (RMSE) of the esti-
' mates from subarray 51tes before the comblmng, for many contaminated noise situa-
tions w1th the SNR of 13 dB. Shown in the associated parentheses are the RMSE

values of the DOA estirnates from different subarray sites before the combining but
after ehrmnatmg any unrehable esnmates Here, * indicate ‘the case whefe none of
the ten subarray sites detected the MUSIC spectrum peak which are at the vicinity. of
the de_slred estimate. Table 3.3 shows similar compansons as in Table 3.2, but with ‘
many diffetent SNR’s in a ﬁx‘ed contaminated noise environment, i.e., there exists
one percent outlier Gaussian noise which has five times the variance of the parent
Gaussian. | |
In combining the-nonrobustrestimates, ,the algebraic mean of all the available
estimates are taken as the final DOA estimates. The combining of the DOA estimates
only involves those from the subarray sites where the subarray’s estimate of the
number of sources coincides With the robust estimate from the quion_ center. In other
~words, if a. given subarray site did not choose exactly two DOA estimates, they were -
not included in the combinin g“Scheme.

The change in the RMSE values CauSed by the variation in the noisev environ-
’-vment is ev1dent in Table 3.2 and Table 3:3. The decentrahzed processmg scheme
indeed packs more reliability into the robust algorithm which already provides much
more con51stent performance than the correspondmg nonrobust method ~which

' deteriorates very quickly w1th aslight change of the noise envuonment



a7

In the following tables, d denotes the estimate of the number of source signals. €
denotes the percent probability of the outlier noise, and a denotes the ratio of the
outlier noise variance vs. the dominant Gaussian noise variance. 9 and 95 denote the

two DOA estimates. The "reliability statistic" is denoted by RS.
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: Table 3.1. Comparison of nonrobust and robust estimates at ten deferent subarray :
sites when €=0.01, =5, and the SNR is equal to 13dB. Note that the correct
estimates of the number of sources, which is denoted by +, are always associated
with smaller values of RS values (2.17 is used as the threshold for 0=0.05). *
denotes the case where the MUSIC spectrum does not exhibit the corresponding
spectral peaks. The true DOA’s are 6;=0.7854 and 8,=1.0472 in radians.

Nonrobust and Robust Results at Each Submy Site
nonrobust robust’

Asie | d | 6 6 | 4| 6 6, RS
14|08 | * |3 |o08242 | 10194 276
2 ‘2  07901 | 10430 | 2 | 07901 | 1.0446 | 00017
3050 | ¢+ |5 | 0813 09959 | 2282
4 | 508624 | * T4 [osisa | 10414 ‘3.8'1‘
s 3| 012 « |4 07885 | 10556 | 2.29
6 |2 | 0807 1;0414_ 2* | 07791 | 1.0430 | 0.0059
7 | 2| 07854 | Los24 | 2* 07885 | 10524 | 00047
s |3 0929 | « |4 |oson | Lowa7 | 598
o | 307587 | 10509 | 6 | 07901 | 1.0540 | 1.03
10_ 3109739 | * |4 | 07854 | 1.0446 | 599
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" Table 3.2. Final DOA Estimates at the fusion center after the combining when the
' SNR is equal to- 13. dB. Shown in the associated parentheses. are the RMSE
values. of the DOA estimates taken from the subarray sites before the combining
but after rejecting unreliable estimates. * indicate the case where none of the ten
subarray. sites detected the MUSIC spectrum peak which corresponds to- the
desired estimate. The true DOA’s are 8,=0.7854, and 6,=1.0472 in radians.

Combined Estimates (& RMSE before combining)
nonrobust | robusf
€ ’ a" e’fl] 9A2 'eAi 62
‘0 07863 | 10482 | 07860 | 1.0495
- (0.0038) | (0.0073) | (0.0028) | (0.0051)
‘001 | 5 | 07854 | 1.0234 | 0.7880 | 1.0470
' ' (0.0039) | (0.0445) | (0.0037) | (0.0032)
005 | 5 | 08438 | 1.0487 | 07864 | 1.0488
’ (0.0870) | (0.0093) | (0.0034) | (0.0085) |
001 | 10 | 08323 | 09843 | 07876 | 1.0389
| 0.1630) | (0.0972) | (0:0141) | (0.0163) |
005 | 10 | 09475 | * | 08222 | 10642 |
" ' ' (0:3945) | - (0.0628) | (0.0226)
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“‘aM@ 3.3. Fxnal DOA estimates at the fusion center after the combining when -
e=0. 01 and a=5 for many different SNR’s. Shown in the associated parentheses

~ are the RMSE values of the DOA estimates taken from the subarray sites before

’ ,combmmg but after- rejecting unreliable estimates. * indicate the case where

" none of ‘the ten subarray sites detected the MUSIC spectrum peak which
corrcsponds to the desucd cstlmatc The true DOA’s are 61—0 7854, and

0,=1.0472in radla.ns

Combined Estimates (& RMSE before combining)
- nonrobust robust
SNR(@B) | 6 6 6 | 6
130 | 07854 | 10234 | 07880 | 10470 |
| (0.0038) | (0.0445) | (0.0037) | (0.0032) |
85 | 0786 | 10226 | 07866 | 1.0419 |
(0.0026) | (0.0481) | (0.0026) | (0.0082)
67 | 07825 | 10051 | 07858 | 10485
(0.0084) | (0.0688) | (0.0047) | (0.0049)
55 | 07838 | 10215 | 07849 | 1.0454
(0.0092) | (0.0828) | (0.0065) | (0.0058)
45 | 07882 | 10731 | 07872 | 10484
| (0.0123) | (0.1547) | (0.0126) | (0.0118)
1.5 E ko 07901 | 1.0496
(0.0101) | (0.0357)
-1.5 * * | 07681 | 10021
| | (0.0173) | (0.0451)
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3.6. Conclusion

We have considered a new decentralized processiné scheme to estimate the
number of signal sources and their directions-of-arrival. It employs a decentralized
processing scheme such that each subarray site provides a robust estimate of the
number of sources accompanied by its corresponding reliability statistic such that
only the reliable estimates of the number of sources are combined at the fusion center.
A robust combination technique is used to combine the corresponding DOA estimates
from the Subarray sites. Simulation results show that the new decentralized procedure
| provides much more reliable estimates that are also robust against outliers and distri-
butional uncertainties in the noise environment. Simulation results also confirm that

the new scheme performs especially well at low values of the SNR.



52

CHAPTER 4
DIRECTION-OF-ARRIVAL ESTIMATION USING RADON TRANSFORM

4.1. Introduction

The problem of estimating the direction of arrival (DOA) of radiating sources
from measurements provided by a passive array of sensors is frequently encountered
in radar, sonar, radio astronomy and seismology. This chapter specifically considér
the DOA estimation problem when there are many sources, each of which is either
narrow band or wide band, in situations of low SNR, outlier contaminated Gaussian
noise, and colored noise with unknown correlations.

| Differént approaches have been followed for solving the DOA estimation prob-
lem: ‘_bcamforming, maximum likelihood, eig’enspacé methods, etc. Beamforming
metﬁo‘ds are computationé.lly efficient and yield effective performance in low resolu- -
tion applications where the incident source spatial separations are sufficiently larger
than the inverse of the array aperture [45]. The ML technique has not bcc’nbpopular
‘bccaiuse of the high corriputational loa‘d‘ibnvolved in the multivariate nonlineaf maxim- v
ization. Recently, Ziskind and Wax [87] have presented a corriputationally attractive
method for computing the ML estimate of narrow band sources. Eigenépacé methods

such as MUSIC [65) and ESPRIT [54] have bécome popular in applications requiring
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high- resolut10n capablhty However eigenspace methods are usually based on nar- |
. rOW band assumptlon of 51gnals “One way of solving the wide band DOA estimation
’ ‘problem,ls to divide the wrde frequency band into non-overlappmg narrow bands, and
__then use narrow vband signal subspace pro'cessing [861. Alternatively, Wang‘and'

Kaveh [82] have cons1dered an eigenspace method where the estimates are obtained
' 'by the elgen decomposmon of a frequency domam combmauon of modified narrow

band covarlance matrix estimates.

Instead of treating the wide band problem as a multitude of narrow band emitter.
problems, Su and Morf [77] and Porat and Friedlander [56] ‘have considered usmg a
multivariate rational model for the sensor outputs. Another approach for the DOA
estimation problem is to consider it as.a 2;D spectral estimation problem [19]. .An
advantage of this approach is that it is applicable when both narrow band and. wide
band. sources, are present simultaneously. Jackson and Chien [28] however have
pomted out the severe asymmetry and bias in the esumated spectra usmg a 2-D quar-

ter plane AR model for bearing estlmatlon.

There has been a growing interest in the development of theory and applications'
of robust methods, where the term "robustness" refers to insensitivity against small
deviation -in the underlying Gaussian noise assumption. Previous schemes, which

were developed and tested under the Gaussian assumption, usually fail to resolve
close DOA’s when the underlying noise distribution deviates even slightly from the
assumed Gaussian since they are very sen»s’_itiveto minor deviations from the underly-
~ing assumptions.. Therefore, the importance of robust methods need not be overem-
phasized.' ,_ o

Hansen and Chellappa [23] have recently considered 2-D robust spectral estima-
tion, and have found that it ,requires very extensive computation. The necessity of a

large order_ non-causal model for resolving fine details in a 2-D PSD has been'._also



~ pointed out 'in"[6‘l] VIt'fis‘well"known, however, by the'-‘princilpleof ;parsimony that the
. accuracy of the parameter‘ ’estimates’ decreases w‘hen:the number of unknown parame-
ters to be 'esti'mat'ed‘inéreases.' ’I-’lence, robust spectral estimation methods ‘are compu-
ftaon"a:lly feasible only when the number of parameters {6 be estimated is small
| Recen't'ly; a new approach of 2-D.specnal estimation' uﬁllzing l-D‘vautoregre_SSiVe
(AR) models. in the“"Radon_’l space was investigated ‘bry‘Srln'ivasa'et al. [71,75]. The 2-
D PSD is es»timated from a finite set of observatibns ofa 2;D stationary‘ra’ndom ﬁeld
: f('SRF')*usln‘g the Radona»&ansfonﬁ. In particular; the 2-D PSD estimation p‘roblem is
"converted into a set of 1-D mdependent problems usmg ‘the modified central slice
theorem for SRF mtroduced by Jam and Ansari [29]. The pro;ectrons ‘of t.he array
“ data are computed and then 1-D models are utilized for each projection to obtain an

estimate of the 2-D PSD Smce the number of parameters to be esnmated in the 1-D.

o model is small, robust methods of parameter esnmatron are feasible. -

~ The Z'CODtI'lb;uIlOI‘l of this chapter is‘ an apph_catron of the Radon transforrn-
_approach of 2-D PSD estimation to the DOA estimation problem. The importance of
the -method .presen‘ted here is that it does not require any information about the
number of -rece’ived signals, structu‘re’of -t'hefsignals'v and the correlation structure 'of.‘
- sensor n01se The techmque is capable of handhng narrow band and w1de band
sources srmultaneously at low SNR’s, and performs equally well in the presence of

colored norse with unknown cor,relauon .struct_ure._ _

The quahty of the esnmates obtamed by this method may not be as good as that

of model based methods such as maximum hkehhood (ML) estimation if the number

e ~of 51gnals, srgnal type, frequency of 51gnals, and the sensor n01se structure is. already

‘ known exactly In. practlce, however, no such 1nformat10n is grven beforehand o

Furthermore, the express1on for -the vanance of the estunates cannot be obtamed

us1ng this method Though the DOA estimation method presented m thls chapter is-
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e related to the tradmonal beamformlng, 1t has much better resolvmg capab111ty as we
| use the spectral dens1ty, Wthh 1s in tum estlmated by usmg a model to measure the

