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Knowing source number correctly is the precondition for most spatial spectrum estimationmethods; however, many snapshots are
needed when we determine number of wideband signals. Therefore, a new method based on Bootstrap resampling is proposed in
this paper. First, signals are divided into some nonoverlapping subbands; apply coherent signalmethods (CSM) to focus themon the
single frequency. Then, fuse the eigenvalues with the corresponding eigenvectors of the focused covariance matrix. Subsequently,
use Bootstrap to construct the new resampling matrix. Finally, the number of wideband signals can be calculated with obtained
vector sequences according to clustering technique. The method has a high probability of success under low signal to noise ratio
(SNR) and small number of snapshots.

1. Introduction

Detecting wideband source number is one of the hot and
difficult problems in the area of array signal processing;
meanwhile, it is widely used in many fields, such as radio
monitoring [1–5], acoustic signal processing [6–10], and
Internet of Things [11–14]; the corresponding methods are
also being studied by a lot of scholars all the time. Generally
speaking, knowing number of signals is also the premier
condition of estimating direction of arrival (DOA).The initial
method is based on hypothesis test [15]; as the detecting
threshold needs to be set artificially, it is easy to be influenced
by individual subjective factor. In order to avoid this problem,
Wax and Kailath introduce the information theoretic criteria
[16] into the question; then minimum description length
(MDL) [17] and Akaike information criterion (AIC) [18]
were put forward, improving the detecting performance to
some extent. Liu et al. [19] estimated signal number and
directions simultaneously by spatial difference method based
on uniform linear array. Han and Nehorai [20] increased the
array aperture with folding technology; thus, more signals
can be processed. Liu et al. [21] set the detection threshold
by proposing the concept of effective source number and
distinguished the signals which were close to one another.
Goldstein et al. [22] proposed an effective filtering technology

based on reducing dimension in the late 1990s; it does not
need to compute the covariance matrix and has a preferable
responsiveness to time-varying signals. However, there are
few published literatures for wideband signals; one of them
is based on coherent signal method (CSM) [23] proposed by
Wang and Kaveh, which focuses the signals on the reference
frequency, and then employs MDL or AIC to obtain the
final result. All the methods above need many snapshots, or
their performance will deteriorate seriously. Unfortunately,
they are difficult to be implemented in actual system: firstly,
sampling time is strictly confined; for example, the impulse of
radar is often narrow, and the data can be limited, especially
for wideband signal; secondly, the signal can not be stable for
a long time. So it is difficult to acquire more effective samples,
which restricts the application of the methods above.

Bootstrap is another kind of technique arising in recent
years which can be used with only a few samples [24–
30]; some scholars highlighted the motivation for using the
Bootstrap in signal processing [31, 32]. For signal number
estimation, it needs to calculate the number of the minimum
equal eigenvalues of the sampling covariance matrix based
on the multiple hypothesis test, and it has a higher precision
comparing with information theoretic criteria under the
same circumstance. In 2000, Brcich used Bootstrap for
estimating source number for the first time [27]; after a few
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years, he improved the testing threshold by the Bonferroni
multiple hypothesis test, enhancing the performance further
[28, 29]. Huang et al. [30] used the eigenvalues of one
frequency to form the testing threshold in combination with
Bootstrap resampling to estimate wideband source number;
as they only exploited the information of only one frequency,
the estimation accuracy is limited.

In this paper, a new method for detecting wideband
source number is proposed. The approach is based on
Bootstrap technique and makes full use of the information
of every frequency. First, the signals are divided into some
nonoverlapping subbands, following focusing them on the
same frequency. Then, the eigenvalues are fused with cor-
responding eigenvectors of the focused covariance matrix.
Subsequently, Bootstrap is employed to construct the new
resampling matrix. Finally, the number of wideband signals
can be calculated with obtained vector sequences according
to clustering technique.

2. Array Signal Model

Consider a uniform linear array (ULA) composed by 𝑀

omnidirectional sensors with spacing 𝑑; the first sensor is
defined as the phase reference and the array signal model is
shown in Figure 1.

