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ABSTRACT OF THESIS 

 

 

EXPERIMENTAL EVALUATION OF MODIFIED PHASE TRANSFORM  

FOR SOUND SOURCE DETECTION 

The detection of sound sources with microphone arrays can be enhanced through 

processing individual microphone signals prior to the delay and sum operation. One 

method in particular, the Phase Transform (PHAT) has demonstrated improvement in 

sound source location images, especially in reverberant and noisy environments. Recent 

work proposed a modification to the PHAT transform that allows varying degrees of 

spectral whitening through a single parameter, β, which has shown positive improvement 

in target detection in simulation results. This work focuses on experimental evaluation of 

the modified SRP-PHAT algorithm. Performance results are computed from actual 

experimental setup of an 8-element perimeter array with a receiver operating characteristic 

(ROC) analysis for detecting sound sources. The results verified simulation results of 

PHAT- β in improving target detection probabilities. The ROC analysis demonstrated the 

relationships between various target types (narrowband and broadband), room 

reverberation levels (high and low) and noise levels (different SNR) with respect to 

optimal β. Results from experiment strongly agree with those of simulations on the effect 

of PHAT in significantly improving detection performance for narrowband and broadband 

signals especially at low SNR and in the presence of high levels of reverberation.  

 

KEYWORDS: Microphone array, Steered Response Power (SRP), Phase Transform 

(PHAT), Sound Source Location (SSL) 
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1 CHAPTER 1 

 

Introduction and Literature Review 

 

1.1 Sound Source Localization 

 

Modern society craves better comfort, flexibility, quality of living. Technology has 

kept up to this growing demand with new generation of applications. Sound source 

location (SSL) with microphone arrays is one such development which finds importance in 

day-to-day applications like Bluetooth headsets, automobile speech enhancement, noise 

cancellation for audio communication, teleconferencing, speech recognition, talker 

characterization and voice capture in reverberant environments [1-3]. Other specialized 

applications involving this technology are: speech separation, robot navigation, security 

surveillance systems and as a key component of many new human-computer interface 

applications under development [4]. 

Distributed microphone systems have been considered for applications including 

advanced human computer/machine interfaces, talker tracking, and beamforming for 

signal-to-noise ratio (SNR) enhancements [1-3]. Many of these applications require 

detecting and locating a sound source.  For example, application in a meeting or 

conference environment requires detecting and locating all voices and then beamforming 

on each voice to effectively create independent channels for each speaker.  The failure to 

detect an active sound source or a false detection can significantly degrade the performance 

of such systems. As a major research topic, sound source location using microphone array 

has reached levels of performance where it is being integrated and deployed in real 

environments. E.g. voice-capture and automatic camera steering products using a 

4-element microphone array (by Polycom Inc.) [5] and systems for high performance 

speech recognition in noisy environments [6, 7]. The primary goal of any SSL system is to 

ensure acceptable performance in different operational conditions [8]. 

When it comes to real-world applications, the source location estimates need to meet 

different reliability constraints. The primary reason for failure of such systems is the poor 
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performance in adverse environments, such as a room with ambient noise [9]. This 

problem can be addressed with a judicious decision on microphone array design and choice 

of a robust SSL algorithm [3, 10]. 

In general, SSL estimation performance is dependent on factors like:  

1) quantity and quality of microphones used  

2) microphone placement geometry 

3) number of active sources in the FOV 

4) ambient noise and reverberation levels 

The above factors play a major role in the decision process for SSL. Increasing the 

number of microphones in the array is the simplest means to achieve marginal performance 

improvement in adverse environmental conditions. However, in most situations, a modest 

number of microphones can be used to achieve adequate performance provided the 

ambient conditions are favorable and microphones are positioned accordingly [10]. The 

optimal solution for number and geometry of an array is driven by factors like room layout, 

prevailing acoustic conditions, number and type of sources [11]. So, many practical SSL 

system designs take into consideration, factors like: the specific application conditions, the 

hardware availability, and other cost criteria. 

 

1.2 Localization and Tracking 

Obtaining the best accuracy forms the primary objective of localization and tracking 

systems. The sensor configuration and geometry have a strong bearing on performance. 

The room layout, speaking scenarios, acoustic conditions, and the prevailing environment 

have to be taken into consideration while designing the system. However, approaches 

differ depending on overall objective (e.g. detecting single/multiple sources), specific 

tracking framework, sensor configuration and use of different approaches such as audio, 

video, or their combinations. 
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1.3 Acoustic Localization Methods 

Among the different localization and tracking techniques, acoustic source localization 

techniques have following advantages: 

a) operational convenience independent of lighting conditions,  

b) omni-directional sensing performance and 

c) localization independence from visual occlusion. 

 

1.3.1 Time Difference of Arrival: TDOA 

Commonly used acoustic source localization algorithms are based on time delay 

estimation (TDE) or time-difference of arrival (TDOA) technique. The knowledge of 

microphone position-geometry along with time difference of arrival of the source signal at 

different microphones pairs is used to estimate the source location. The reliability of a time 

delay estimate depends on the spatial coherence of the acoustic signal reaching the sensors, 

and is influenced by the distance between the microphones, the level of background noise 

and the extent of the room reverberation.  

Most of the TDOA schemes are based on estimating the maximum Generalized 

Cross-Correlation (GCC) between the delayed microphone-pair signals [12]. The GCC is a 

popular method for estimating time-delays. Its popularity is due to its low computational 

complexity which is achieved by Fast Fourier Transform (FFT) implementations. Let 

𝑥𝑖 𝑡  denote the signal at i
th

 microphone and 𝑋𝑖 𝜔  be its Fourier transform over a finite 

interval 0 ≤ t ≤ T. The cross correlation between 2 microphone channels is: 

𝑅 𝐺𝐶𝐶 𝜏 ≜   𝑈 𝜔  2 

∞

−∞

𝑃 12 𝜔  𝑒
𝑗𝜔𝜏  

(1) 

 

where,  𝑈 𝜔   is the weighting function and the cross power spectrum 𝑃 12 𝜔  is: 

𝑃 12 𝜔 ≜ 𝑋2 𝜔 𝑋1
∗(𝜔) 

(2) 

The superscript (∙)∗ denotes complex conjugate.  
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In the GCC method, the weighting function  𝑈 𝜔   is set to „1‟ in equation 1, and the 

estimated time-delay 𝜏  is given by: 

       𝜏 = 𝑎𝑟𝑔max
𝜏

( 𝑅 𝐺𝐶𝐶  𝜏  )           (3) 

The performance of GCC suffers in conditions of multi-source presence and even 

worse for moderate to high levels of background noise and reverberation. In such cases, the 

GCC with Phase Transform (GCC-PHAT) method is found to have significantly better 

performance over conventional SSL approaches for TDOA based SSL systems [13]. The 

weighting function for GCC-PHAT is defined for the equation1 above, as: 

        𝑈 𝜔  2 =  
1

 𝑃 12  𝜔  
        (4) 

1.3.2 Enhancements to TDOA: 

In effort to enhance the accuracy of TDOA estimates and handle multi-speaker cases, 

Kalman filter smoothing [14] and a combination of TDOA with particle filter approach 

[15] has been investigated.. The basic Kalman filter is limited to a linear assumption. 