- average power. ‘ . [ |

‘ An addmonal 1mportant aspect of the work presented here is the use of robust' -

g l-D AR parameter estimation method in the Radon space to obtam a robust 2-D PSD |

estlmate This reduces the number of parameters to be estimated srmultaneously, thus

allowmg the robust 2-D PSD estlmatlon feas1ble This algonthm is highly amenable ”

. for parallel processmg, and any pamcular range of dlrectlons of interest can be

- probed for detectmg the presence or absence of sources
The orgamzatlon of the chapter is. as follows In Sectton 4 2 we mtroduce thei‘

j s1gnal' and' the norse model, and Sectton 4.3 outlmes the 'DOA esumatlon scheme*

‘usmg Radon transform Sectlon 4.4 then brmgs out the nnportant snmlarmes and

differences between th1s approach and traditional beamformmg _Section 4.5 bnngs -

out the srgmﬁcance of th1s method in wide- band srgnals and correlated noise with -
- unknown structure Section 4.6 then dlSCuSSCS some of the srmulanon results camedv ’
_out to demonstrate the performance of the proposed algonthm followed by Sectton )

- 4.7 which concludes the chapter.
4.2, Problem Formulation . o

Consrder a umform lrnear an'ay wrth M 1dent1cal Sensors w1th 1nterelement spac-

g mg d Let us assume e that v stauonary zero-mean sources, with: d1rect10ns of arnval

- (bearmgs) 0;,i=1,..v, unpmge on the array.. The sources are located sufﬁcrently far

from the array. such that in homogeneous 1sotroprc transmission media, the wave~
vfronts 1mp1ng1ng on the array : are planar. If we treat the sampled outputs from the

 sensors. asa 2-D data sequence, the recetved 2-D signal i is glven by -



56

y(n m) = Za,s,(nT—mD )+ u(n m) ' - (4.2.1)
a1 : : S

: vwhere T is the sampling penod o; and D are the unknown amphtude and time delay

betwecn elements of the array associated with the ith source, 5;(t). The DOA for the

 ith source, 9‘, is measured with respect to the array normal ie., D; =d sinB;.

The additive noise u (n,/m) present at each sensor of the array is assumed to be a
statlonary outlier contaminated Gaussian process which may also be correlated from
~ Sensor to sensor, ‘but is statistically mdependent of thc signal. For reasons cxplamed

earher the noise is assumed to obey a slippage model, i.e., u(n, m) is dlsmbutedv
elther as a Gau551an dlstnbuuon N (O 02) with probablhty (l-e) or as an unknown
dlstnbutlon Q (u, [302) with probablhty £, whcre B and BG are the mean and the van- |
ance of the unknown dxsmbutlon g.In general B>1,e < 0 1 and M, an unknown con-
stant, is of thc order of a multiple of 6. The noise dlstnbunon can then be expressed

as

P [u(n,m)] ~ (1-E)N (0,6%)+€Q (4, Bo), | (4.2.2)
whiCh represents a family of distributions characierized by the mixing parameter €.
Notc that for €=0, equation (4.2.2) reduces to a Gaussian dlstnbutlon

The objective here is to estimate the unknown DOA’s, 6;; i=1,...,v, with respect

to the vertical axis stretched above sensor number one as shown in Flgure 4.1, from

: the observanons {y (n,m), n=1,2,...N;m=1,2,.. M } Whlch are obtamcd by sam-

pling the array output at the Nyquist rate.
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" 4.3. Robust Direction-of-Arrival Estimation using Radon Transform

: " The vsfimultanébus estimation of the DOA ahd spccﬁal'derisities‘_of’ radiaiti"ng'
souréés is equivalent to ’é 2;D spectral estimation proble,r‘n° This is a general problem
‘which :nbtvvo'nly arises in passive sonar but also in other a_pplicatiqn areas as well. |
Recently, a Radon transform approach of 2-D spectral estimation utilizing 1-D
autorcgreésive (AR) models in the Radon space was investigated [75]. In the followym
_ing we consider the application of this nch approach of 2-D spectral estimation to the

DOA estimation problem;

4.3.1. 2-D Spectral Estimation using AR Modeling in the Radon Sbace'

The basic idea her’eiis‘to use the Radon transfb_rm to convert the 2-D spectral
~estimation probicm,into a set of I-D.ﬂindependent spectral estifnatipn problems.  The
2-D sequence i’s‘uansforméd to a set of 1 -D schchés by fofrniqg projections. A pro-

jection at an angle Wy is a weighted summation of the observations and is given by -

| N M. D R : .
Py,(N=3, X wi(nm)ynm), | (4.3.1)

n=1 m=1 - .

where \;fk denotes ‘the kth projectidn angle, and wy;(n,m) is a Wcighting factor deter-
mined by some géonictrical cohsideratidnS;, for example wij(n,m) can be made pro-
portional to the léngth of intersection of the jth ray in the kth projection with the ele-
ment (n,m,}), (scchigure’ 4.1). Here, we have assumed_a grid:sn'uctu_rc and each data
sample is ldcatgd at the center of the cell. The 1-D sequence {p'w_(i), j=12,.,L}is
,‘Vthu}s obtained by summing up sainples which fall along a set of parallel lines which

are normal to the projection angle Y.



By the Centralb Slice Theorem for random fields [29], P, (), the 1-D power
- spectral density of the projection taken at the -pr.djeqq'on angle Wy, is related to:the
.sli.cc of the Z-D:pOWCI'; spectral density S (2;,92;) of the infinite array data,

S (Q cos Wi, Q2 sin y) = | Q] Py, (). 4.3.2)

,‘-,I-Ivence,;an?,;s,timate' of the 2-D PSD of the array data can be approxi:ﬁated slice by
slice from _thé estimates of 1-D PSD of the projections on a ,_polai raster. Any 1-D-

,m?_a;deling technique can be utilized for the projection data. In the present study we
have utilized _gn,AutorcgrevSsive (AR) model, and a robust method of estimating the
AR parameters is dé,scﬁbed_next. For: the sake of knoxatio'nal simplicity only subscﬁ;it'

k is retained in the following.
4.3.2. Robust Estimation of Parameters of the AR Model for 1-D Projections

Each éf 4the»probje‘ctio,n ,scquénces is modeleci bya Fth order AR model, i.e., _. o
2 =A% ZG-D+MG) | (43.3)

where | :
A% =col. (hie(1), ... (D)), : 434)

isa colurrjn vector céntaining the AR paranieters,

Zy(=1y=col. GG-DemGT). (335
is the lag ;s,cQu,ence of the projection samples, and 1,(j) is a white nqise sequcnce.‘
" The AR parameters are estimated by a robust tcchniq-u_c: based on the sovvcalle‘d M-
. esﬁinatbrs, va‘ gepcraliiaﬁon of classical maximum likelihood (ML) e’stimatorv*by_

Huber [27).
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The followmg robust estimation scheme is uuhzed for each of the l—D AR
‘ parameter esumatlon problem The subscript k has been dropped for notanonal sim-
plicity in the followmg discussion. In order to enforce scale invariance, the parameter
* vector A and a scale o are estimated sunultaneously In [27] this was done by mlmm-'
© izing . o

, , . | :
J(A,0)= 3, [p(4; /G) o]+ao - 0>0 _ (4.3.6)
' j=T+1 o : :

- with respeCt to. A and 6, and A; and p(*) are defined in (4.3.8) and (4.3.9) respectively.
The constant g, given by (4.3.12), 1s chosen to make the esumates consistent at the
nommal drstrrbunon Unless the rmmmum of J (A, G) occurs on the boundary ¢=0,-it

.can be equivalently ‘charactenzed by the I'+1 equatlons

| Z w( / ) 87 ? ey

3 XAjo)=a. - (43.7)
j=I+1 : ‘ )
'Here, ‘ '
Aj=p()-ATZG-D. 438)
Va qo X2 | Lif k<e
“,(x)'=a/ax p(x)v, s | ‘ '(4.3;10)
X(x) =x yx) - p(x), R - (43.11)

‘and



a=@-D) [ X (1N2R) expl-x212) do. (4.3.12)

The constant ¢ is related to the fraction of contamination € by
20(c) =1+ 2¢(c)c =1/(1—¢), (4.3.13)

where, <D(c) is the standard cumulative Gaussian distribution with zero mean and unit
variance, and ¢(c) is the corresponding Gaussian density. Usually ¢ is chosen to lie
between 1 and 2, which corresponds to the e-interval [0.0083, 0.1428] by (4.3.13).
We use the following algorithm since its convergence properties are well established

[271.
4.3.3. Robust Estimation }Procedure

(1). Choose starting values of A(’"), o). m=0, and and a tolerance value € > O.‘
(2). Compute residuals A, j=I+1,...,L by
A™ =p(j) - AT Z(j-1).

(3). Compute a new value of G(”‘) by

L | :
j=T+1

(4). "Winsorize" the residuals
gj = W&, ™ 6™y g j=T,. L,

(5). Compute the partial' deﬁvativcs

/
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b= @A) AT Z(-1)] = q@4j-i) ; j=T+1,.,L. i=1
‘Note that one needs to compute b ji’s only once at the beginning of the iteration since

g A(m)'T'Z(i —1)-is a linear function of A,
(6). Solve for t
BTB1=BTQ
~ where @ =col.(q1, .. .,q.) and B is a (L-T) by I' matrix whose elements are bj;’s.

(7). Update A™
A(m+l) =A(m) +>§T,
where 0 < E<2is an arbitrary '(ﬁXed) relaxation factor.

8). S;op iterating and go to step (9) if the parameters change by less than € times

their standard deviation, where € is an arbitrarily chosen small value, i.e., if for all j

 l<e VB oD

where b—jj is the jth diagonal element of the matrix B=@BTB)! ; otherwise

m =m + 1 and go to step (2).

. (9). The final estimate of A is given by A+ and the variance of the residual

- sequence by (cm+D)2,

Once the AR parameters are estimated, a slice of the 2-D PSD is estimated by
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: 1Q] v

§(Qcosy, Qsinyy) = s (43.14)

| r . ‘
1- ¥ () exp -G |
o=l » :

where i.’k(i ) for 1< j T are the estimatedcoefﬁcients of the I'th order AR model and:

{'k is the variance of the residual sequence for the projection at angle ;. The 2-D

PSD'estimate is obtained on a polar raster by repeating this procedure by taking pro-

jections over the angular range [0, 1800)”;
" 4.3.4. Estimation of the Directions-of-Arrival

The 'béaringvandibthe Spectral densities of 'radiatingSource.s can be estimated from
the 2-D spectrum S (Qll,Q'z) of the spatio-temporal array data [19,28]. For simplicity
consider the case of a:single sburce with DOA 6 and center frequency o received by a
uniform linéar array, and assume unit sampling for both the spatial and temporal
domain. The temporal frequency variable ©; = @ while the spatial frequency variable
Q, =wsind. Hence a peak in the spectrum at (Q,,€2,) corresponds to a signal with
ficquchcyv @ and direction of arrival  measured with réspcct to the array normal.
- Since the projcction taken in the plane pex_-pendiculaf to the DOA captures the energy
| distribution of the source, the correspohding slice angle y in the polar raster is the

Complirncntary angle to the DOA. Using Cartesian-to-polar conversion,

Q; =Qcos(y-90) =0

Q,=Qsin(y-90)=wsin® - - (43.15)

" Hence, the DOA 6 is estimated by
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§=sinlan(y-907)] . @3.16)
where \Tf is the slice angle which contains the peak in the polar raster.

In the case of several sources we use the principle of superposmon to detect the
DOA’s Thus for Y sources commg from directions 6;,6,, . . 9\,, the 2 D spectrurn 3
~of the array data exhibits a correspondmg numbe; of distinct peaks, with each peak-

‘bemg located at a point determmed by the dxrectlon of the corresponding source. The

DOA 6,- is thus estimated by
6, = sin™[san (y; — 90°)]

where \It‘- denotes the slice[ angle of the ith peak in the polar array. We would like to

p01m out that only those shces of the 2-D PSD over any desxred range of angles, dic- -

tated by the range of DOA s of mterest can be esnmated by formmg the correspond- .

ing prOJectlons This is pamcularly useful in tracking apphcatlons Further note
‘that the frequency of the sources need not be known aprzorz o estimate the DOA S.
,In fact the source frequenmes can be estlrnated sunulta.neously usmg (4 3. 15) In the
next secuon we w111 derive the relation 4. 3 16) alternatlvely from a purely spatxo-

temporal analysis.