Assume that 𝐾 far-field wideband signals 𝑠𝑘(𝑡) (𝑘 =

1, 2, . . . , 𝐾) impinge on the array, their directions are 𝜃 =

[𝜃1, . . . , 𝜃𝐾], observed time is 𝑇, and the received data by the
array at time 𝑡 are expressed as
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(1)

for 𝑡 ∈ (0, 𝑇), where 𝑥𝑚(𝑡) is the output of the𝑚th sensor, 𝑐 is
the propagation speed of the signals, and 𝑛𝑚(𝑡) is the additive
white noise subjected to Gaussian distribution CN(0, 𝜎2).

Suppose that the frequency range of all signals is [𝑓𝐿, 𝑓𝐻],
𝐾𝑃 data are collected at every frequency, and a 𝐺-point
discrete Fourier transform (DFT) is applied to (1); the array
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Figure 1: Linear array and far-field signal.

output of the 𝑔th frequency can be expressed as

X (𝑓𝑔) = A (𝑓𝑔, 𝜃) S (𝑓𝑔) + N (𝑓𝑔)
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= [X (𝑓𝑔, 1) ⋅ ⋅ ⋅X (𝑓𝑔, 𝑘𝑝) ⋅ ⋅ ⋅X (𝑓𝑔, 𝐾𝑃)]

𝑔 = 1, 2, . . . , 𝐺.

(2)

Here 𝑓𝐿 ≤ 𝑓𝑔 ≤ 𝑓𝐻 for 𝑔 = 1, 2, . . . , 𝐺, X(𝑓𝑔, 𝑘𝑝) =

[𝑥1(𝑓𝑔, 𝑘𝑝) ⋅ ⋅ ⋅ 𝑥𝑚(𝑓𝑔, 𝑘𝑝) ⋅ ⋅ ⋅ 𝑥𝑀(𝑓𝑔, 𝑘𝑝)]
T, and 𝑥𝑚(𝑓𝑔, 𝑘𝑝) is

the sample data on the 𝑚th sensor of 𝑓𝑔 at snapshot 𝑘𝑝, and
A(𝑓𝑔, 𝜃) = [a(𝑓𝑔, 𝜃1), . . . , a(𝑓𝑔, 𝜃𝑘), . . . , a(𝑓𝑔, 𝜃𝐾)] is the array
steering matrix with𝑀×𝐾 dimension, where

a (𝑓𝑔, 𝜃𝑘) = [1, . . . , exp(−𝑗𝑚2𝜋𝑓𝑔
𝑑

𝑐
sin 𝜃𝑘) , . . . ,

exp(−𝑗 (𝑀 − 1) 2𝜋𝑓𝑔

𝑑

𝑐
sin 𝜃𝑘)]

T
.

(3)

The signals S(𝑓𝑔) (𝑔 = 1, 2, . . . , 𝐺), within different frequency
bins, are assumed to be Gaussian distributed, and they are
uncorrelated with the noise N(𝑓𝑔) (𝑔 = 1, 2, . . . , 𝐺).

3. Proposed Method

3.1. Focusing. The covariance matrix at 𝑓𝑔 can be solved by

R̂ (𝑓𝑔) =
1

𝐾𝑃
X (𝑓𝑔)X

𝐻
(𝑓𝑔) 𝑔 = 1, 2, . . . , 𝐺. (4)

Then, we can acquire the covariance matrix R̂(𝑓0) with
the single frequency by transforming the signals at each
frequency into a covariance matrix at a focusing frequency
𝑓0 based on two-sided correlation transformation (TCT)
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method [33], and so forth we can choose the center frequency
as 𝑓0. Apply eigendecomposition to R̂(𝑓0); we have

R̂ (𝑓0) =
𝐾

∑

𝑘=1

𝜆𝑘 (𝑓0) e𝑘 (𝑓0) e
𝐻

𝑘
(𝑓0)

+

𝑀

∑

𝑘=𝐾+1

𝜆𝑘 (𝑓0) e𝑘 (𝑓0) e
𝐻

𝑘
(𝑓0) .