Kalman filter assumes dynamics to be linear and Gaussian However, most non-trivial 

systems are non-linear. For example, when the sound source is human, the linearity 

assumption is not true for sudden changes in source position. Furthermore, in spontaneous 

speech, short utterances (typically less than a second) that makeup considerable portion of 

the speech poses further challenges when trying to implement the Kalman filter approach.  

In such situations, the Extended Kalman Filter (EKF) where the state transition and 

observation models need not be linear functions but may instead be differentiable 

functions. Unlike its linear counterpart, the EKF is not an optimal estimator. In addition, if 

the initial estimate of the state is wrong, or if the process is modeled incorrectly, the filter 

may quickly diverge [16, 17]. However, the above approaches still encounter difficulties in 

delivering consistent performance when dealing with spontaneous speech, that is variable 

in both space (source movement) and is sporadic over time (short intervals of signal 

energy). Also, the increased computational requirement of complex algorithms prohibits 

their use in real-time applications. 
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Single acoustic source localization and tracking applications are found in [18, 19].  

However, fast-changing source movements as encountered in spontaneous multi-party 

speech requires either specific multi-source models [20] or adapting the single-source 

model to switch between speakers [21] . Some attempts have been made to combine the 

TDOA and SRP based approaches to alleviate the disadvantages of TDOA based approach 

[22]. 

Measures to improve the performance of TDOA based SSL systems designed 

assuming presence of ideal conditions could still hurt the performance in normal 

application environments. The following section describes research on a more robust 

approach (beamformer based). 

1.3.3 Steered Response Power: SRP 

Most state-of-the-art speech processing systems rely on close-talking microphones for 

speech acquisition to achieve good performance. But, in the case of multiparty 

conversational setting like meetings, the setup is often not suitable. For such scenarios, 

microphone arrays present a potential solution by offering distant, hands-free and reliable 

audio signal acquisition by making use of beamforming techniques. Beamforming consists 

of filtering and discriminating active speech sources from noise sources based on their 

spatial location [23]. The simplest technique is delay-sum beamforming, in which a delay 

filter is applied to each microphone channel before summing them to give a single 

enhanced output. A more sophisticated filter-sum beamformer that has shown good 

performance in speech processing applications is super-directive beamforming, in which 

filters are calculated to maximize the array gain for the look direction [24] . The post 

filtering of the beamformer output significantly improves desired signal enhancement by 

reducing background noise. 

The localization and tracking of multiple active sources is crucial for optimal 

performance of microphone-array based systems. Many computer vision systems have 

been studied to detect and track people [25], but are affected by occlusion and illumination 

effects. Acoustic source localization algorithms can be implemented to work efficiently in 

such environments independent of lighting conditions.  
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1.3.4 Evolution of SRP-PHAT-β 

Several weighting functions (filters) have been studied for improving the performance 

of the conventional SRP, such as: maximum likelihood (ML), smoothed coherence 

transforms (SCOT), the phase transform (PHAT) and the Roth processor. [12, 26-29]. The 

difference between the above mentioned approaches to SRP is in the weighting function 

used in each case which is summarized in the table below, where 𝑃𝑥𝑖𝑥𝑗 (𝜔) is the cross 

power spectrum described in equation 2. 

Table 1: Weighting functions used for SRP 

Weighting function PHAT SCOT Roth processor 

Equation 
1

 𝑃𝑥1𝑥2
(𝜔) 

 
1

 𝑃𝑥1𝑥1
(𝜔)𝑃𝑥2𝑥2

(𝜔)2
 

1

𝑃𝑥1𝑥1
(𝜔)

 

 

The weighting function that is found to be robust to reverberant conditions is the 

PHAT function [5, 12]. 

The GCC-PHAT method [30] used for TDOA (refer equations1 to 4), is based on 

estimating the maximum GCC between the delayed signals and is robust to reverberations 

due to the influence of the PHAT. The steered response power (SRP) method [31] delays 

signals from different microphone channels to estimate the power output and is robust to 

background noise. The advantages of both the methods i.e., robustness to reverberation and 

background noise are combined in the SRP-PHAT method [5]. 

Donohue et al. (2007) introduced a modification to the PHAT, referred to as the 

PHAT-β transform [32], that investigates the effect of changing the degree of spectral 

magnitude information used by the transform using a single parameter (β) . In this work, 

performance results of the „β‟ parameter were computed using a Monte Carlo simulation of 

an 8 element perimeter array and analyzed using receiver operating characteristic (ROC) 

analysis. Results in [32] have shown that standard PHAT significantly improves detection 

performance for broadband signals. Proper choice of β can result in performance 

improvements for both narrowband and broadband signals. 
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1.3.5 Motivation: 

Research work on sound source location has focused on algorithms for enhancing 

detection and localization of targets.  SRP along with the Phase Transform (PHAT) 

weighting has shown promising results as a robust algorithm for detecting sound sources 

[33, 34]. A detailed analysis focused on target detection performance has shown that a 

variant of the PHAT, referred to as modified PHAT or PHAT-β [32, 35], actually 

outperforms the conventional PHAT for SRP for a variety of signal source types and 

operating conditions (low SNR, high reverberation). 

The performance results for PHAT-β demonstrated through simulation results in [32] 

presented a means to parametrically influence performance of PHAT with respect to signal 

type and bandwidth of interest. The work described in [32] and subsequently this thesis 

attempts to evaluate the effect of „β‟ for SRP-PHAT based approach in terms of detection 

performance. Detection performance is assessed using the area under the Receiver 

Operating Characteristics (ROC) curve [36-38] . 

1.3.6 Hypothesis 

The objective of this thesis is to verify the results presented in [32] and develop 

experiments to validate and test the influence of „β‟ parameter on target detection 

performance. Separate tests were designed to study performance with respect to sound 

source detection in reverberant and noisy rooms and present an effective methodology for 

its solution. 

For an efficient evaluation of the acoustic degradations on SSL performance, this thesis 

will focus on the implementation SRP-PHAT-β algorithm as a function of source type, 

reverberation levels, and ambient noise (in terms of SNR), rather than focusing on 

influence of changes in specific environmental scenario and microphone geometry. Prior 

knowledge about the time frames where the sources was active is assumed for analysis. 

This is because a received signal could contain not only segment of interest but also of 

noise source and periods of silence. 
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While the focus of the experiments and analysis will be the single-source scenario, the 

techniques described are applicable to situations involving multiple sources with little 

modification. 

 

1.4 Organization of the Thesis 

Chapter 2 gives an introduction to concepts of beamforming used with respect to 

the delay and sum beamformer implementation for steered response power computation. 

The later sections of this chapter discuss the SRP algorithm implementation using the 

PHAT weighting approach and finally the PHAT-β is introduced for SRP implementation. 