44 Relation between Beamforming and Radon Transform

'v Cléssieal_beamforming method utilizes a delay-and-sum processor. The idea
\behind ‘beamforming is to,élign the p‘ropagation delays of a signal, preSUmed to be
propagating in some particuiar direction, so as to reinforce it. Signal propagating
from other directions and the noise are not reinforced. The energy in the beam is com-
puted for many directipns of lock which is in turn achieved by niani_pulating‘ the

delays.‘ The DOA of signals correspond to the location of the maxima of this energy
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plotted against the direction of look. A major drawback well known about this
-method is the 'poor. angular resolution which is directly related to and limited by the
physical length of the array. Robinson [60], and Scheibner and Parks [63] have
pointed out that time domain beamforming, which involves shifting and summing the
receiver outputs, is equivalent to performing a discrete Radon tré.nsform_ given by
(4.3.1). The beamfoﬁner oﬁtput is formed by summing the array data along lines of
constant slowness and time intercept. The Radon transform consists of the integration
(summing) of a function of two dimensions along straight lines each given by its
slope and intercept. We first present an alternative derivation of (4.3.16) and then
discuss why we wish to estimate the DOA from the location of the spectral peaks
which are obtained by modeling the projection data. In the following continuous

functions are assumed and summations are replaced by integrals.

Consider the case where a linear array receives a narrow band signal and the

array output is given by’
y(x,t)=a exp [jo(xsin + 1)} + u (x,1) 4.4.1)

where the signal and noise are assumed to be statistically independent. Integrating

5 (x,t) along the line
xcosy + tsiny =7, : (4.4.2)

the projection at an angle v is given by

Py = [ [ (1) 8(xcosy + rsiny — r) dx dr. (4.4.3)

From (4.4.2)
1 = rcosecyf — xcoty.

Hence,
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Py = j a exp [jo(sin® + rcosecy — x cot W)} dx

+ j n(x, rcosecy —xcot yydx. _ (4.4.4)

‘Upon simplifying

a expljw(xsind + rcosecy — xcoty)]
jo(sinG-cory)

pyr)= +h(y,r), (4.4.5)

where the last term denotes the second integral in (4.4.4). The power in the projection

at angle W is given by
J= [py(r) py () dr. | (4.4.6)
Substituting for p(r) from (4.4.5‘),

(12

[(:L)(sine—cot\yb)]2

J(y) = + h.l (y). 44.7)

Assuming the noise component to be small, the maximum of J () occurs when
sin@ = cory.
Hence,

0 =sin)[ tan(y — 90°)] (4.4.8)

| »However 1nstead of computmg the power in: each prOJectlon and finding the max-
imum of this power among various prOJecnons taken at different angles, we compute
the spectrum of each pro;ectlon Traditional beamforming measures the energy by
purely deterrmmsnc method ie., by summmg up the squares of the amphtude In

pnnc1p1e, it 1s hable to be erroneous because of the random variation of sensor



66

" outputs caused by noise. This also explams why beamforrmng fails to perform well at

low SNRs. In our case we use the spectral density to measure the average power and
it is well known that the spectral density is a robust measure of the energy in stochas- -
tie signals. Further, the poor reso]ﬁtion of the beamforming method ié overcome by
modeling the projection data and then computing the spectrum. These are the impor-
tant differences between the classical beamforming approach and the method

presented in this chapter.

4.5. Importance of the Method in Wide Band Signals and Correlated Noise

The method presented here does not requnre any information about the number
of received signals, type of ere source signals, frequencies of the signals, and struc-
ture of the sensor noise, sinc‘e it uses the spectral density to measure the average
power in each projection and finding the maximum of this POWEr among various pro-
jections taken at different angles. For the same reason, the technique is.capable of

handling narrow band and wide band sources simultaneously, and performs equally

well in the presence of colored noise with unknown correlation structure.

One drawback of this method is that the quality of the estimates may not be as
good as those of model based methods such as maximum likelihood (ML) estimation
if the structure of the Vs-ignal is known exactly and sensor noi.se_ obeys a Gaussian dis-
tribution. Secondly, explicit expression for the variance of the estimates obtained by

this method cannot be derived.



67

4.6, Simulation Results

A nurnber of expe'ri"ments. with synthetic data are carried out to study rhe perforv'-
- mance of our DOA estimation procedure in low SNR, outlier contamjnated Gaussian
- noise, colreiated noise situations, and the combination of narrow band and wide band
sources. The data set in experiment lrand 21is (32X 32), whilein the rest of _me
experiments it is (16 X 16). Unit sampling will be as-sumed for the sake of simplicitvy..v
The 2-D spectrum is obtajned on a polar raster from the 1-D PSD estimated using an
AR model for each of the 180 edui—spaced projections. Since the location of the peak
in the Z-D"spectrum _is,sufﬁcient to deduce the DOA, the conversion from polar to
Cartesian co-ordinates is not required. In the following, by non-robust rnethod we
_mean that the spectrum is computed from AR parameters estimated using Marple’s -
least squares algonthm [49] ‘while robust method implies that the spectrum is com-
puted from AR parameters estunated usmg the robust method outlined earlier. The
order of the 1-D AR model i is chosen accordmg to the order selection cntenon due to
‘Kashyap [34]. The DOA is estrmared by locating the peaks in the 2-D,spe_ctr_um and
using (4.3.16}. :

4.6.1. Experiment 1

In this‘ experiment the DOA estimation of a éingle source was studied in the.case
of pure Gaussmn noise using | the nonrobust method with SNR set at -9dB. In order to
get a feel for the statistical performance 20 dxfferent data sets. were generated when
the srgnal source is mJected to arnve at an angle 9° The mean and RMSE of the
}-esumated DOA obtamed for dlfferent values of 9° are given in Table 4.1. In practical

_s1tuat10ns the DOA esnmates can be obtamed more accurately by using the followmg
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v strategy Frrst compute the 2-D spectrum using a larger. angular spacing between pro-
jections (say. 5°) and locate the peaks. In the nelghborhood of the 1ocated peaks ‘more
projections can be computed by decreasing the angular ‘spacing 'between :'prOJeCtrons.
This procedure can be repeated two or three times to get more accurate ;DOA esti-

mates.
4:6.2. Experimént' 2

 In this experiment the DOA estimation of a single signal source arriving at 30_0-

: degrees':is considered vin”v,ariOUS outlier contaminated noise enVirorimehts. Table 42
- gives the details of 'the're'sultsobtained using the nonrobust technique and the robust
techmque Note in the case of pure Gaussian noise, the results obtained from both
‘methods .are ‘accurate. However it shows that the Tobust method always perform
better in the 'pre'seh‘ce\of outliers. Computational ‘experience has however shown that
the cost function may have various local minima, especially when the SNR is low.
Thus for low SNR’s, in splte of using sophlstlcated optimization techniques, the
‘minimization algorithms do not always converge to the global minimum. For modest
values of SNR, a systematic method of avoiding convergence to a local minima by a
| "reducuon of poles technique” has been presented [3]. But for very low SNR s this
' problem cannot be avoided completely and the results from the local minima have to

be accepted. One can always obtain the global minimum by repeating the algorithm

with several different starting points and .choosing the one with the least value, which

.may be very time consuming.



69

v 4.6.3. Experim_ent 3

: In order to demonstrate the effectiveness of the proposed DOA estir‘r‘lativon
scheme under colored noise, the problem of resolving two DOA’s under spatially
vcorrclated array sensor noise is considered. Specxﬁcally, two sinusoidal sources thh
normalized frequenc1es 5/16 and 9/16 arriving at 30.0° and 33.0°, respecuvely, hav-
ing mdlvxdua,l signal to no;se ratio (SNR) of 0 dB, are considered. For companson, \
the estimated radial siices of thic»Z-D PSD for spatially uncorrelated array senSOr noise
case are shown in Figure 4.2, while thg result thaihed for spati’aily correlated situa-

tion is shown in Figure 4.3. For the r¢sult shown in Figure 4.3, the noise at each sen-
SOr is vcorre‘lated with ti)OSC of two adjacent sensors on eithe; side with correlation
coefficient 0.5. There are no significant differences between the two _r¢.sults. Noté_the

good resolving‘c':a_pability in the ‘coloredfnoise' situation as well.
" 4.6.4. Experiment 4

_This experiment-was.conducted to investigate the capability of the proposed
‘technique in handling wide band sources as well as r_1an'fow‘ band sources. Figure 4.4
shows the radial slices of the 2-D PSD for a narrow band ‘sou.rce with normalized fre-
quency of 11/16 arriving at 30.0° with SNR of -3dB. The DOA estimate obtained is
30.6°. Figure 4.5 shows an example of a wide band .sou‘r_ce gcnératcd using an AR(Z)
‘model (coefﬁéients 1.096 and -0.87), andi mﬁving at 30..09_with' SNR of 0dB. The
DOA estimate obtained is 29.7°. o

Fmally, Figure 4.6 shows an example of two narrow band sources and a wide

band source. The narrow band sources arrive at 14 5° and 15.8° with SNR of 0 dB

_b whlle”»thc wide band source is ..genc_ratcd using the same AR(2) model as in the
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previous experiment, and arrives at 30.0°. The DOA estimates obtained are 14.7°,
16.1° for the narrow band sources and 30.0° for the wide band. Figure 4.7 shows the

side view of the radial slices shown in Figure 4.6. Note that the projection angle of |
three peaks can be clearly seen from this view, and the DOA estimation technique

requires locating only this projection angle y, at which the peak occurred.
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" Table 4.1. The DOA estimates and their RMSE of a single source under the pure
Gaussian noise using the Marple’s algorithm when the SNR is -9 dB: The array
data size is (32x32). Twenty independent experiments were performed

True® | Mean | RMSE |

15.00° | 14.99 0.69

30.00° | 29.71 0.83 |

45.00° | 4576 | 125

60.00° | 59.15 1.82
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Table 4.2. Comparison of the DOA estimates under different noise environments in
a single source (true DOA = 30.0°) case. Also shown are the results from a
non-robust method (Marple’s algorithm) and a robust method. The array data
size is (32x32). Ten independent experiments were performed. a is the ratio of
the outlier noise variance vs. the dominant Gaussian noise variance, and € is the,

~ fraction of outliers in noise. ’

~ DOA Estimates (RMSE)

| SNR(B) | a} € | marple . - B - robust

90 | - | 0. | 29341.0118) | 29.92(0.9598)

90 |5 | 1. | 305209141y | 30.50 (1.3146)

60 | - |0 |2905014118) | 29.92(1.0349)
60 |5 | 1| 2902016697 | 30.46(1.2323)
3.0 | 29.91(1.7348) | 30.48 (,1.4235)=
30 | 3010 (‘1.633:9:)  30.89 (141260)
00 36'.37 a7512) 31,38 (17781)
T 00 T 2950 1.8598) | 30.07 1.1675)
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Figure 4.1. A simple sketch of a linear array with uniform spacing d between

the sensors. The sensor outputs sampled in time form a 2-D data set {y (n,m),

a=1,...N ; m=1,..,M). Different weights wu(n,m) can be used to compute the
'Radon transform of a discrete data set. T '
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Figure 4.2. Spatially Uncorrelated Noise Case: Radial slices. of the estimated