(5)

Then, the eigenvalues 𝜆1(𝑓0) > ⋅ ⋅ ⋅ > 𝜆𝐾(𝑓0) > 𝜆𝐾+1(𝑓0) =

⋅ ⋅ ⋅ = 𝜆𝑀(𝑓0) can be obtained, and the corresponding eigen-
vector is E(𝑓0) = [e1(𝑓0), . . . , e𝐾(𝑓0), e𝐾+1(𝑓0), . . . , e𝑀(𝑓0)],
where E𝑆(𝑓0) = [e1(𝑓0), . . . , e𝐾(𝑓0)] corresponds to signal
subspace and E𝑁(𝑓0) = [e𝐾+1(𝑓0), . . . , e𝑀(𝑓0)] corresponds
to the noise subspace.

3.2. Fusion. Since both a(𝑓0, 𝜃) and E𝑆(𝑓0) belong to the
signal subspace, we have

a (𝑓0, 𝜃) =
𝐾

∑

𝑘=1

𝛼𝑘 (𝑓0) e𝑘 (𝑓0) , (6)

where 𝛼𝑘(𝑓0) is the corresponding coefficient, and the inner
product of the eigenvector is defined by

𝜇𝑚 (𝑓0) =
󵄨󵄨󵄨󵄨󵄨
a𝐻 (𝑓0, 𝜃) e𝑚 (𝑓0)

󵄨󵄨󵄨󵄨󵄨
, 𝑚 = 1, 2, . . . ,𝑀. (7)

The signal and noise subspace are orthogonal to each other,
so

a𝐻 (𝑓0, 𝜃) e𝑘 (𝑓0) = 0, 𝑘 = 𝐾 + 1, . . . ,𝑀. (8)

According to (6) and (8), (7) can be represented as

𝜇𝑚 (𝑓0) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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𝐻

e𝑚 (𝑓0)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

{

{

{

󵄨󵄨󵄨󵄨𝛼𝑚
󵄨󵄨󵄨󵄨 , 𝑚 = 1, 2, . . . , 𝐾

0, 𝑚 = 𝐾 + 1, . . . ,𝑀.

(9)

Traditional information theory criterion only exploits the
information of eigenvalues, but when the snapshots are small,
we should make full use of the sampling data; since the
eigenvectors also carry information of the signal, let us fuse
𝜇𝑚(𝑓0) with 𝜍𝑚(𝑓0):

𝜉𝑚 (𝑓0) = 𝜍
1/2

𝑚
(𝑓0) 𝜇𝑚 (𝑓0) , 𝑚 = 1, 2, . . . ,𝑀 − 1. (10)

Here, 𝜉𝑚(𝑓0) is defined as the fusion inner product, and
𝜉(𝑓0) = [𝜉1(𝑓0), . . . , 𝜉𝑚(𝑓0), . . . , 𝜉𝑀−1(𝑓0)] is the fusion inner
product vector. According to [34], the optimal 𝜍𝑚(𝑓0) (𝑚 =

1, 2, . . . ,𝑀 − 1) are chosen as

𝜍𝑚 (𝑓0) =
(𝜆𝑚 (𝑓0) − 𝜆𝑀 (𝑓0))

2

𝜆𝑚 (𝑓0)
,

𝑚 = 1, 2, . . . ,𝑀 − 1.

(11)