Chapter 3 presents the specifications of the experimental setup where the data used 

for all analysis in this thesis were collected. This chapter also discusses the decision 

choices made, and other implementation criterion used for computing and analyzing the 

SRP-PHAT β. 

Chapter 4 focuses on the results obtained from the analysis of the data gathered 

from the experimental setup described in chapter 3. It also presents a case-by-case 

discussion of the performance results obtained with respect to the simulation results 

published by Donohue et.al in [32] indicating the agreement of results with those in [32] 

and also the disagreements. 

Chapter 5 summarizes the conclusion and future research directions. 

Appendices A at the end of this thesis gives an introduction to the basics of acoustic 

signal modeling and the parameters involved. 

Appendix B is a review of commonly used SSL approaches. 
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CHAPTER  2 

 

Steered Response Power with modified PHAT (PHAT-β) 

 

This chapter discusses the concepts of beamforming and Steered Response Power 

algorithms used for SSL. The implementation of PHAT for SRP is discussed in section 2.4 

and the final section 2.5 introduces the PHAT- β for SRP implementation and the expected 

performance improvement for the new algorithm. 

 

An important application of SSL based beamforming has been its use in speech-array 

applications for voice capture [1, 6, 23, 41-43]. When applied to source localization, the 

beamformer output is maximized when the array is focused on the target location. The SRP 

algorithm exploits the multitude of microphones in order to overcome the limitation in 

estimation accuracy of TDOA based approaches in the presence of noise and reverberation. 

SRP exploits the spatial filtering ability of a microphone array which further increases its 

applicability for the SSL problem. SRP also enables the selective enhancement of signal 

from the source of interest while suppressing other unwanted signals [12, 39]. This 

property of SRP algorithm makes it a more robust choice for SSL applications [32].  

The features of SRP which make it a better approach than TDOA in terms of 

robustness to reverberation for the SSL problem is discussed in this chapter and a new filter 

is introduced. This filter is derived from the phase transform (PHAT) [32], which applies a 

magnitude-normalizing weighting function to the cross-spectrum of two microphone 

signals. 

1.1 Beamforming for SRP 

Consider a set of microphones and sound sources at different spatial locations. Let 

𝑠𝑖 𝑡;  𝑟𝑖     be the pressure wave resulting from the i
th

 source. The waveform received by the 

m
th

 microphone is given by [27]: 
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      𝑥𝑚 ,𝑖(𝑡;  𝑟𝑚     , 𝑟𝑖   ) = 𝑠𝑖(𝑡;  𝑟𝑖   ) * 𝑝 ,𝑖(𝑡;  𝑟𝑚     , 𝑟𝑖   ) + 𝑛𝑚  𝑡            (5) 

 

where, 𝑝 ,𝑖(𝑡;  𝑟𝑚     , 𝑟𝑖   ) is the impulse response of the propagation path from 𝑟𝑖    to 𝑟𝑚      and 

𝑛𝑚  𝑡  represents all the noise sources. 

 

 

Figure 1: The SRP algorithm using delay-sum beamforming 

 

Figure 1 above shows that for an array of M microphones, a delayed and filtered 

version of the source signal 𝑥𝑖(𝑡) exists in each microphone channel. By time-aligning the 

delayed versions of 𝑥𝑖(𝑡), the resulting signals can be summed together so that all copies 

add constructively while the uncorrelated noise signals present in 𝑛𝑚  𝑡  cancel out. 

The copies of 𝑠𝑖 𝑡  at each of the individual microphones can be time-aligned by 

setting the steering delays equal to the negative values of the propagation delays plus some 

constant delay, τ0: 

       ∆𝑚=  𝜏0  −  𝜏𝑚 ;                             (6) 

where, m takes values from 1,2,…..M, 𝜏0  defines the phase center of the array, and is set 

to the largest propagation delay among all microphones in the array, making all the steering 

delays greater than or equal to zero. This implies all shifting operations are causal, which 

satisfies the requirement for practical implementation in a system. This also makes the 

steering delay values relative to one microphone. Hence, the output equation for 

delay-and-sum beamformer shown in Figure1: 

Source 
 Delay 

0 

 Delay 

1 

 Delay

M-1 


 

output 
 

 

 

 

  

x1(t) , …xM(t) : signal at mics 

. 

. 

. 

. 

x1(t) 

x2(t) 

xM(t) 

.

. 

. 

. 
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𝑦𝑖 𝑡;  ∆1 …… .∆𝑚 ≡   𝑥𝑚  𝑡 − ∆𝑚 

𝑀

𝑚=1

 

(7) 

 

where, ∆1 …… .∆𝑚  are the M steering delays, which focus or steer the array to the 

source‟s spatial location or direction and 𝑥𝑚 ∙  is the signal received at the m
th 

microphone. 

The delay-and-sum beamformer output 𝑦𝑖 𝑡;  ∆1 …… .∆𝑚  in equation7, can now be 

expressed in terms of the microphone signal model 𝑥𝑚 ,𝑖(𝑡;  𝑟𝑚      , 𝑟𝑖   ) of equation5 and the 

steering delays ∆𝑚  from equation6, giving: 

𝑦𝑖 𝑡;  ∆1 …… .∆𝑚 ≡  𝑠𝑖 𝑡 –  𝜏0;  𝑟𝑖     ∗  𝑚 ,𝑖 𝑡 −  𝜏0 + 𝜏𝑚 ;  𝑟𝑚     , 𝑟𝑖    

𝑀

𝑚=1

  + 

+  𝑛𝑚  𝑡 −  𝜏0 + 𝜏𝑚  

𝑀

𝑚=1

 

(8) 

 

Considering the impulse responses of individual microphone channels 𝑚 ,𝑖 𝑡  to 

approximate a band pass filter, the output of the beamformer, as given by equation8, will 

be a band-limited version of 𝑠𝑖 𝑡  with amplitude M times larger than the signal from any 

single microphone. The degree, to which the noise signals are suppressed, depends on the 

nature of the noise. Separating the noise term from equation8: 

𝑦𝑖 𝑡;  ∆1 …… .∆𝑚  ≡  𝑠𝑖 𝑡 –  𝜏0;  𝑟𝑖     ∗  𝑚 ,𝑖 𝑡 −  𝜏0 + 𝜏0;  𝑟𝑚     , 𝑟𝑖    

𝑀

𝑚=1

   

 (9) 

Equation9 gives the output of an M-element, delay-and-sum beamformer in time 

domain. The frequency domain representation of equation9 is: 

𝑌𝑖 𝜔 ≡   𝐻𝑚 ,𝑖 𝜔  𝑆𝑖 𝜔 

𝑀

𝑚=1

  𝑒−𝑗𝜔 Δ𝑚  

(10) 
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1.2 The Steered Response Power 

The steered response is generally a function of M steering delays, ∆1 …… .∆𝑚 . The 

steering delays are used to aim a beamformer (acoustically focus the array) at a particular 

position or direction in space. The steered response is obtained by sweeping the focus of 

the beamformer. When the focus of the beamformer corresponds to the source location, the 

time-aligned signals in the microphone channels add up and the power of the steered 

response reaches maxima due to constructive interference. The equation8 can be re-written 

as: 