2-D'PSD, where the AR parameters (order 6) are estimated by the Marple algo-

rithm. The (16X16) 2-D data consists of two sources with normalized frequen-

cies 5/16 and 9/16 arriving at 30.0° and 33.0° with individual signal-to-noise
ratio (SNR)of 0. dB. The estimated DOA's are 30.6° and 33.7°.
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Figure 4.3. Spatially Correlated Noise Case: Radial slices of the estimated 2-D
PSD. The noise at each sensor is correlated with those of two neighboring sen-
sors with correlation coefficient of 0.5. - The AR parameters (order 6) are
estimated by the Marple algorithm. The (16X16) 2-D data consists of two
sources with normalized frequencies 5/16 and 9/16 and arriving at 30.0° and
33.0° with individual signal-to-noise ratio (SNR) of 0 dB. The estimated DOA’s
are 30.6° and 33.7° even in this case. - R T
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Figure 4.4. Plot of the 2-D PSD estimate obtained using AR (6) for each of the
180 projections displayed slice by slice. The AR parameters are estimated by
the Marple algorithm. The (16X16) 2-D data consists of a narrow band source
with normalized frequency of 11/16 arriving at 30.0° with SNR of -3 dB. The
estimated DOA is 29.2°. B e
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Figure 4.5. Plot of the 2-D PSD estimate obtained using AR (6) for each of the
180 projections displayed slice by slice. The AR parameters are estimated by
the Marple algorithm. The (16X16) data consists of 2 wide band source ariving
at 30.0°. The DOA estimate obtained is 30.6 .~ = IR
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Figure 4.6. Plot of the 2.D PSD estimate obtained using AR (6) for each of the
180 projections displayed slice by slice. The (16X16) 2-D data consists of two

narrow band sources and a wide band source. The narrow band sources arrive

" at 145" and 15.8° with SNR of 0 dB, The wide band source arrives at 300’
The DOA estimates obtained are 14.7 , 16.1 for the narrow band sources and
~ 30.0° for the wide band. ‘ . '



79

s
2583,.?9
1“?a‘~e. 52
865,244

- . » . ' ‘ 4 ‘!' % d‘
5.97005-¢& & ,M" 'E‘ ‘

0 34 .. 6B 102- 136 - 170

(x10 7 y Projection An;lg Vi

Figure 4.1, | Sidé view of the radial siices shown in Figm'e 46



80
4.7. Conclusions. -

| In this chapter a Radon transform approach of robust DOA estimation has been
présc'nted An important Aspect. of the work presented heréis: the uﬁc of robust 1-D
AR parameter csnmauon mcthod in the Radon space to obtam a 2-D robust spectral
~-estimate. ‘The techmque reqmres no information about the number, type, and fre-
quency of the received signals, and the structure of sensor noise. It is capable of han-
‘dlmg narrow: band and w1de band sources sxmultaneously at low. SNR s, and pcrforms
egually— well in-the prcscncc; of colored noise with unknown correlation structure.
Though the DOA estimation method préécnte?d:iﬂ this chapter is related to the tradi-
tional beamforming, -it has much better resolving capability ‘as we use the spectral
dénsity, which is in turn estimated by using a model, 1o measure the average power.:
* The total number of para-mcter,sicstima‘tcdi while computing the 2-D spectrum on
a polar raster is quite large However, all these parameters are not esnmated 'simul-
taneously” from the array data. Instcad the Radon transform is used to convert the
* basic: 2-D problem into-a set of independent 1-D problems, which can be vpxl'occsscd
concurrently. Another advantageous feature: of this method is thai ahy parﬁcular
_ range of directions of interest can be probed. This. is particularly useful in tracking
_.appiicati'ons. | ' : | |
Computer simulation- studies demonstrates the: performance of the new pro-
- cedure in accurately csﬁmating DOA in various situations. Rough. analysis indicates
that the resolution of our method is much higher, nearly double, than that of the tradi-
" tional beamforming ;nctho‘,d;- Though this is cohﬁrmedi- by simulations, a more
detalled theorc‘ticavlﬂ. analysis- is however requi;ed; We have considered a ‘uniform

linear array in the present study.
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The method can be generalized to the case of a linear array With known non-
» uni'f‘onnivsensbr épacing. In this case thévweighting factor wyj(n,m) needs to be chosen
accordingly.. The discussions and results prescnted‘h‘e'rc- deal only. with single dimen-
sional pammeter spéce‘,_ i.e., aziinuthfbnly direction ﬁndiﬁg of far‘ﬁclrd sources. How-

. ever, it can be easily generalized to higher dimensiohal parameter spaces.
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' CHAPTER 5
'ROBUST MAXIMUM LIKELIHOOD
. DIRECTION-OF-ARRIVAL ESTIMATION

5.1. Introduction

“The maxrmum hkehhood (ML) technique was one :df’fthe’iﬁrst to be investigated
' ».;["45,].‘? Because of -'the--hi‘gh‘computatibnal ‘:lond of the .rnulﬁvariate nonlinear' mnxirniza-»
tion problem involved, however, it de not become gpepu'lar until recently. - There are
many suboptimal techniques with reduced 1computati‘onai 1oad, but the performance of |
_ these techniques is uSu’ally’infeﬁor to that of the ML technique. As was also pointed

- -out by erkmd et al [87] the mfenonty is especrally consprcuous in the threshold
N ::;reglem, namely, when the srgnal 0 noise: ratio (SNR) s small or altemauvely, when
| ‘ “the number of v-rsnapshots is small. Moreover, these _t_echmques cannot handle the case |
E of ee'herent signals. This case appears, for exatmple, in specular multipath propagation.
;problems and, therefore itis of great practlcal 1mportance The preprocessmg spatral

. smoothmg techmques proposed to cope wrth this problem remedy the situation only )

parnally {66].

Thrs chapter specxﬁca]ly consider a robust maximum hkehhood (ML) dlrecnon-

,ef-arrwal {DOA) estimation probllem in situations of outlier contaminated Gaussian -
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’OlSC Agam the term: robustness refers to: msens1t1v1ty agamst small unknown |
dev1anon in the underlylng Gauss1an n01se assumptron Even a small dev1atlon from‘
fl' "the assumed Gaussxan n01se model can create havoc wrth Gauss1an ML estlmatesv,
since the Gaus51an ML estlrnators are extremely sensmve to outhers The Gaussxan
; ML estlmatlon scherne, which were developed and tested under the Gaussxan assump- |
tion, usually fail to resolve close DOA s when there are Just one or two outlters out of

one hundred observed sensor array snapshots

The DOA 'S are estlmated by a robust techmque based on the so called M‘,

y esumators, a generahzatlon of classwal ML esttmator by Huber [27] Performances' :
of the estrmator m both the- Gaussmn and outher contammated Gausslan noise are

: evaluated usmg the Cramer Rao Lower Bound (CRLB) and the variance denved from

-the Inﬂuence Functlon ([F) The orgamzatlon of the chapter is.as follows Sectlon 52

formulates the Gaussran ML DOA estlmatlon problem followed by Secuon 5.3
'whrch shows the formulatlon of the robust estlmatlon problem Sectlon 5 4 then.
| shows the detarls of -the robust ML DOA esnmauon scherne SCCthll 5.5 then
presents some ‘of the analysrs carned out to compare the performance of the robust_p
algonthm wrth that of the Gaussxan ML estlmanon algonthm followed by concludmg |

remarks in sectlon 5 6
5.2.  Problem Formulation

Consider a linear array lcomposed of M identical veqvui-spa‘ced sensors. - It is
assumed that there are g coherent or 1ncoherent narrow band sources, centered around
| *"‘;va known frequency w1th wavelength 7». 1mp1nge on the array from d1recttons 04,.. ,Oq

" Slnce narrow-bandness m the sensor array means that the propagatlon delays of the

vsxgnals along the array are. much smaller than the rec1procal of the bandwrdth of the
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51gnals, the envelopes of the s1gnals recelved by the array can be expressed by the fol-:‘
'_lowmg | B
Let X; (t,) and uj (t,) denote the ith snapshots of the _]th sensor output and noise, -

respectwely Then Xj (t,) can be expressed as

v xj(t,)_— kz Ol sm [cokt, + (21t/7».)(j l) d smek] +u;(t) |
: =1
isl,N 1=1M o G2
" , where N is the total number of snapshots M is the number of sensors in the: array, dis
o the spacing between Sensors, and Gk s are the unknown DOA’s.

It is well known by the prmmple- of parsimony thatthe accuraey of the parameter
estimatcs decreas.es when the number of ‘unknown- parameters to. be .estimated
v increases., In order to mlnimize the number of unknown‘.parameters to be .estimated,,
we assume that oy’s and .(uk’s,v'the amplitudes and frequencies of the envelopes asso-‘
ciated with the sources in equation (5.2.1), are known quantities eyen though they can
- be estimated simultaneously using thi’s technique. Note that o;’s. and ;s can also be

estimated using a rob_ust techni'que proposed ‘by Oh et al. [53]. |
o " Furthermore, in coherent multipath problems, one can rewrite equation (:5.2.1) as
. 5 ‘

xi(t;)= i 20 sm [o)kt, + (21'5/)»)(] 1d sme,d +v,d ]+ uj(t,)
ST k=li=) E

where O, Ou, and' vy are the amplitude, DOA, and phase of the Signal envelope ’
~arriving from the kth source via /th path respecuvely Lk is the number of dlfferent ’

| l paths the kth source srgnal take.

The vector of the recelved s1gnals X (t,) can be expressed as .
X(t,) S+ U(:,) LN .;_, o622

‘where
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XG)= col.[ %1(), %205 ) ),

B S (ii}';"clo’l-[s;r”(ti);s2(tg);'...;sh(ii) L

U@ =coll u1_(r,~>,uz‘(t;);...,uy('t;) L
: sj(t,) = Zak sin [ooet; + (27t/7\,)(j —1) d smek]
v k=1 _
i=1ulN =l M,
and

U@ -NQph.  (523)
: Thc joint density function of the sampled data is givenby.

S (zi)‘;'.-.'.,'x(t;v’);e]’ |

1 T, R
e Y (t,, )Y(t,,®) 2.4
'whc,rc»vri
@=col[6y,....0)
| Y(0)= col 1150, Ei®)
~ and
, y,(:,,@) x,(t,)—Zak sm[(okt,+1t(1 1) smek] S (-5.2.5),

k=1 .

| Note that the spacing d has bcen choscn to be cxactly half of wavclcngth 7» for 51mph-‘
' cny Thus, the log: hkehhood 1gn0nng constant tenns, is glvcn by : ’
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L(@):_%Ai log p — Z—IP-E._IYT(I;;@)Y(I;;@). o (52.6)

- To compute the maximum likelihobd (ML)V estimator we have to maxitrxiia the
log likelihood with respect to © and p. 'Fixing the ©, and maximizing with respect to

p, we get

~

p=giw T OV @O. 62

Substituting this back to equation (5.2.6), ignoring constant terms, we can obtain the

ML estimates of 8;’s by maxirnizing

' —MNlog [ —— MN z YT(tu@)Y(tug)]
v i=1 .

Since the logarithm is a monotonic function, the estimates can be obtaingd by

N -
rrgn Y, Y’T(t,-;@)Y(t,-;@).
i=1 ‘

- This can be rewritten as

NMVk g o Y
rnein_ Y3 {xj(ti)—zak sin [@gt; + 7 (j—1) sin6;] } . (5.2.8)

k=1~
5.3. Robust Direction-of-Arrival Estimation

In the above formulation, the‘“estirriates obtained vby equation (5.2.8) are ML esti-
mates if the underlying noise distribution is exactly Gaussian. In practical situations,
| however, the comrhonly made assumption in statistics is at most approximation -tor
reality. An outlzer in a set of data is deﬁned to be an observatlon which appears tobe

inconsistent with the remamder of that set of data. Tt may not be hard to spot the _
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potentially troublesome data point in the lower dimension, but it becomes exc_eed'-
ingly difﬁeult with higher dimensions, or with multipnrarneter problems. o ..