3.3. Bootstrap Resampling. We can employ Bootstrap
technique to determine number of signals; on the one hand,
there is no need to know the probability density distribution
of the testing statistics; on the other hand, it is still effective
under the circumstance of small number of snapshots.
Suppose that X(𝑓𝑔) = [X(𝑓𝑔, 1) ⋅ ⋅ ⋅X(𝑓𝑔, 𝑘𝑝) ⋅ ⋅ ⋅X(𝑓𝑔, 𝐾𝑃)]
is the Bootstrap resampling matrix of X(𝑓𝑔), where
X(𝑓𝑔, 𝑘𝑝) | 𝑘𝑝 = 1, 2, . . . , 𝐾𝑃 is a random column selected
from X(𝑓𝑔) and each selected column is uncorrelated to
one another, execute the same operation to the signals
of the other frequencies, and we can acquire X(𝑓1),
. . . ,X(𝑓𝑔), . . . ,X(𝑓𝐺), the corresponding focused covariance
matrix R(𝑓0), and the fusion inner product vector 𝜉(𝑓0) =
[𝜉1(𝑓0), . . . , 𝜉𝑚(𝑓0), . . . , 𝜉𝑀−1(𝑓0)]. Similarly, repeat the Boot-
strap resampling, focusing, and fusion for 𝑇 times; we will
calculate 𝑇 groups of focused covariance matrices R(𝑓0, 1),
. . . ,R(𝑓0, 𝑡), . . . ,R(𝑓0, 𝑇) and the corresponding inner
product vector sequences 𝜉(𝑓0, 𝑡) = [𝜉1(𝑓0, 𝑡), . . . , 𝜉𝑚(𝑓0, 𝑡),

. . . , 𝜉𝑀−1(𝑓0, 𝑡)] | 𝑡 = 1, 2, . . . , 𝑇; average them to obtain the
new vector 𝜉̂ = (1/𝑇)∑

𝑇

𝑡=1
𝜉(𝑓0, 𝑡) = [𝜉̂1, . . . , 𝜉̂𝑚, . . . , 𝜉̂𝑀−1],

where the new element 𝜉̂𝑚 = (1/𝑇)∑
𝑇

𝑡=1
𝜉𝑚(𝑓0, 𝑡) (𝑚 =

1, 2, . . . ,𝑀 − 1).

3.4. Clustering. Signals and noise can be distinguished by
clustering the elements in the vector 𝜉̂; the larger ones
belong to the signals, as there are large differences among
them. While the others belong to the noise, they are smaller
and close to one another. Here, clustering algorithm [35] is
employed to estimate the source number; it is summarized as
follows:

(1) Select the initial class mean of the signal and noise:

𝜉
(1)

1
= 𝜉̂1,

𝜉
(1)

2
= 𝜉̂𝑀−1.

(12)

(2) In the 𝑟th iteration, every element is endowed with
the signal or the noise class according to the criterion below,
to the 𝜉̂𝑚 (𝑚 = 1, 2, . . . ,𝑀 − 1):

𝜉̂𝑚 ∈ 𝑄
(𝑟)

2
if 𝑍(𝑟−1)
1𝑚

< 𝑍
(𝑟−1)

𝑚2
, (13)

where

𝑍
(𝑟−1)

1𝑚
=
𝜉̂
(𝑟−1)

1

𝜉̂𝑚

,

𝑍
(𝑟−1)

𝑚2
=

𝜉̂𝑚

𝜉̂
(𝑟−1)

2

.

(14)

𝑄1 denotes the noise class and𝑄2 denotes the signal class; that
is to say, if the ratio of a certain element and noise class mean
is larger than that of the signal class mean and the certain
element, then the element belongs to the signal; otherwise, it
belongs to the noise; this means that we assign every element
to the nearest class.
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Figure 2: Probability of success versus SNR for uncorrelated signals
in Gaussian white noise.

(3) Calculate the new value of each clustering center:

𝜉̂
(𝑟+1)

𝛼
=

1

𝐷𝛼

∑

𝛽∈𝑄𝑟
𝛼

𝜉̂𝛽 𝛼 = 1, 2, (15)

where𝐷𝛼 is the number of the element in 𝑄𝑟
𝛼
.

(4) If 𝜉̂
(𝑟+1)

𝛼
= 𝜉̂
(𝑟)

𝛼
(𝛼 = 1, 2), therewill be no new elements

turning over each class, the algorithm is convergent, and the
iteration is over; otherwise, turn to step (2) and go on to next
iteration; thus, the number of signals 𝐾̂ can be decided.

It is seen from the deduction above that we can estimate
𝑀 − 2 signals at most. Since the proposed method employs
fusion, Bootstrap resampling, and clustering, it can be called
FBC method for short.