𝑦𝑚 ,𝑖 𝑡;  𝑟𝑚     , 𝑟𝑖    =  𝑚 ,𝑖 𝑡 −  𝜏0 + 𝜏𝑚 ;  𝑟𝑚     , 𝑟𝑖      𝑠𝑖 𝑡 –  𝜏0;  𝑟𝑖    

∞

−∞

 𝑑𝜆 

+    𝑚 ,𝑘 𝑡 −  𝜏0 + 𝜏𝑚 ;  𝑟𝑚     , 𝑟𝑘       𝑛𝑘 𝑡 −  𝜏0 + 𝜏𝑚 ;  𝑟𝑘      𝑑𝜆

∞

−∞

𝐾

𝑘=1

 

                   +  𝑛𝑚 𝑡  

 (11) 

 

where,  𝑚 ,𝑖 ∙  represents the impulse response of the microphone and propagation path 

from 𝑟𝑖    to 𝑟𝑚      , 𝑛𝑘 ∙  represents correlated noise sources resulting from sources and 

𝑛𝑚  𝑡  is the uncorrelated electronic noise from the sensor, amplifier, and digitizer on the 

m
th

 microphone channel. 

For reverberant rooms, the impulse response in equation11 can be separated into a 

signal component (direct path only) and noise component (includes multi path signals 

also). If the primary operations on the sound source are the effective delays from multiple 

reflections and attenuation from the propagation paths, the transfer function can be 

represented as: 

 𝑚 ,𝑖 𝑡;  𝑟𝑚     , 𝑟𝑖    =   𝑚 ,𝑖 𝑡 =   𝑎𝑚 ,𝑖 ,𝑛 𝑡 −  𝜏𝑚 ,𝑖 ,𝑛 

𝑁

𝑛=0

  

 (12) 
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where, 𝑎𝑚 ,𝑖,𝑛(𝑡) denotes the n
th

 path of the effective impulse response for the source at 𝑟𝑖    

and microphone at 𝑟𝑚     , and 𝜏𝑚 ,𝑖,𝑛  is the corresponding path delay. The direct path 

corresponds to n = 0. As the algorithms for SSL operate on small time segments, only 

target and noise scatterer delays falling in that segment contribute to the SRP estimate 

within the frame. For a single SRP frame, equation7 can be expressed in the frequency 

domain with the substitution of equation8 to give: 

𝑌 𝑚 ,𝑖 𝜔 =   𝑆 𝑖 ,𝑙(𝜔)  𝐴 𝑚 ,𝑖,𝑛(𝜔)

𝑝|𝜏𝑚 ,𝑖 ,𝑛

𝑁𝑇

𝑖=1

𝑒𝑗𝜔 𝜏𝑚 ,𝑖 ,𝑛

+   𝑁 𝑘(𝜔)  𝐴 𝑚 ,𝑖 ,𝑛(𝜔)

𝑝|𝜏𝑚 ,𝑖 ,𝑛

𝐾

𝑘=1

𝑒𝑗𝜔 𝜏𝑚 ,𝑖 ,𝑛  +  𝑁 𝑚(𝜔) 

 (13) 

 

where, 𝑆 𝑖 ,𝑙(𝜔) is the Fourier transform of the i
th

 source 𝑠𝑖 𝑡  while 𝑁 𝑘(𝜔) and 𝑁 𝑚(𝜔) 

are the Fourier transforms of the correlated and uncorrelated noise sources, respectively for 

the m
th

 channel. 𝑁𝑇  is the number of target sources, K is the number of noise sources, and 

the inner summation index p, denotes summing the signal components. 

 

1.3 The Phase Transform (PHAT) 

The heart of SRP is the filter-and-sum (or delay-and-sum) beamforming operation, 

which results in noise power reduction proportional to the number of uncorrelated 

microphone channels used. Uncorrelated noise typically results from the independent 

(electronic) noise on each microphone channel. Correlated noise, on the other hand, results 

from coherent noise sources in the room, like sources outside the FOV, secondary targets 

and reverberation. Correlated noise presents greater challenges for beamforming than 

uncorrelated noise, and therefore will also be incorporated into this analysis. Approaches 

to deal with correlated noise from independent sources and reverberation have included 

various type of spectral weighing involving the generalized cross correlation (GCC).  

If the noise spectrum is known, maximum likelihood weights can be developed to 

deemphasize low SNR spectral regions [33, 40]. If the noise spectrum is not known, a 
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phase transform (PHAT), can be applied that effectively whitens the signal spectrum [26, 

33, 40, 41]. This approach is very popular when correlations are done for creating SRP 

likelihood functions or simply estimating time delays. Many claim that this is especially 

useful in reverberant environments [26]. It was shown in [33] that the PHAT is actually the 

optimal weighting strategy for minimizing the variance of the time delay estimate. 

The general PHAT function is denoted as follows, 

𝜃 𝑚 ,𝑖 𝜔 =  
𝑌 𝑚 ,𝑖 𝜔 

|𝑌 𝑚 ,𝑖 𝜔 |
 

(14) 

 

where, 𝜃𝑚 ,𝑖 𝜔  is the weighting function aimed at emphasizing the true source over the 

undesired extrema and 𝑌 𝑚 ,𝑖 𝜔  is the signal spectrum described in equation9. Just as with 

the phase transform, this filter whitens the microphone signal spectrum. This whitening 

technique effectively flattens the signal spectrum. By whitening the microphone signals, 

SRP can be used effectively in microphone-array applications. The effect of PHAT on SRP 

output accuracy is better than other similar weighting functions under realistic 

(reverberant) operating conditions [42]. The hypothesis is that the SRP-PHAT will peak at 

the actual source location even when operating conditions are noisy and highly 

reverberant. 

1.4 Partial whitening Transform: PHAT-β 

While results from previous research work has shown that PHAT processing is 

optimal for SRP [33], there has not been considerable research to study how well targets of 

interest can be separated from noise peaks related to detection performance (especially at 

low SNR‟s and in presence of noise). In addition, there has been no detailed comparison 

between the nature of the signal bandwidth and the actual PHAT performance. 

In radar and sonar systems where PHAT was primarily used, the spectrum for the 

signal of interest is mostly narrowband in nature. Under such conditions, PHAT has shown 

significant improvement in robustness compared to other weighting functions for use with 

SRP algorithm. However, the spectral content of speech signals fluctuates (a mixture of 

narrowband and broadband) and is subject to change with nature and type of the source. 
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For such a situation, the SRP weighting function discussed in [32], can be used to control 

the whitening effect on a part of the spectral range of the signal will be beneficial.  