For this reason, minor devxauons from the Gaussian noise are often modeled by
the rmxture model for noise [80] The mixture model of interest as 1ntroduced in the
prevxous chapter is the shppage model w1th the Gaussian dlstnbutron as the dommant
distribution. If U(#) is a sequence of random variables obeying such a shppage
model, then any U (t,-) is distributed either as a Gaussian distribution N (0,6%) wit'h
probability (1—€), or as an unknown distribution Q (Ll; Bo?) with probability e"where
‘1 and Bo are the mean and the variance of the unknown dlstnbutlon Q. ‘In general :
[3>1 0<e< 0.1 a.nd H, an unknown constant, is of the order of a mulnple of . The _.

noise distribution can then be expressed as
P{U ()} ~ (1-€)N (0,0%}+eQ (4, Bo?), 63
which represents a family of distributions characterized by the mixing parét_rneter €
For £=0, (5.3.1) reduces to a Gaussian distribution. | B
The para.meter vector @, is estimated by a robust techmque based on the so.
:called M-estlrnators a generahzatlon of classrcal maxrrnum hkehhood (ML) estrma-
'tor by Huber [27] In order to enforce scale invariance, the © and a scale parameter G
are estlmated srmultaneously, band thrs can be done by rmnnmzmg o o
J(G-) o) = Z Z [p(y,(t,,@)/o) ol +ao, >0 (5.3.2)
i=lj=1 o
with respect to © and o, where y,(z,,@) and p() are deﬁned by (5.2. 5) and (5 3. 4)
respeenvely The constant a, given by (5.3. 7) is chosen to make the esumates con-
‘sistent ‘at the normnal dlsmbuuon Unless the minimum of J (O, o) occurs on the

| boundary ©=0, it can be equlvalently characterized by the g+1 eqnatrons o
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N M . : t
Y Y y0;(:)/0) [0y;(1:;0)08,]1=0;  k=1,...q

i=1j=1

N M _ -

Y. Y Xi(i:8)o)=a, (5.3.3)
i=lj=1
where
_ %21 , if k|<c _ \

p(x) - { Ckl_ 02/2 , if > . (534)
y(x)=(@pkx)ox) R (5.3.5)
X(x) = x Y(x) - p(x), (53.6)
a=MN [ X(x) (1N2n) exp[-x*/2] dx. (53.7)

and y j(t,-;®) is as defined in equation (5.2.5). The constant ¢ is related to the fraction

of contamination € by

29(c) ~1420(c)c=1/(1~-¢), : - (53.8)
where @(c) is the standard cumulative Gaussian distribution with zero mean and unit
variance, and ¢(c) is the corresponding Gaussian density. Usually c is chosen to lie
between 1 and 2, which corresponds to the e-interval [0.0083, 0.1428] by (5.3.8). We

use the following algorithm to solve the g+1 equations of (5.3.3) since its conver-

- gence properties are well established [27].

5.4. Robust Estimation Procedure

Givén.xj(t,-)'s Ji=1,..N; j=1,k..,M , solve equation (5.3.3) for © and ©.
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step 1. -Choose starting values m=0, @™ o™, and a tolerance value { > 0.
step 2. Compute residuals. -

yj(t,-;(-D)(’”) x,(:)—z o sm[wkt,+1t(1 1)s1n9k(”’)] ,i=1,0N =LMoo
; Ck=1 ) ‘

| step 3. Compute a new_ valuc of 0(’").

[o.(m-e-l)] =(1/a) 2 ZX()’J(I,,@)(M)/G('")) [o(m)]2.
i=lj=1

* step 4. "Winsorize" the residuals.
Z=c0l.[211y 02 1M>eeeeee ’le""ZNM]—
where

z;j ﬂ_'._w(yj(,‘.;)(m,c(mn)) om+l) B .'i=1,..,N ;'j'=1,;_,M_ ‘ _‘ '
step 5. Compute the partial derivative_‘S.

k=1

b= (__a__) {E o sin [wkt; + n(l 1) smek]} m=1,..NM ; k=1,...,q .
step 6. Solve [BTB1t=B7Z for 1, where B is a NM by ¢ matrix whose elements
“are bp’s. | |

step- 7. Update O™ py @™ =@M +Er | where 0 < € < 2 is an arbitrary relax-

ation factor.

step 8. Stop 1terat1ng and go ' to step 9 if the parameters change by less than { times

*their standard dev1at10n wherc {isan arbltranly chosen small value, i.e., if for all j,



ki< i o
b” is. the Jjth d1agona1 element of the matrix B (BTB) L otherw13e m=m + land

g0 to step 2.

step 9. The final estimate of 8y is given by ©™*V), and the variance of the residual

seqtience‘by'[o(”‘“)]z. :
5.5. Performance Analysis -

' Letus-ﬁr'st comput_e the 'Cra‘rner'R'ao,Lower ’Boun‘d‘.’(CRL’I;})' for a Gau’ss»ian noise
~ case, and then for a contaminated Gaussian noise case to observe the changes in the
“CRLB vt'ith:» small changes in the 'Gaussian noise distribution. The"ye.ﬁances of the
robust estimates. are thenvatained’ ’fr’om Influence Function (iF)' >which» was: intro¥'
duced by Hampel [22] for investigating the infinitesimal behavior of real-valued func-
‘ tionals-on a heunsttc basis. Details of the denvanon can-be found in [22 52] Finally,
the resolutton capability of the robust' anorxthm is 1nvest1gated.
- Throughout the eXperitnentvtwo»incoherent or coherent‘ emitters impinging.' from'
b' 30° and 33‘.’: are simulated. with snapshots taken from eight equisnaced linear array of
| sensors. For the Gaussian noise case the noise is generated from a zero mean Gaus-
s’i'a'n bdensity, 'and- for the contaminated noise setting,*th'e‘ unknown distribtttion o in -
equation (5. 3 1)is assumed to be a zero mean Gaussian with ten nmes the vanance of

‘the dommant Gaussian. The percentage of outhers, 8, is chosen to be five.

The amphtudes of the envelopes assoc1ated with the sources are chosen to be
' ot1=1,a2=vl. For the uncon*elate‘d sources the frequencies. of the envelopes associated
with the sources are chosen to be @; =10% and m2=_201t.'- On ‘the other hand,

(o]': 101t and @, = 10% are chosen for the case of cohere'nt sources:. Onjef hundred



vsnapshots were takcn unlcss spccxﬁcd othcrwxsc Lcss than ten 1tcrat10ns wcrc
_ requlred for elthcr the Gaussxan ML csnmanon or the robust esnmatlon before con-. - .

) vergcnce was achlcvcd
551, varévmer'R‘ad LdWer Bound (CRLB) for Gaussian Noisé Case
Let us denote )

= (21{)M/2(det[pI]DN/2

A
Cand
Az(t,,(-))—-—- z x,(t;)-zak s‘n[(’)kt1+7t(/ 1) smekl - (55.1)

‘ 2P11 o Tkl .
- Then the density function can be wﬁttcn as
f[X(tl), ,X(tN)@] Hf[X(tz)G] N 1N
: ‘thre.'
X8 =4, exp [42(50)).

‘Therefore,

=Y sZlogifIX@Oly
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i=1

N ) .
= 3 W K @)0)) mgf X))

%{aA( m} - vésw
=" —A,(8; . : - (9).
5|99
‘Then the Fish,er»Infqrrnation Matrix can be computed as
10)= [ L@ L©) dF 65
0@ 0e ’ o

~ and the covariance matrix of the parameter vector © is given by

Cov(®)=[(©)]" . : (5.5.5)

5.5.2. Cramer Rao Lowei' Bound (CRLB) for Contaminated Gaussian Noise

Case
~ Since the distribution Q in equation (5.3.1) is a Gaussian with zero mean and 1 -
times the variance of the dominant Gaussian,
. ‘ Ay '
F X (0] = (1-24 13 [ A2:0)] + e-—rexp [ A2(:0)m ).

- =A;exp [A2(150)] A3(1:0), - (5.5.6)

where A 1, A (t;;0) are defined in equation (5.5.1), and

L_hasen. (5.5.7)

As(1:@)=1-e+en 2 exp (G

~ Hence
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L(9)= Z —=log (f[X (t;) 1)

vw

Z { A2(In®)} {aaG)Ag(I,,@)}/A:;(I,,@) ] (558)

?
- The Fisher Information Matrix and the éovan'ancc matrix of the parameter vec- -

tor thus can be computed by (5.5.4) and (5.5.5), respectively.

Figure 5.1 shows the plot of CRLB’s vs. SNR fof a pure Gauésian and é bonta_m-
inated Gaussian noise case. The simulation involves two uncorrelated emitters imp-
inging from 30° and 33°, with oﬁ,e hundred isnapshots taken from éight eQui-spacedv
linear array df Sensors. 'Note‘ thé-approxifnately forty percent increase in the CRLB
caused by replacing ﬁye percent of the GauSsian data with outliers that 'haS' ten times

the variance of the parent Gaussian distributibnﬁ

- 5.5.3. Variance of the Robust Estimaies

The expression for the variance of robust estimates can be obtained using
Influence Function (IF), where the details of the derivation can be found in [52]. .In

‘our case, the covariance matrix of the robust DOA estimates are given by

i=lj=1 -
%wWMu@hW@ﬁ !

where

r.j ;é) = yj(ti;@))/&, |
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V(i,j38) =-3/3@r (i,j:6),
and
y(x) = o/ox \y(xr).

y j(t;3 and y(x) are defined in (5.2.5) ahd (3.3.5), respec,tiirely. Here © and © indicates
" the estimated value of © and o. | |
- Figure ‘5.2 shows the theoretical RMSE (sum of bias square and the variance -
‘derived_abovve) vs. SNR p}lot of the Gaussian ML estimates and ‘the rebus't estimates
~ when the underlying noise distribution is purely Gaussian, whereas Figure 5.3 shows
the theoretical RMSE vs. SNR plot of the Gaussian ML estimates and the robust esti-
mates after replacing five percent of the Gaussian data with outliers that has ten times
‘the variance of the original Gaussian distribution. Figure 5.4 and Figure 5.5 shows the
“results of similar experiments shown in Figure 5.2 and Figure 5.3 but with coherent

" sources:

Figure 5.6 shows the theoretical RMSE vs. Snapshots plot of the Gaussian ML
| estimates and the robust estimates when the underlying noise distribution is purely
Gat;ssiank, and Figﬁre 5.7 shows the plot after replacing five percent of the Gaussian
data with outliers that hes ten times the vaﬁaﬁcc of the original Gaussian distribution.

These plots were made for the fixed s1gna1 to noise ratio (SNR) of 12dB.

Table 5.1 and Table 5.2 shows the twenty-run averages of 91 and 92, and the
resulting RMSE’s computed for different values of SNR for the Gaussian noise case
- .and for the contaminated Gauss1an noise case, respectively. On the other hand, Table

5 3 and Table 5.4 shows the results for deferent numbers of snapshots taken
Note that the perforrnance of the robust estimator is , almost as good as that of the
Gaussian ML estimator in ‘the Gaussian noise, but much better in the presence of

outliers regardless of whether the sources are incoherent or coherent.
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- 5.5.4. Testing the Presence of Two Closely Spaced Sources

In the context of direction-of-arrival (DOA) estunauon resolutlon usually refers -
1o the ablllty of an algorlthm in resolvmg two closely spaced sources. Thus, in
estlmatmg the DOA’s of closely spaced sources, an 1mportant problem is determmmg
whether there is just one source or there are two dominant sour_ces_wnh very close
DOA’s. SR

Suppose the estimates of the two unknown DOA s, 901 and 902, are obtamed |

1)~ @), . a
from qmdependent experiments, i.e., {6 W 92( )} yeurs {Bl(q)

} Let the differ-
ence between the two estimates from an a;rbttrary expeximent,_ 61-'-62, obeys a Gaus-

sian distribution with unknown mean u and variance 62, ie,
86, - N(u,cz) LT ”(5'.5'.1‘0)-'
It is also 1mportant to be rernmded that each of the robust DOA estxmates, 91 and 92,

obeys a Gaussian dxstnbutlon w1th unknown mean and variance even when the noise

process at the array sensors is an outlier contarmnated Gaussmn Also deﬁne

' | A (k) Ak, .1 4, (k) ‘
“Ry= f;{(et -6, )—-—2(91 -92 )} (5.5.11)
‘ Then“ |
Ro? ~ 0*X*(@g-1), (5.5.12)

and it can be eaSily shown that 6;—9,, the differenc"e between the two estimates from
'»any of the q mdependent experxments, and RO are independent. Therefore, if

—Rozl(q—l) then
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6 6y-n) [s) @Gi-b-n ST
z:[___-(el-GZ) P]/ [-s-] il - S@n G531
lWthh is Student s dastnbutlon on (g~ 1) degrees of freedom. . .