Or we can omit the process of fusion, then only use
Bootstrap resampling and focusing to construct the new
covariance sequences R(𝑓0, 1), . . . ,R(𝑓0, 𝑡), . . . ,R(𝑓0, 𝑇), and
subsequently average them; we have

R̃ =
1

𝑇

𝑇

∑

𝑡=1

R (𝑓0, 𝑡) . (16)

Then, apply clustering above to the eigenvalues of R̃ to decide
the signal number, but this method does not utilize the
eigenvectors; similarly, we can call it BC for short.

4. Simulations

In order to verify the effectiveness of the method, some
simulations are presented with Matlab below; consider some
binary phase coded wideband signals impinging on a uni-
form linear array with 8 omnidirectional sensors, the center
frequency is 1 GHz, the width of the band is 1 GHz × 20% =
0.2GHz, signals are sampled with 20 frequency bins in the
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Figure 3: Probability of success versus number of snapshots for
uncorrelated signals in Gaussian white noise.

frequency domain, the spacing between adjacent sensors 𝑑 =
3 × 10

8
/(2 × 1 × 10

9
)m, FBC, BC, and MDL based on CSM

(CSM-MDL) are, respectively, employed for the simulations,
200 Monte-Carlo trials have run for each variable, and, in
FBC and BC, 𝛼 = 0.02.

In the first simulation, five far-field wideband uncor-
related signals with the same power impinge on the array
in 5
∘, 12∘, 20

∘, 26∘, and 33
∘; the noise is assumed to be

Gaussian-distributed; the resample times 𝑇 = 90; Figure 2
presents the probability of detection as a function of SNR
when the number of snapshots is 30, while Figure 3 shows
that of the number of snapshots when SNR is 3 dB.

It is seen from Figure 2 that all the probabilities of success
of these methods are improving with the increasing of SNR;
in comparison, FBC is better than the other twomethods; it is
100% when SNR reaches −6 dB and that of the BC and CSM-
MDLcan reach 100%when SNR is 0 dB and 3 dB, respectively.
And it is seen from Figure 3 that when the snapshots are
small, FBC is better than BC and CSM-MDL, and all the
probabilities of success of these methods are improving with
increasing of the snapshots; in comparison, the probabilities
of success of FBC can reach 100% when the snapshots are 22
and that of the BC and CSM-MDL can reach 100% when the
snapshots are 28 and 32, respectively.

In the second simulation, five far-field wideband uncor-
related signals with the same power impinge on the array in
5
∘, 12∘, 20∘, 26∘, and 33

∘; the noise is assumed to be non-
Gaussian-distributed; it is obtained through an autoregressive
(AR) filter [36] of coefficient 0.9; the resample times 𝑇 = 90;
Figure 4 presents the probability of detection as a function
of SNR when the number of snapshots is 30, while Figure 5
shows that of the number of snapshots when SNR is 3 dB.

It is seen from Figure 4 that when the SNR is low, all the
probabilities of success of these methods are improving with
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Table 1: Average calculating time of the four methods.

Method Computational complexity Average calculating time (ms)
CSM-MDL 𝑂{(𝑀

3
× 𝐾𝑃 × 𝐺 +𝑀

2
× 𝐾𝑃 × 𝐺 +𝑀

3
) + 𝑀

2
/2} 6.8

BC 𝑂{𝑇 × (𝑀
3
× 𝐾𝑃 × 𝐺 +𝑀

2
× 𝐾𝑃 × 𝐺 +𝑀

3
) + 𝑀

2
} 310

FBC 𝑂{𝑇 × (𝑀
3
× 𝐾𝑃 × 𝐺 +𝑀

2
× 𝐾𝑃 × 𝐺 +𝑀

3
) + 𝑇 × (𝑀

2
× 𝐺 +𝑀 × 𝐺) +𝑀

2
} 312
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Figure 4: Probability of success versus SNR for uncorrelated signals
in non-Gaussian white noise.

its increasing; when SNR reaches a certain extent, CSM-MDL
is fluctuating and unstable, but all of them can reach 100%
at last. And it is seen from Figure 5 that when the snapshots
are small, all the probabilities of success of these methods
are improving with the snapshots increasing. In comparison,
FBC is better than BC and CSM-MDL; when snapshots reach
a certain extent, CSM-MDL is fluctuating and unstable, while
FBC and BC are still available relatively, but they still cannot
reach 100%, so their estimations are not consistent for the
non-Gaussian white noise.