The research work presented in this thesis investigates the effect of a modified version 

of PHAT from [32] to parametrically control the level of whitening influence on the 

magnitude spectrum. This transform referred to as PHAT–β and defined as: 

𝜃 𝑚 ,𝑖 𝜔,𝛽 =  
𝑌 𝑚 ,𝑖 𝜔 

 𝑌 𝑚 ,𝑖 𝜔  
𝛽

 

 (15) 

 

where, compared to equation10, β is the additional parameter that controls the extent of 

spectral whitening and can take values in the range 0 ≤ β ≤ 1. When β = 1, equation11 

becomes the conventional PHAT (equation10) where the normalized signal spectrum 

𝜃 𝑚 ,𝑖 𝜔,𝛽  becomes 1 for all frequencies. When β = 0 the denominator is 1 and the 

PHAT-β has no effect on the original signal spectrum. Therefore, by varying β between 0 

and 1, different levels of spectral normalization are achieved.  

1.4.1 Expected effect of PHAT- β: 

To obtain improvement in signal SNR, a matched filter weighting can be implemented 

to yield an optimal signal-to-noise ratio enhancement. But, for this a prior knowledge of 

the signal spectra is required for the filter design. This information is often not practical to 

obtain, especially in the case of human speech, where source and noise spectra change 

from frame to frame. The PHAT-β is expected to perform well in such situations, though 

the PHAT does not always guarantee an improvement in the overall SNR.  

For wideband signals with significant non-uniformity over the spectrum, the PHAT 

tends to enhance SNR by increasing the signal energy over the spectrum more than that of 

the noise components. Also if strong resonances occur due to reverberation, the influence 

of „β‟ is affected relative to other spectral components. On the other hand for narrowband 

signals, the PHAT increases the low-power regions of the original spectrum containing 

little or no signal energy, which can reduce the SNR. 
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The plots in Figures 2 to 7 show an example of the effect of change in β values of the 

modified PHAT transform discussed in this thesis in terms of its effect on the signal in time 

domain (Figures 2, 4, 6) and their PSD‟s (Figures 3, 5, 7) respectively. The signal used for 

generating the above plots was a 25ms segment from a voiced speech sample with the 

person uttering the alphabet: “a” in a single microphone channel at a sampling rate of 44.1 

kHz. 

The first graph (Figure 2) is the power distribution for frequencies within nyquist 

range, which is similar to a voiced signal spectrum with no PHAT weighting. The signal 

spectrum is a clear indication of voiced speech with relatively high energy in the lower end 

of the spectrum (below 6kHz). Figure 3 is an amplitude-time plot of the original source 

signal where the „β‟ value was set at 0, i.e., no PHAT. 

 

 
Figure 2: power distribution of the speech segment with β = 0 

i.e., no PHAT 
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Figure 3: Time series plot of speech segment with β = 0 

i.e., no PHAT 

 

 

 

 

The effect of PHAT whitening (β = 1) is shown by the power distribution plot in 

Figure 4, which is similar to a white noise signal containing equal content of all frequencies 

within the Nyquist range. Compared to the original signal in figure 2, there is an equal 

distribution of power for all frequencies of interest due to the effect of setting β = 1. Even 

high frequency components beyond the voiced speech bandwidth range (noise) are 

emphasized. 
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Figure 4: power distribution of speech segment with β = 1 

i.e., after conventional PHAT transform, when all spectral components are normalized 

 

 
Figure 5: Time series plot of speech segment with β = 1 

i.e., after conventional PHAT transform 
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 The effect of PHAT-β transform (partial whitening transform), where 0 ≤  β ≤ 1 is 

shown in the power distribution in Figure.6 where β was set at 0.6. Comparing the 

spectrum in figure 6 to figure 2 and 4, clearly shows the effect of controlling the whitening 

using β. The spectral region beyond 6 kHz has been emphasized relative to the frequencies 

of interest based on the level of whitening specified by β. The corresponding effect of 

PHAT-β on time signal is shown in Figure.7 

 

 
Figure 6: power distribution of Speech segment with β = 0.6 

i.e., after partial PHAT transform 
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Figure 7: Time series plot of speech segment with β = 0.6 

i.e., after partial PHAT transform 

 

1.4.2 SSL improvement with PHAT- β: 

The images in Figure 8 show the overall effect of „β‟ on SSL performance using 

SRP-PHAT. Each pair of images corresponds to SRP image obtained using a single value 

of „β‟ mentioned beneath the images for experimental data explained in chapter 4 for a 

narrowband signal sample at high SNR and for low room reverberation levels. The actual 

source location was at center of the black circle. The SRP images shown in Figure 8 were 

generated from experimental data described in chapter 3. The SRP images are shown for 

different values of β, with (a), (b), (c) showing the actual SRP intensity image and (d), (e), 

(f) are SRP images with threshold at „0‟ (all negative SRP values set to „0‟). 

The results in Figure 8 show a clear improvement in SRP images with respect to 

reduction in noise peak values in the SRP image. However, for β = 1, there is increase in 

number and amplitude of false peaks that hurts SSL performance. The influence of PHAT 

and PHAT-β, on SSL performance for different situations is discussed in-detail in Chapters 

4 & 5. 
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(a)                  β = 0                      (d) 

 

 

 

        
(b)                  β = 0.6                   (e) 

 

 

 

       
(c)      β =1     (f) 

 

Figure 8: Effect of PHAT-β on SRP image 
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CHAPTER  3 

 

Experimental setup and Design 

 

This chapter examines the purpose and design of the experimental setup used to collect 

the data. The purpose of the experiment was to collect data for analysis in conditions 

similar to what was used to produce the simulations in [32]. It includes details about the 

test environment, the test signal types, noise levels, hardware setup and also details on the 

decisions taken during the implementation of SRP-PHAT-β. 

1.5 Test environment 

 

Figure 9: Test environment setup 
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The experimental room was set up for data collection at the Audio lab facility in the 

Center for Visualization and Virtual Environments at the University of Kentucky. Figure 9 

represents the experiment space marking the FOV (dotted lines), on which the 

microphones constituting the array were mounted.  A cage was built inside the laboratory 

(black line) with components from 80/20 Inc. The Industrial Erector Set.  The data 

collection and processing was driven by two AMD dual-core computers running Ubuntu 

Linux.  Each computer is connected to Delta 1010 card by M-Audio and supports 8 analog 

input channels and 8 analog outputs [43]. In addition, acoustic treatments can be mounted 

on the wall of the cage to realize various noise and reflectively properties such an 1.125 

inch soundproof foam® (Chambersburg, PA) to reduce reverberation levels and plexi glass 

(high reverberation) were used.  The dimensions of the room used to run the experiments 

for analysis were: 3.66m for both length and width, and 2.22m for the height. The average 

speed of sound was estimated using the measured delay of arrival between 2 microphones 

for sound from a predetermined source location.  It was calculated at 346.2 m/s on the day 

of the experiment. 

For the data collection, perimeter array geometry was used, consisting of 8 

omni-directional microphones (EMC8000, Behringer) as shown in Figure 9, where the 

microphones formed an equilateral octagon of dimension 1.284m. Each microphone was 

placed at a height of 1.57m from floor level and 28cm perpendicular from the cage 

surfaces. The actual microphone positions were verified using a laser measuring device. 

These details are summarized in table 1 below. 