If t is the o probablhty point of |t |, that i is, P (Jz|> ta) a, then

P[w S‘tva ']=1—_a»,  (55.14)
thatis |
P[(él—éz)'—_s te € W € (B1-8,)+3s :a'] =l-a. (5.5.15)

" Let the null hypothesis be },t= 0,ie., E [61] =E [62]. If there is no a priori ihfor- _
mation as ‘to whether the true \talue of v61 is greater than that of 6, or otherwise, a
'large value of t in elther d1rectlon would be evxdence agamst the null hypothesls If
the null hypothes1s is true then usmg (. 5 5), we have |

[lel—eZI ta}_l-’.a,. » - e (5.5:16).
s - -

~The null hypothesis, which assumes the presence of only one source, is thus rejected
at level of significance if, for obser'ved‘ él and 52, we have

'I_el-g-%' St _(5.5.17)
When there are actually two closely spaced sources, rejecting the null hypothems is
| 'equlvalent to resolving the two closely spaced dominant sources at o level of
 significance. o |

| The 'folloWing SimulatiOns have been‘ carriedout to”compare .such. res01ving
B capablhty of the proposed robust DOA estlmauon algonthm with that of the Gaussran

v‘ » ML DOA esumatlon scheme The resolutton probablhty, ie., , the probablhty that the I
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two sources w1th close DOA s are 1dent1ﬁed as two separate sources, have been -
: _,estrmated at 1-alevel of srgmﬁcance, where a lS chosen to be 0.05. The resolutlon ‘.
a probablhty thus can be est1mated by taklng the number of expenments w1th success-
ful resolutlon d1v1ded by the total number of expenments Forty one 1ndependent
) :expenments, ie., q-41 have been performed each with twenty five snapshots taken

- from elght equrspaced SEnsors.

Fxgure 5.8 shows the esnmated resolution probabrhty Vs. SNR plot of the Gaus-
sian ML estrmates and the robust estlmates when the underlylng noise d1$tnbutton 1s '

purely Gaussran, whereas Frgure 5 9 shows a snmlar plot after replacrng ﬁve percent '

of the Gaussran data w1th outhers wh1ch has ten times the vanance of the parentj _

Gaussran drstnbutlon The true DOA s are chosen as 30.0° and 30.2°.

B Frgure 5. lO shows the estimated resolutton probablhty Vs. angular separatlon

’ -between the two ‘sources when the underlyrng norse dlstnbuuon is purely Gauss1an

_ whereas Frgure 511 shows the correspondmg plot after replacing ﬁve percent of the

~Gaussran data w1th outliers. Here, the SNR is fixed at 18dB, and the smaller value of

the two true DOA s is chosen as 30 O° o

Agam the- resolvmg capab1lrty of the robust DOA estimation algonthm can be

- seen almost as good as that of the Gaussran ML esttmatlon scheme in the pure Gaus-

" -sian 'nor‘se‘, and much better i in the presence of outliers.



Table 5.1. Gausszan Noise Case: Twenty-run averages of 61, 92, and the RMSE s -
"~ {(shown in parenthcscs) for dlfferent values of SNR. The Gauss1a.n ML DOA
-estimates and the robust DOA csnmates are shown ' :

Averagé _of the vEs‘timatcs & RMSE)

1 | GaussianML. |~ robust
SNR(B) | 6 0 | 6 6 |
210 | 300059 | 33.0038 | 30.0057 | 33.0037
| (00165) | (00132) | (0.0162) | (0.0130) |

180 | 300034 | 329985 | 30.0035 | 32.9997 |
" (0.0165) | (0.0291) | (0.0169) | (0.0289) |
150 | 299980 | 33.0053 | 29.9976 | 33.0051 |
| 0.0305) | (0.0356) | (0.0302) | (0.0362)
120 | 300026 | 329894 | 300015 | 32.9901 |
| | 0.0485) | (0.0529) | (0.0480) | (0.0536)
90 |'30.0082 | 33.0152 | 30.0069 330142 |
| | ©0.0719) | ©.0477) | (0.0719) | (0.0483)
60 | 299928 | 33.0053 | 29.9912 | 33.0039
| ©.0978) | (0.0726) | (0.0949) | (0.0709)
30 | 299876 | 329881 | 209851 | 32.9899 |
| (0.1195) | (0.1356) | (0.1165) | (0.1392)
00 | 300228 | 330402 | 300232 | 33.0457 |
| (0.1485) | (0.1812) | (0.1499) | (0.1798)
30 | 298938 | 32.8686 | 29.8938 | 32.8659
\ (02455) | (0.2760) | (0.2429) | (0.2822)
60 | 208448 | 329578 | 29.8554 | 329761
| ©3432) | (0.2846) | (0.3343) | (0.2886)
90 | 298168 | 33.1310 | 29.8188 | 33.1321
(0.4684) | (0.5434) | (0.4711) | (0.5394)




Table 5.2. Contaminated Gadssiah Noise Case: Tchtyﬁrun’ a\"’cragéév'of 0;,6, and
-~ the RMSE’s (shown in parentheses) for different values of SNR. The Gaussian
- ML DOA estimates and the robust DOA estimates are shown. The contamina-

“tion is caused by replacmg five percent of the Gaussian data wnh outhers which |

has tcn umes thc variance of the parcnt Gaussmn dxstnbuuon

_ Avcrage of the Esumatcs (& RMSE) ‘

- ‘Gaussian ML  robust
[sNe@B) | o0 | & | 6 | 6
210 | 299999 | 329815 | 29.9989 | 32.9876
o (0.0361) | (0.0369) | (0.0206) | (0.0191)

180 | 299948 | 330104 | 29.9911 | 33.0017

| (0.0588) | (0.0501) | (0.0292) | (0.0243)
7150 | 299630 | 329521 | 209917 | 329925 |
| ] ©00983) | 00634) | (00465 | ©O321)|
{120 [ 300321 | 329800 | 300056 | 329923 |
Sl | 01124 | ©1186) | (0.0478) | (0.0508) |

| 90 | 299090 | 330654 | 299665 | 33.0143 |

© [ (0.1624) | (0:1718) | (0.0864) | (0.0640)

60 | 30.0149 | 32.9667 | 30.0035 | 32.9767
1| ©2135) | (02125 | (0.1093) | (0.0951)
30 | 300328 | 330701 30.0086 | 33.0092
|| 03311 | 04286) | (0.1641) | (0.1797) |

00 | 299624 | 33.0048 | 30.0084 [ 33.0521

| 04844) | (0.3854) | (0.1961) | (0.1982)
T30 | 303364 | 329346 | 30.1757 | 32.9839
| (0.5868) | (0.5440) (0.2838) | (0.2833)
60 | 29.8573 | 326346 | 29.9833 | 32.8909
| | (08512) | (0.9258) | (0.4219) (0.4585)
. 90 | 297591 32.8647 | 30.0571 | 3L 9184
| a7y | (1.3988) »(0.5_535)‘ (07358)




»Table 5 3 Gausszan Noise Case: Twenty-run avcrages of 61, 92, and the RMSE s
(shown in parentheses) for different Number of Snapshots taken. The Gaussxan
ML DOA estimates and the robust DOA estimates are shown.

,Average of thcfEstimatés (& RMSE)
| GaussianML robust
Snapshqts‘ 0 9, 9; i 0,
1 | 300099 | 330667 | 300996 | 330680 |
(o 4354) (0.5099) | (0.4351) | (. 5095) |
5 | 208950 | 330322 |29.8911 | 33.0297
(0.4212) | (02535) | (0.2424) | (02525)
10 | 209847 | 329855 | 29.9806 | 32.9866 |
| (0.1547) | (0.1400) | (0.1567) | (0.1393)
15 299842 | 330207 | 29.9831 | 33.0195 |
(0.0903) | (0.0874) | (0.0924) | (0.0846) |
20 29.9966 | 33.0191 | 20.9958 | 33.0181 |
(0.0644) | (0.0989) | (0.0671) | (0.0996)
25 | 299906 | 329689 | 29.9984 - 329680
1(0.0865) | (0.1016) | (0.0883) | (0.1006)
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Table 5 4. Contammated Gausszan Noise Case: Twenty run averages of 91, 0,, and

the RMSE s (shown in parentheses) for different values-of SNR. The Gaussian B
- ML DOA esnmates and. the robust DOA estimates are shown. The contamina- . -

_* tion is caused by replacing five percent of the Gaussian data with outliers Wthh
has ten times the vanance of the parent Gaussmn d1stnbut10n ' : '

- 'Average of the Estimates (& RMSE) o

GaussianML- - |  robust .

Snapsh’bts [N _‘ 92 B "92Z ,

1 | 295093 | 32.4328 | 30.0240 | 32.6880
| (2.8417) | (1.6070) | (0.5264) | (1.1279)

s | 200408 | 327788 | 209931 | 329358 |
C | (0.4242) | (04779) | (02278) o. 2524)

10 | 300399 |33.1074 | 300200 | 330312
o | 03361 | ©3920) | ©.1607) | ©.1576)

15 | 300741 | 330654 | 209872 | 33.0070
(0.3130) .| (0.2424) | (0.1500) | (0.1396)

20 | 209875 | 320387 | 209922 | 329627
| ©2798) | ©2257) | ©1343) | ©.1107)

25 | 300410 | 33.0242 | 300199 | 33.0434 |
] 02003 | 0159) | 0.0916) | (0.105D) |-
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'Figure 5. 1. CRLB vs. SNR for a Gaussxan Noxsc Case (sohd lme) and for a Con-
taminated Gaussian Noise Case (dotted line). The contamination is caused by
replacmg five percent of the Gaussian data with outliers which has ten umes the
variance of the parcnt Gaussmn dlstnbuuon
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o Flgurc 5 3. Incoherem Sources & Contaminated Gaussian Noise: Thcorcncal

- RMSE’s vs SNR for the ML DOA estimates (dotted line) and for the robust
DOA estimates (solid line). The contamination is caused by replacmg five per-
cent of the Gaussian data with outliers which has ten times the variance of the

. parent Gaussian distribution.
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Figure 5.5. 'Coherent Sources & Contaminated Gaussian Noise: Theoretical
RMSE’s vs. SNR for the ML DOA estimates (dotted line) and for the robust

 DOA estimates. (solid line). The contamination is caused by replacmg five per-

_cent of the Gaussian data with outliers which has ten times the variance of the
parent Gaussian distribution. .
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' estimates (dottcd line) and for the robust DOA esumates (solid lme) The u'ue _
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Resolution Probability (no. of successful resolution / no. of trials) vs. SNR for
 the ML DOA estimates (dotted line) and for the robust DOA estimates (solid
~ line). The contamination is caused by replacing five percent of the Gaussian
data with outliers which has ten times the variance of the parent Gaussian distri-

‘bution. The true DOA’s are 30.0° and 30.2°.
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5.6. Conelusion_S~