In the third simulation, five far-field wideband coherent
signals with the same power impinge on the array in 5

∘,
12
∘, 20∘, 26∘, and 33∘; the noise is assumed to be Gaussian-

distributed; the resample times 𝑇 = 90; Figure 6 presents
the probability of detection as a function of SNR when the
number of snapshots is 30, while Figure 7 shows that of the
number of snapshots when SNR is 3 dB.

It is seen from Figure 6 that these methods can estimate
the number of wideband coherent signals successfully when
SNR is high enough, and all the probabilities of success of
these methods are improving with the SNR increasing; in
comparison, FBC is better than BC and CSM-MDL.

It is seen fromFigure 7 that all thesemethods can estimate
the number of wideband coherent signals successfully when
snapshots are large enough; the probabilities of success of
these methods are improving with the snapshots increasing.
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Figure 5: Probability of success versus number of snapshots for
uncorrelated signals in non-Gaussian white noise.

In comparison, FBC is better than BC and CSM-MDL.
In general, since the course of focusing can extract the
coherence, there are no distinct differences with uncorrelated
signals for the result.

In the fourth simulation, five far-field wideband uncor-
related signals with the same power impinge on the array
in 5
∘, 12∘, 20∘, 26∘, and 33

∘; the noise is assumed to be
Gaussian-distributed; Figure 8 presents the probability of
detection as a function of resampling times when the number
of snapshots is 20 and SNR is 3 dB, while we use digital signal
processor ADSP-TS201S to implement these methods; the
computational complexities and average calculating time are
shown in Table 1.

It is seen from Figure 8 that the probabilities of success
of the two methods are improving with the resampling times
increasing. In comparison, as the FBC makes use of not
only the eigenvalues but also the eigenvectors, it yields better
detection performance than BC, so we should fully exploit
the information of the eigenvectors and resampling under the
circumstance of small number of snapshots.

It is not difficult to deduce that CSM-MDL needs the
process of focusing and formula computation, so its computa-
tional complexity is𝑂{(𝑀3 ×𝐾𝑃×𝐺+𝑀2 ×𝐾𝑃×𝐺+𝑀3) +
𝑀
2
/2}; BC needs focusing, resampling, and clustering, and

the complexity is𝑂{𝑇×(𝑀3×𝐾𝑃×𝐺+𝑀2×𝐾𝑃×𝐺+𝑀3)+𝑀2};
FBC needs focusing, fusion, resampling, and clustering, and
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Figure 6: Probability of success versus SNR for coherent signals.
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Figure 7: Probability of success versus number of snapshots for
coherent signals.

the complexity is𝑂{𝑇×(𝑀3×𝐾𝑃×𝐺+𝑀2×𝐾𝑃×𝐺+𝑀3)+𝑇×
(𝑀
2
×𝐺+𝑀×𝐺)+𝑀

2
}. And it can be seen from the calculating

time that the resampling spends a long time; it will increase
the computation time bymultiples, while focusing and fusion
are not obvious relatively; we can reduce the resampling times
properly and employ multiple digital signal processors to
increase efficiency in practical applications.

5. Conclusions

The paper proposes a method for determining the number
of wideband signals based on Bootstrap resampling; after
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Figure 8: Probability of success versus resampling times.

focusing the signal on the reference frequency, wemake use of
fusing the eigenvectors with the corresponding eigenvalues,
subsequently we employ the Bootstrap to construct the
resampling matrix, and then we use clustering to decide
signal number. The simulations have shown that the per-
formance of the proposed method is better than that of
information theory criterion; it adapts to uncorrelated and
coherent signals. Moreover, it also has an effect on the non-
Gaussian noise.

Bootstrap resampling is used to estimate wideband signal
number in this paper; however, due to the process of the
resampling, its calculation is very complicated. Our work
will be committed to optimizing the method to lower the
computation complexity in future.
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