Table 2: Summary of room setup for data acquisition 

Room properties Parameters 

Length & Width 3.66m 

Height 2.22m 

Velocity of sound 346.2ms
-1 

Mic array geometry 8 mics as vertices of an Equilateral octagon 

Microphone spacing 1.284m 

Source height 1.57m 

http://www.8020.net/
http://www.m-audio.com/
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During each data capture experiment, the sound source (speaker) was moved inside a 

fixed region within the FOV and placed at predetermined locations shown in Figure 9. At 

each source position, the sound source was placed along 2 orientations (the speaker facing 

2 opposite directions) and data from all 8 microphones were recorded. 

To vary the room reverberation levels, the material used for the room wall was 

switched between an acoustic foam (low reverberation) and plexi glass (high 

reverberation).  

Soundproof Foam: While the acoustic foam provided increased absorption of multipath 

signals inside the FOV that would otherwise cause reverberation, depending on the 

thickness of the foam (1.125 inches for the experiment), low frequency components pass 

through the foam while others are attenuated. This also includes the noise from outside the 

FOV. 

Plexi glass: Plexi glass walls act as excellent reflectors resulting in a worse case multipath 

scenario inside the FOV. Also, while the plexi glass effectively increases reverberant 

conditions inside FOV, it blocks noise from outside the FOV. 

The reverberation time is defined as the time it takes for the acoustic pressure level to 

decay to one-thousandth of its former value, a 60 dB drop, also commonly referred to as the 

RT60 of the space. RT60 time for the experimental environments (foam and plexi) was 

measured using recordings from a white noise burst. In order to get accurate RT60 value 

white noise was played loud enough and long enough for the diffuse sound in the room 

reached steady state. The source should be about 2 meters away from the measurement mic 

so that the direct path does not dominate the recording.  Then the white noise source was 

abruptly stopped but the recording continued until the sound levels fell below the noise 

floor. The beginning and ending parts of the recorded signal were used to estimate the 

signal power and noise floor power.  The roll-off of sound from the room reverberation is 

found based on these 2 estimates.  The slope of the roll-off is estimate in dB per second 

and the amount of time for a 60dB drop in sound is calculated as RT60 time. The RT60 time 

for foam was measured at 0.249 seconds while that of the plexi glass was measured to be 

0.565 seconds. 
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1.6 Test signals used 

1.6.1 Selection of signal types: 

Two input signal types were used to drive the source speaker. One was impulse 

response to a Butterworth filter of order 4, with a lower 3dB cutoff at 400Hz and upper 

cutoff frequency at 600Hz for the narrowband signal, and 5600Hz for broadband signal. 

The Butterworth impulse response was chosen due to its maximally flat spectrum in the 

pass and stop bands for a uniform distribution of spectral power, while its impulse response 

is a causal signal with the appropriate phase spectrum. This signal generation resulted in an 

impulse-like signal from which performance for narrow and broadband signals could be 

inferred. 

In addition to the impulse signal, a colored noise signal was generated from a white 

noise source using a band pass filter with a lower 3dB cutoff of 400Hz, and upper cutoff 

frequency of 600Hz for the narrowband signal, and 5600Hz for broadband signal. Colored 

noise was selected as a test signal because its power spectrum covered all frequencies in the 

range interest. 

The selection of impulse and colored noise signal sources helps in analyzing the 

performance of in terms of a signal that is spread out in time (colored noise) and that which 

exists only for a small time interval (impulse). And, the broadband and narrowband 

variations help analyze performance in terms of signals that have different spectral 

characteristics. All signals were generated at a sampling rate of 32 kHz. They were later 

down sampled to 16 kHz for analysis to reduce the size of the actual audio data file storage 

in computer hard drive. The downsampling to 16 kHz did not affect the performance 

because the bandwidth of interest is in the range of 300 Hz to 6 kHz. 

Table 3: Summary of signals used to drive the source 

 

Signal type ↓ 

Bandwidth 

Narrowband Broadband 

Impulse signal 400 Hz – 600 Hz 400 Hz – 5600 Hz 

Colored noise 400 Hz – 600 Hz 400 Hz – 5600 Hz 
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1.6.2 Signal SNR 

For a better understanding of the effect of β for signals with at different SNR levels, 

each test signal sequence was constructed with 6 segments of different SNR levels, each 

separated by a time interval of 1 sec and with a 3dB drop from the previous level. The 

waveform is as shown in Figure 10 below. 

 

   

Figure 10: Input waveform 

 

1.7 Algorithm implementation 

The implementation of the SRP-PHAT-β algorithm is described in the flowchart 

below in figure 11 below. 
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Downsample input signal to 16 kHz 

Read processing 

parameters and 

corresponding sound file 

from experiment 

Band pass filter the signal to the 

bandwidth of interest (300 Hz – 7 kHz) 

From the input signal, extract segment 

corresponding to SNR level required for 

analysis & room noise (first 0.5 seconds) 

SNR for the signal is determined as per 

details in section 3.3.3 

The tapering window is applied 

to the signal 

A tapering 

window of same 

length as signal 

segment is 

selected with a 

20% Hann taper at 

the ends 

1 

Get β, SNR level, room 

reverberation type & grid 

resolution in FOV 

START 

Stored sound 

files from 

experimental 

setup 

2 

3 
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Figure 11: Flowchart for implementation of the SRP-PHAT- β 

 

1.7.1 Analysis parameters 

a)  Grid spacing 

The output of SRP is an array of values for each grid point inside the FOV. Selection 

of an appropriate grid resolution plays an important role in SSL accuracy by avoiding 

quantization errors [32]. For this thesis, the tolerance level for loss due to quantization 

error was set at 3dB. To ensure this limit will not exceed the 3dB limit for the frequencies 

of interest (300Hz – 5.4kHz), the grid resolution (∆𝑔𝑟𝑖𝑑 ) inside the FOV was computed 

considering the worst case frequency: 𝑓  (highest frequency in the signal) and a spacing 

bound ∆𝑔𝑟𝑖𝑑  of 0.02m was set according to equation(15) from [32]: 
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∆𝑔𝑟𝑖𝑑  ≤  
0.4422 ∙ 𝑐

 𝑑  ∙  𝑓
 

(16) 

 

where, 𝑐  is the velocity of sound measured and 𝑑  = 2, is the number of coordinate 

dimensions where the source movement is considered. 

b)  β values used 

The signals recorded using the microphone array was analyzed for β values between 0 

& 1. Because the range of β values that showed significant improvement in performance of 

SRP were between 0.6 to 0.8, the analysis for this range included β increments of 0.05 in 

this range and at a 0.1 increment otherwise. 

Table 4: Step size for β 

 Step size for β increment 

0.6 to 0.8 otherwise 

Step size 0.05 0.1 

 

c)  Band pass filtering 

The signal spectrum of interest is between 300 Hz to 5.6 kHz. So, the acquired signal is 

band pass filtered between 300 Hz and 7 kHz to remove high frequency components (>7 

kHz) and eliminate the low frequency noise (< 300Hz). The effect of this filtering 

operation is evident in Figure.12, which shows the filtered version of the raw signal from 

Figure.10 indicating significant reduction in levels of background (room) noise. 