We have presented a robust dxrecuon-of—amval (DOA) esumanon algonthm
whrch performs almost as well as a ‘maximum hkehhood (ML) DOA est:umanoni "
scheme in the pure Gaussian n01se, and much better in the presence of outhers The_f
DOA’ s are ‘estimated by a robust techmque based on the so called M-esnmators a
generalization of classrcal ML esumator by Huber [27]. The techmque is- equally, |
applicable to single snapshot cases and coherent signals. Performances of the esnma-
_ tor in both the Gaussian and outher contamlnated Gaussran noxse have been evaluated o
using the Cramer Rao Lower Bound (CRLB) and the vanance derived from the |
Influence Function (IF), followed by resoluuon analysrs regardmg the abthty of the,_ |

algonthm in resolvmg two closely spaced sourees with equal power

Computational expenence has also shown that the cost functmn may have manyr
| local minima, especially. when the SNR is low. Thus for SNR s less-than about 0dB,

in spite of usmg sophlsucated optumzatxon techmques, the tmnmnzanon algonthm do_
not always converge to the global rmmmum One can- always obtaln the global |
minimum by repeating the algorithm with several different starting pomts and choos- :

ing the one with the least value.
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'CHAPTER 6 ,
GENERALIZATION ()F EIGENSPACE METHODS FOR _ |
'BEARING ESTIMATION USING MAXIMUM LIKELIHOOD

6.1. Introduction . . -

- Under the condrtlon that the observation period is long and s1gnal to noise ratio
| (SNR) is not- too low, the ergenspace approach also called elgenvector methods, has
’ prevrously been shown to have substantlally hlgher resolutlon in estlmatmg DOA s
'than the: conventtonal bearnformer Capon s MLM [11], and- autoregressrve (AR)
spectral estlmators [15] It is also known, however, that the performance of clgen-
- space methods is is usually 1nfenor to that of the maxrmum likelihood (ML) tech-,
mque As was also pomted out by Ziskind et al. [87], the 1nfenonty is especrally ,

consprcuous in the threshold reglon, namely, when the srgnal to noise ratro (SNR) is

- _.small, or alternanvely, when the number of snapshots is small Moreover, these tech-

mques cannot handle the case of coherent s1gnals, while the ML techmques can. The '
coherent case appears, for an example, 1n specular mulupath propagatlon problems,

| Wthh is of great practlcal unportance

In th1s chapter, a maxrmum hkehhood (ML) d1rectlon-of-amval (DOA) estima-

~ tion problem is consrdered where the source s1gnals are treated as sample functrons of |



s

Gausslan randorn processes 1nstead of the unknown determlnlstlc sequences as '_
' v‘fassumed in most of the prevrous ML approaches As with the Multlple Signal .
| Clas51ﬁcatlon algonthm (MUSIC) one of the elgenvector methods the ML DOA
» | esttmauon problem con51dered here only requlres prevrous knowledge of the number
of sources, €8, the amplltudes and frequencres of the source envelopes need not be_
esumated for esumatlng DOA’s.. As a matter of fact thlS 15 one of the reasons for the v |

‘ recent populanty of elgenvector algonthms ~‘

The study reveals a relauonshlp between this ML DOA estlmatron scheme and
elgenvector methods for esumaung DOA’s In pamcular, the focus is on 1ntercon- '}

' »...nectlng the notions of DOA esttmauon uslng exgenvector methods to a more: quantlta-»

tive: Gausslan ML approach ie., choosmg the DOA estlmates to be in the: dlrecuons L

of the. ergenvectors whrch corresponds to the largest elgenvalues in the srgnal sub-

' ,_space

When the number of sources 1s one, it is shown that maxnmzrng the llkehhood
| 'funcuon w1th respect to the DOA angle is identical to choosmg the steerin g vector to
-be in the d1rect10n of the elgenvector Wthh corresponds to the largest elgenva]ue in
the signal subspace In the case of multlple sources, however the equallty does not
hold exactly The. srrmlantres and dlfferences between this ML method and elgenvec- :
~tor. methods for two source cases are also mvesngated

/

6.2, The Single Souv,r,ce. Case .

Consrder a llnear array composed of M 1dentlca1 equl-spaced sensors Assume
| .that a source centered around a known frequency wrth wavelength A, 1mp1nge on the
array from the dll'CCthIl 6 Smce the narrow-bandness in the sensor array means. that

the propagatlon delays of the srgnal along the array are much smaller than the



'recmrwal of the bandwxdth of the 51gnal the envelope of the source 31gnal recelvedj '

- by the array can be expressed as follows Let x,,,(t,) and u,,,(t,) denote the ith
}snapshots of the mth sensor output and n01se, respecnvely Then xm(t,) can be»" ‘
-expressed as | ‘ X

L xp@) = cexpljon] explj T (m=1)2d/A) sind] + ()
isluoN o m=hoM, o (621)
| where o and ® are the amplitude and frequency of the source envelop_e', respeéﬁyely.

~ dis the spacing between sensors, 6 is the unknown DOA, and N is the total ndmber of -
- snapshots. The veeter of thereeeiv'edé' signal§ X(t,) can_' be expressed more 'coympactly -

as

- ’X‘(;,;,:)=qféxp[jcot,~]:f(e),+ ve ;=1N 62.2)
wherc L | |
}»X' )= COi-"[ X)X @)X @) ],
Ukti) = col.[ u ;ﬂ(fé)fui(f;),.f-,ﬁM(ti)'],
@)= col[l exp{jn(Zd/l) sin6}..... ,‘
R exp{;n(M ~1)@d/A)sin}]. (623)

© o Itis also assumed that o is a zero mean Complex Gaussian random.va:iable with
| E [aez‘] =c?,

J whlle U (t,) is a zero mean Complex Gaussian randoxﬁ vector thh

E [U(r,w”(r,)] pl,

where * and H denotes the ,conj_ugate'and conjugate tranSpose, respectively. -




a7
| Evl[X )1 = col. [0.,...,0.]
EX (n)X”(rg')] .
- =Ef{a eprmr,1f<e>+ U(r,)}{a CXP[—Jthf”(GH U”(n)}]
‘-P1+01f(9)f”(9) 629
| . Let us denote the 51gnal to noise ratlo (SNR) as K 1e K czlp, then the log-

llkehhood terms, is given by

O =108 [P{X ()X (12),X (t0) 0,.KT]

= _% SXH@)p! +Kpf @OFF @1 X (1)
i=1 o v

- -’;i.zag (delol + Ko @) +éénstant- 629

After some algebrarc sunphﬁcatrons the loghkehhood is gtven by »

L(e) =- —sz(r.)u +Kf @) ©) r‘x @
20 C .

- —Iyzﬂ logp - 3- Iog (1+KM ) + constant | (6.2.6) |

| To cornptlte the Maximnrn Lik‘elihobd (ML) estimate of 8, we need to maximize ‘
o 1(6.2.6) with respect to the unknown o, p, and K Maxrrmzmg with respect to p after

fixing 0 and K, we obtam p, the estlmate of p in terms of 0 and K.



s

P= LMZ ”(n)[l +K f (e)f"(e)]‘lxa‘) 27y

Subsntntmg thlS result back mto equatron (6 2 6), agam 1gnormg constant terms, the ;

estlrnates can be obtamed by solvmg the followmg rmmrmzatlon problem
" min andg{'m' > X" @)1 +Kf<e>f”<e>g_1";,1X‘<n->}

FNIog(I4KMYy ~ . (62.8)
* Since the logarithm is a monotonic func’_t;ionk, it is eq_niVaIent to

rén,? (1+KM)M ZXH(:.,-){HK OO } X@|. 629

Here one can observe a special re>iationship :between this ML estirnation
v approach and the eigenvector methods for estlmatlng DOA s. In partrcular the focus
“ison mterconnectmg the notions of DOA estlmatlon using ergenvector methods to H
- more quantrtatwe Gaussran- ML approach,, 1.e., chooslng the DOA estimates to be in
the directions of the ergenvectors whrch correspond to the largest ergenvalues in the
srgnal snbspace | o
For any arb'_itrarily fixed value of K in (6.2.9), the problem is equivalent to

.,j_;minﬁzing:: - T S .
19=3, X”(r, [I+Kf(9)f”(9) ]'lx w (62100

= . -

. with respect. to ‘9' and.J (9).can be reWritten as the follOwirng, |

=1

@)= trace{ [I+Kf (e>f”(e>»1" 3 X xH(r,> }
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o= trace{ mBmﬁH } , (6211) |
) where )» and B,,,, n= 1. ,M denote the M ergenvalues and the correspondmg nor- '

e mahzed ergenvectors of 2 X (t‘ X H (t,) J (9) is srmphﬁed further to -
: | el |

M '_.»"’.K‘ M H BRI
J<e> - X %__ 1+KM ) xmlf <e>ﬁmF | 6212)

" Therefore, minirriizing J,(G) with reSpect to 0 is indeed equiva}ent to ehoosing f®to
"be in the direction of the eigenvector which corresponds to the largest eigenvalue in

the signal subspace. |
6.3. The Case of Two Sources
Now, X,(t;) can be ',,expressed as
3 = arexplioy ] expli 7 (m=1)24/A) 5ind;)

,+_az§x'p[jmzti] e;ip[idn(m,-‘l)(Zd/,l) Sian']f_’t{m:(t,;)b-' S (630)

The vector of 'the}received si gnals;X @ 1s then.eXpressed as -

| VX‘(t;)=AFS(t,-)+U(t,-) i=1,..N : | (6“.3.;2)‘
e ‘ - | - ol
| 'F_v'='Lfv(ei’>}}f»(eiz’)1,- :
'-and‘ R , | v
| 'S(t.-')=col ’[aiexp{jcolt;}*otzeXP(jcbzti}]“ - (633)

' where X (t,), U (t,) and f (9) are the same as deﬁned before In addition, o and az '

are Complex Gaussran randorn vanables with zero mean w1th
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| E’[alal'l% o
and ' B |

Elay05%] = 62_2.. - (6.3.4)

Let us denote the individual signal to ratio (SNR) as‘ K 1" and K i,”réspect’ively, '

ie.K;=0,%p and K3 =G,%/p. Then the log-likelihood is given by

log[p {X (Il),X (tZ)"‘--sX (IN) ) el, 62? Kla KZ, p}] N B

- )
= -2 SXH@)lpl + K1pf @) @1) + K2pf ©)f"©) I X (@)

— X togider] pr + K1pf ©1)f"@1) + Kapf @)@ ]

+ constant. , : ‘ : (6-3-5) |

After eliminating 'p' as befdre, the problem is now to find 6;, 6, K, and K, by
. minimizing | |

. L
J01,02,K1,K2) = [det |1 +K1f @) 01)+Kaf @) @[ 1"

N oH, ‘ H H -1
SXHEHI+ K f 07 01)+Kof 07 (02) T X (®) (6.3.6)
i=l ' n :

with respect to 6;,8,,K1,and K».

Note that

S Ki
[1+K1_f(el>f”(e_1>r‘_=1-m‘—lﬁf’f(e@)f(_en

and
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UKy f 710+ Kof @) rt
| -[1+K1f(el>f (en]‘l |

_ K2[1 +K1f(91)f”(61)]“f(ez)f”(ez)[l+K1f(el)f ©)71
1+ Kzf”(ez)[ I+Kf@)f" <el> ]'lf (92)

After some algebraic mmphﬁcauons it can be shown that
LI+K.f ©)(8)) +K7f @)% ©®)17

=1-B1f ®)f" 1) ~Baf (ez>f”<ez)
| +Bsf (eliff? (6) + Baf @71 ) 639 e :

where

K (1+KoM)
(1+K1M><1+K2M> ~KiK, !f <el)f<ez)F

B,=

. K2(1+K1M) |
2 (1+K1M><1+K2M> KszIf (el)f(ez)F

K, Kzf (el)f (92)
a+ KM +KoM)-K1K2 If”(91)f ®)F

B3 =

and

K Ko ff eFey » :
- (6.3.9).
(1 + KM+ KoM) - K1K2 17 ©1)f 6

Let us also denote

1

Bo=[det [ +K:f @O @) +Kof @M OI1Y 6310

Then equation (6.3.6) can be rewrittcp 'as

(6.3.7) o
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6:,8,K1,K2)

-Bo trace { zX”(r )[1+K1f(91)fH(91)+K7f(ez)fH(ez)]-IX(I) y
. i= 1 _

=B trace{ [1 +K1f ©1)77(81) +K7_f(92)fH(92) ]“ zx ;) X”(n) }
) i=1 _

=By tracef [1—'Bgf (ex)fH(el)—Bzf(ez)fH(ez) |

+33f(91)fH(92)+B4f(92)fH(91)] z A Bmﬁ”m}

=1

=By 3 m-BoBy 3 @B

m=1 5 om=1

—BoBz ):l 17 (92>BmF

=1-

| +BoBs 21 {f”(e»Bm BHmf(Ol)}

m=1

 +BoBy zl {f”(el)Bm BHmf(ez)} - (63.11)

m=1
where A, and B, m =1,....M again denote the M eigenvalues and the cOrrésponding

normahzed eigenvectors of Z X)) X" H (t,)
i=1

Note that the coefficients B_d,B 1.B2,B3, and B4 as d.cﬁned in equations (6.3.9)
- and (6.3.10) are functions of sinel'—siﬁ 0, only, if the values of K; and K 2 are fixed.
Fort arbitrérily choseh values of K; and K, it can be clearly seen from equations
(6.3.9) through (6.3.11) that minimizing J(0,,6,) with rcspect to 6; and 6, is ot

exactly the same as choosing f(6;) and f(8;) to be in the directions “of the
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eigenvectors which correspond to the two largest eigenvalues in the signal subspace.