As indicated in Figure 12, the statistics for room noise were computed based on signal 

segment from the first 0.5 seconds of the signal. This ensured that noise segment selected 

contains the steady state room noise. 
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Figure 12: Band pass filtered signal 

1.7.2 Tapering window 

With prior knowledge of the time frames where the signal of interest existed, the signal 

segment is selected to contain the source sound. For all analysis in this thesis, the segment 

is selected as a window that is centered on the occurrence of maximum absolute signal 

amplitude corresponding to a particular SNR of interest.  

The ends of the selected signal segment are tapered to remove abrupt discontinuities 

that could cause high frequency artifacts in the SRP image. The tapering is implemented by 

multiplying the signal segment 𝑥𝑚 ,𝑖 𝑡  with a Hanning window 𝑡(𝑡), of length equal to 

the signal segment but with a 20% tapering at the 2 edges. 

𝑥𝑡(𝑡;  𝑟𝑚     , 𝑟𝑖   ) = 𝑥𝑚 ,𝑖(𝑡;  𝑟𝑚     , 𝑟𝑖   ) * 𝑡(𝑡) 

(17) 

The tapering effect on the signal is shown in Figure.14 and the un-tapered signal is in 

Figure.13. The reduction in pixilation due to tapering is clearly visible in SRP image of 

Figure.15 (right, compared to the one on left). 
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Figure 13: Selected segment before tapering 

 

 

Figure 14: Signal segment after tapering at the ends 
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 Pixilated SRP image before tapering            Tapering results in smoother SRP  

           image 

Figure 15: Effect of tapering on SRP 

1.7.3 Signal SNR calculation 

To calculate the signal SNR, the average power is computed for every signal segment 

before averaging over all channels. Consider 𝑥𝑚 ,𝑖(𝑡) to be the signal from a source located 

at 𝑟𝑖   , received by a microphone located at 𝑟𝑚     . The signal envelope for the segment of 

interest is: 

𝑥𝑒𝑛𝑣  𝑡 =  𝑖𝑙𝑏𝑒𝑟𝑡(𝑥𝑚 ,𝑖(𝑡))  
(18) 

Then RMS value of the signal envelope is determined: 

 

𝑥𝑟𝑚𝑠 =  𝑚𝑒𝑎𝑛(𝑥𝑒𝑛𝑣  𝑡 )
2

 

(19) 

 

Using the statistics of room noise extracted from the first 0.5 seconds of the signal as 

shown in figure 12, the RMS value of noise is also estimated: 

𝑛𝑒𝑛𝑣  𝑡 =  𝑖𝑙𝑏𝑒𝑟𝑡(𝑛(𝑡))  
(20) 

𝑛𝑟𝑚𝑠 =  𝑚𝑒𝑎𝑛(𝑛𝑒𝑛𝑣  𝑡 )
2

 

(21) 

Now, if 𝑛𝑟𝑚𝑠  > 0,  𝑆𝑁𝑅 =  
(
𝑥𝑟𝑚𝑠

𝑛𝑟𝑚𝑠
)2, 𝑥𝑟𝑚𝑠 <  𝑛𝑟𝑚𝑠

(
𝑥𝑟𝑚𝑠 −𝑛𝑟𝑚𝑠

𝑛𝑟𝑚𝑠
)2, 𝑥𝑟𝑚𝑠 ≥  𝑛𝑟𝑚𝑠

  

else, if 𝑛𝑟𝑚𝑠  ≤ 0, SNR = ∞ 

(22) 
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1.7.4 Pixel classification: target vs. noise 

Consider a case where the actual sound source was places inside the test environment 

as shown in the Figure 9. For analyzing the effect of β on are under ROC curves, the 

decision on classifying a peak detected as target or noise was made based on the decision 

criteria illustrated below and explained with example. 

Target peak: 

While computing the performance metrics, only positive peaks (local maxima) in the 

SRP image are considered as targets. So, pixels in SRP image either equal to or greater than 

their immediate neighborhood pixels, (strictly greater than at least one neighboring pixel) 

were considered as targets. A pixel closest to the actual target position is considered as the 

peak, and along the line connecting the peak to the original target position, none of the 

pixel values fell 6dB below the peak magnitude. Also, the pixels that lie on the gradient 

leading up to a local peak were not considered. If the above conditions were satisfied, the 

target peak height and location estimate error was recorded. Else, no target detection was 

considered and magnitude was set to zero [32]. 

In the Figure 16, the intensity values considered from the SRP image, are positive (≥ 0) 

as indicated by the colormap shown next to the SRP image. The pixel that was selected as 

target location is marked with a green circle on the bottom right part of Figure 15.  

For pixels marked as „Case 1‟ in the image, though they are positive and closer to the 

actual source location, they are not considered as pixels corresponding to actual target peak 

because they lie on the slope of the gradient leading to the actual target peak. This ensures 

that perturbations along the gradient leading to a target peak are not considered. 

However, for local maxima (peaks) marked as „Case 2‟, though they are not on the 

gradient leading to the actual peak, they are not considered as candidate for target peak 

because of their distance from actual source location. 
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Figure 16: Example for decision logic for a target pixel 

 

Noise peak: 

A pixel in the immediate neighborhood of the detected target is not considered for 

noise peak. Also, pixels along the line connecting the detected target peak to the potential 

noise peak consisted of a negative value or were 6dB less than the target peak value. This 

ensured that variations along the gradients associated with the target peaks are not 

considered as noise peaks [32]. 

Figure 17 shows the SRP intensity distribution in the FOV. The range of power values 

represented is indicated in the colormap shown in the sidebar next to the image. 

Pixels that lie in the immediate neighborhood of the detected target pixel are not 

considered as noise peaks (case1 in figure 17). For pixels that belong to case 2 (in figure 

17), though they are not in the immediate target pixel neighborhood nor are on the gradient 

slope leading to a local maxima, their intensity level was not among the 8 highest peaks. 
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Figure 17: Example for decision logic for a noise pixel 

 

1.7.5 Computing the ROC values 

For all analysis in this thesis, the area under the ROC curve used to determine target 

detection performance. The ROC curve is a plot of probabilities of true (target peak) 

detection versus false-positive (noise peak) detection for all thresholds over the range of 

SRP values from the 2 classes (target & noise).  