6.4. Conclusions '

A maxvimum likelihood (ML) direcfior;-of—arﬂval (DOA) estimation probiem 1s |
vclonsidere‘d’. where the source signals ar§ treated  as sample functions ‘of_ raﬁdofn
processes instead of unknown détermiinistic chuences as assumed in most of the pre-
- vious approaches. The study revealed a relatjonship between this ML DOA estima-
tion scheme and eigenvector méthods for estimating DOA’s. | |

" 'When the number of sources is one it'has been c1ear1’y,- shown fhat maxi'nﬁzing. __
the likelihood function with respcbct to the DOA angh: is exactly equal to chooéing the |
stéering vector to be in the direction of the eigenvector which corresponds to the larg-
est eigenvalue in the signal Subspace. ‘In cases of fnultiplc S‘ources this equality does
not hold exactly. The similarities. and .diffcrenqe_s between this. ML method and

eigenvector.methods have been shown for the case of two sources.
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| CHAPTER7
CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

7.1. Conclusions

Several robust methods of esﬁmaﬁng directions-of-arrival (DOA) usin g arrays of
sensors were proposed. The received sotirce sig'nals' at th’é arrays may be héﬁow band
or wide band, and also incoherent or coherent. The noise at each serisor of the arrays
may be unéonelafed from those of nearby sensors, or correlated with unknown corre-
lation structures. The main emphasis was on the property of robustness, which refers
to insensitivity against a sn;éll deviation in the imdeﬂyin g Gaussian noise assumption. |

The contribution of the research can be summarized as follows. First of all, a
: robust narrow band DOA estimation technique has bvee'n deVelope‘d‘by reconst"ructin‘g

the co;rrelatic')‘n matrix utilizing a multivariate time series modeling of the array data.

bMany eigenvector DOA estimation algorithins can be robustified by replacing the

usual sample correlation matrix estimate with the reconstructed correlation matrix
ﬁlentioned befbré. | | |

Secondly, a robust decenvtralizcvd DOA estimation scheme have been considered.

A notable feature is the robust combining procedure for estimates of the number of -

sources and the corrcsponding DOA’s. Estimating‘paramcte‘rs at each subarray site is
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Ca totailyv independent process from that of other subarfay sites, and the fﬁsion ceﬁt’erl
~can recognizé data from malfunctioning subarray sites or at least minimize the harm-
 ful ef'fe_cts"ovf the estimates froni such subarray sites.

- Arobust method of DOA estimation which can handle both the narrow band and
the wide band sources. have beenvdévelop_ed. The method requires very little informa-
tion about the types of sources, frequencies of signals, énd the noise correlation. The
proposed scheme utilizes a 2-D spectrum esfimatic)n techhiqué utilizing i-D autdre—
gressive (AR) models in the Radon space. |

Lastly, a robust technique is considered for maximum likelihood (ML) nz;rrow
band‘ DOA estimation againSt'outlieré and distributional Vu'ncertaintiesv.,» *The'algorith'm

employs ‘a’robustiﬁed Gaussian ML estimator baysed on-the so called M-estimators, a

genefalizatipn’ of classical ML estimator. It is equally capable of handling coherent

sources as well as the single snapshot cases. - |

" Inthe last chapter, a ma)ﬁimu'm likclihood (ML) direction—of—arrival: (DOA) esti- -
mation problem is considered:where the ‘so‘urce signals are treated as sample functions
of Gaussiah'random processes, instead of the unknown detenninistic‘-sequencés as
asSumed in most bf the previous ML approaches. In panicular, bthe focus was on
interconnecting. the notions of DOA estimation using cigcnv_ector methods to more
‘quantitative Gaussian ML ‘approach, i.e., ‘choos‘ing the DOA estimates to be in qthe
directions of the ei:genv‘ec‘tor_s Which ‘c’okrr‘espond»s to,th§: largest'eiger'walues in the sig-
nal Subspace, |

Table 7.1 summarizes various conventional' DOA estimation techniques which

are based on Gaussian noise assumption and the corresponding robust techniques

k deycloped in 'thc report.
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Table 7. '1 Summary of the conventlonal DOA estlmatlon technlques based on
Gauss1an noise assumptlon vs. the correspondmg robust technlques

"‘S‘ource " Noise . Method’siDevised S L References -
f.narrow band | Gaussian | MUSI__C&Re_latedMethodSa:, ~Schmidt [65], CH6
& 1ncoherent ‘ “  ESPIRIT - - Paulraj et al. [54]
 mixture Robust Correlation ~Leeetal. [43]
' Matrix Reconstruction . CH2
v " & Decentralized Processing ~ CH3
narrow band | Gaussian | ML Estimation “\"" Haykin [24], CH6
& coherent - | Coherent Signal-Subspace . Cadzow [9]
| mixwre |  RobustMLEstimation | Leeetal.[42], CHS
‘wideband | Gaussian |  2-DPSD Estimation 'Halpney etal. [19]
' &incoherent | | Focusing Operation Wang et al. [82]
or coherent . | Divide into Narrow Bands | “Wax et al. [86]
’ s "mixture o Robust Method using | Snnivasa etal. [72]
o | Radon Transform | CcH4 '

7.2. Suggestions for Future R‘esearch :

Related to the robust direction-of-arrival (DOA) estimation techniques

developed in this report, several suggestions can be made.

7.2.1. Robust Direction-of-Arrival Estimation with Non-Uniform Linear Array

~ Spacing

In many practlcal apphcatlons of sonar array 51gna1 processmg, an. array of sen-
Sors attached o a line is towed by a movmg sh1p The ‘spacings between the presum-

) ‘_ ably linear array are not supposed to be-the same. Suppose that the exact locatlons of
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g sensor arrays are known or can be estlmated the problem of est1mat1ng d1rectlon-of-

o amvals (DOA) can. be handled by the DOA estrmatron techn1que usrng Radon

B Transform Wthh was presented in Chapter 4 What remalns to be solved is the ques- Lo |

o tron of selectrng the welghts in. the equauon 4. 3 1) or the 1nterpolat10n of the 2-D o

“data array 1n the equatlon (4 2 1)

The cho1ce of the welghts can. have many altematlves For an example the

: welghts can be made propomonal to the length of the 1ntersect10n as shown in Flgure .

4.1 multlphed by the spacrng between the correspondmg sensors On the other hand -
“the welghts can be chosen to be proportlonal to the area of the 1ntersect1on also shown :
| in Flgure 4. l mult1pl1ed by the spacmg between them Instead of choosing we1ghts
accordmg to the spacmg between the correspondlng sensors one may ﬁx the weights

- and. use the 1nterpolated array data B

The DOA est1mat10n techn1que usmg Radon Transform can be extended to

’ rhlgher d1mens1onal spaces also, ie., s1multaneous est1mat10n of a21muth and elevatlon |
iangles In: this. case one can agam utilize the central s11ce theorem for stat1onary ran-

| , dom ﬁelds (SRF) for 3- d1mens1ona1 space. The Radon Transform has to be. apphed: :

A;twrce: once for 3-D to _2—_D_transfonnatron, and then from 2-D to 1-D transformatlo_n_.v

722 :RODUSt, Dlrection-of-_Arriyal _Estimation, using Least Median 'of Squares -

- Criterion

o Classica_l'- least squares regression :consists of minimizing the sum of the squared
_residnals_. _But in spite of its mathematical 'beanty‘and computational simplicity, this
o estimator is. being criticized more and more for'"its dramatic' lack of robustness. In this

;connect1on Hampel [21] mtroduced the notlon of the breakdownpomt Wthh is the

g _smallest percentage of contammated data that can. cause the estlmator to. take on
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&

arbltranly large aberrant valuesy In the least sduares the breakdownpomt is zero.
The generahzed M—estlmators [27] have a breakdown po1nt of at most 1/(p +l) where
P is the d1mensron of the data ‘

All of this ralses the questlon whether robust regression with a high breakdown
point is at:all possible. The least median of squares (LMS) techniciue has been pro-
posed by Rousseeuw [61]. It replace the sum by by median, which isvery robust, and
this ylelds the LMS estrmator grven by A o

min medr? @21
& i v o g
' where r; is the residual. Theproposal'is essentially based on an :ivdea of Hampel [21].
Tt is kn‘own that the LMS estir_nator has the breakdown point of 0.5, but has a very low
efficiency. Utilization of the LMS ‘cr‘iterion'can provide a breakthvrough in e‘stimating
the directions-of-arrival (DOA’s) when the percentage of: outliers is very large, i.e.,
fifty percent, so that the conventional robust techniques based on the M-estimators are

no longer appropriate. -

7.2.3. Robust Direction-of-Arrival Estimation using Neural Networks |

In direction .ﬁnding, one tries to estimate the directions-of-arrival (DOA) from
s plane' waves impinging on‘an array of sensors. The output signal at each 'sensor is
~ completely determined by the frequency of the signal, the propagation of the signal,
the geometry of .the sensors and the DOA. Several robust a-lgorithms have been
developed in this report for the estimation of DOA’s. A drawback of such DOA algo-
o 'nthms whether tradmonal or robust, is that they depend on computatlonally burden-

some algebra1c techmques thus do not dehver a real time performance



129

Wlth the current advances made in VLSI technology, a number of parallel archi-
tectures have been proposed to allev1ate the computational burden of tradmonal DOA
estlmatlon techmques,v and make real time apphcatlon possible. Recently much
interest has been focuSed’on, so called neural networks [41 46]. A neural network is
an array of highly mtcrconnected s1mple analogue non- hnear processmg units. The.
strength of the neural network lies in the collect1ve computat10na1 ablhty it possesses
: Hopeﬁeld et al. [26] have shown that a neural network can ’be used to rapidly find a
good vsolution to a difficult optimization problem, and‘Rastogi et al. [59] have shown
thatt the neural network algorithm could: have signiﬁcant benefits over classical
approaches for the bearlng estimation problem Furthermore Jha et al. [30] extends
the work of Rastogl et al. [59] by adapting the neural network algorithm to mcrease
its convergence to the global minima, by such techniques as iterated descent and gain
e ,_,unnealing.."- | : | |

) The robust. DOA estimation require' the system to converge to the global
minimum. Computational experience with the. rol)ust DOA estimation algorithm_s,
- however, héve shown that the cost function may have many local minima; cspecially
when the SNR is low. Thus for SNR’s less than about 0dB, in spite of using sophisti-
catedroptimization techniques, the minirrrization algorithm do not always c‘onverge to
the global minimum. Application of 'neural networks to the robust DOA estimation
| problern not only provide real time performan‘ce but may also benefit the convergence

as well.
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