Given n1 pixels from H1, and n0 pixels from H0,The ROC area is estimated directly 

from the pixel amplitudes using the Wilcoxon statistic from [32]: 

𝐴𝑧 =
1

𝑛0𝑛1
  𝐶(𝑆𝑘|𝐻0

,

𝑛0

𝑙=1

𝑛1

𝑘=1

 𝑆𝑖|𝐻1
) 

 (23a) 

where, 𝑛0 and 𝑛1are number of target and noise pixels & the value of: 

 

𝐶(𝑆𝑘 ,𝑙|𝐻0
, 𝑆𝑖,𝑙|𝐻1

) =   

1    𝑓𝑜𝑟 𝑆𝑘 ,𝑙|𝐻0
< 𝑆𝑖 ,𝑙|𝐻1

0.5 𝑓𝑜𝑟 𝑆𝑘 ,𝑙|𝐻0
= 𝑆𝑖 ,𝑙|𝐻1

0    𝑓𝑜𝑟 𝑆𝑘 ,𝑙|𝐻0
> 𝑆𝑖 ,𝑙|𝐻1

  

 (23b) 
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To remove the dependency of 𝐴𝑧  estimates calculated, the number of target and noise 

peaks considered were according to the ratio 1:8 (i.e. for every target detected, the 8 

highest noise peaks in the FOV were considered for ROC analysis). This also doubles up as 

the worst case scenario as the 8 noise peaks selected will be the 8 highest peaks for that 

SRP image. Else, if all noise peaks were used, the low level noise peaks would result in 

very low false-positive ratio. This would in-turn cause higher 𝐴𝑧  values, giving a false 

impression of a high ROC area. 

To compute the 95% confidence limits for the ROC area for each case, the standard 

error statistic was calculated from the 𝐴𝑧  estimate [36].  

𝜎𝑆𝐸 ≈  
𝐴𝑧 1 − 𝐴𝑧 +  𝑛0 − 1  𝑄𝑎 − 𝐴𝑧

2 +  𝑛1 − 1 (𝑄2 − 𝐴𝑧
2)

𝑛0𝑛1
 

(24a) 

 

where,        𝑄1 =  
𝐴𝑧

2−𝐴𝑧
 and 𝑄2 =  

2𝐴𝑧
2

1+𝐴𝑧
 

(24b) 

 

The results obtained and the discussions are explained in the following chapter. 
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2 CHAPTER  4 

3  

Results and Discussion 

 

This chapter presents the experimental results and discusses the effect of β on a 

microphone array based SSL system performance for different test signals in the 

experimental setup discussed in Chapter 3. The results of β on SRP-PHAT images are 

presented in 4.1. The performance comparison between the area under ROC curve 

performance between the experiment and the simulations is presented in 4.2 along with 

similarities differences in ROC performance. 

 

3.1 Results 

Figure 18 shows the SRP imaging results for a FOV containing a narrowband ( (a), (b), 

(c)) and broadband signal source ((d), (e), (f)). The actual source location is at the center of 

black circle in the Figures. The microphone positions are indicated by small red triangles 

„⊲‟ in the images. Each image shows the relative strengths of the target and noise peaks for 

β = 0, 0.6, and 1. The results presented in Figure 18 are for low room reverberation levels. 

Consider the narrowband signal case (Figure 18 (a), (b), (c) ), strong noise peaks are 

observed at non-target positions (due to partial coherences) at β = 0. As β increases to 0.6, 

there is significant reduction in noise peak amplitude in non-target locations as the partial 

coherence is reduced and the dominant noise peaks loose strength. At the same time, there 

is also an increase in the density of low level, fine-grained, noise peaks as β approaches 1. 

This confirms the results from simulation results in [32] that targets having a narrow signal 

spectrum degrade from the PHAT more than the broadband signals, due to enhancement of 

relative spectral components outside the narrowband signal range which contributes to 

noise peaks in SRP image and corrupts the target peak. 
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            Narrowband           Broadband 

        
    (a) β=0                          (d) β=0 

                      

        
    (b) β=0.6                          (e) β=0.6 

                     

        
    (c) β=1                          (f) β=1 

                      

Figure 18: SRP images for narrowband and broadband signals for β = 0, 0.6 & 1 
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The influence of PHAT on the broadband target (Figure 18 (d), (e), (f)) is similar to the 

narrowband case for values of β upto 0.6 in terms of the influence on noise peak reduction. 

However, for β =1, the target peak strength appears to improve relative to increase in the 

noise peaks, whereas the narrowband source type shows performance degradation due to 

increase in intensity and number of noise peaks in SRP. The broadband signal exhibits this 

property primarily because the coherent target energy is distributed over most of the 

spectrum and the signal of interest gains from the PHAT. Hence, improvement in the noise 

performance for the low amplitude spectral regions also increases the signal power. 

The effect of variation in β on SRP-PHAT is explained in detail in the following 

section with respect to target detection performance in noisy and reverberant conditions 

using the ROC curves. 

 

3.2 Discussion of target detection performance 

3.2.1 Analysis method 

For analyzing the performance of PHAT- β in terms of target detection, results were 

assessed using area under the Receiver Operating Characteristics (ROC) curve [36-38] on 

acquired data. The computation of area under ROC curve and the 95% confidence limits is 

explained in chapter 3 (section 3.3.3). 

 An area under ROC (𝐴𝑧) of 0.8 represents 80% probability that the target peak value 

will exceed any independent noise peak value selected. The curves obtained are analyzed 

and a subjective comparison of actual experimental results is done with respect to those of 

simulated data published in [32], to study the similarities and disparities in performance. 

 This following section presents a comparison of area under ROC vs. β plots for 

different signal types and operating conditions (reverberation and SNR). The relationship 

between β and its effect on ROC performance is discussed between the experiments 

conducted and those from simulations in [32]. 

3.2.2 Constant low reverberation (foam only) & different signal SNR 
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The Figures 19, 21, 23 & 25 show the variation in area under ROC curves for 

narrowband and broadband targets used in actual experiment under low room 

reverberation. The acoustic foam used on the walls absorbs most of the multipath signals 

and noise.  

The range of β values resulting in improvement in performance is shown for different 

cases. The different SNR levels used in each ROC performance comparison is indicated in 

the legend. 
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Figure 19: Broadband Colored noise : different SNR 

Experiment under low room reverberation (foam) 

 

 

 
Figure 20: Broadband signal: different SNR 

Figure adapted from [32] for simulation with room reflectivity set to 0. 
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Figures 19 shows the 𝐴𝑧  estimate for a broadband colored noise signal for highest and 

lowest SNR signals when room reverberation is fixed (low when foam is used). Comparing 

it to results from simulations (Figure 20), where room reflectivity was set at 0: 

 

The trend in the ROC curves is similar for experiment and simulation for all values of 

β, i.e., there is improvement in 𝐴𝑧  value as β increases from 0 to 0.8. Beyond this, there is 

a small drop in performance as β increases closer to 1. But the positive influence of β 

(around 0.6-0.8) in improving detection performance is evident. 

For a broadband signal with a wider spectrum, the loss in ROC values as β increases 

beyond 0.8 is not very dramatic because the increase in noise peak values with β is also 

accompanied by an increase in the target peak compensating the loss in ROC to an extent. 

 

However, The expected variation in 𝐴𝑧  performance between high and low SNR 

signals as in simulation results of Figure 20 is not present in Figure 19 because, for all 

simulated results, the room reverberation could be separated from the direct path signal for 

analysis. But for the experimental conditions, this is not possible and though acoustic foam 

was used, some reverberations still exist inside the FOV, especially for low frequency 

signals corresponding to the thickness of the acoustic foam used (1.125 inches). 

 

From the ROC analysis, values for β suggested for use under similar operating conditions: 

0.65 to 0.85 
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Figure 21: Narrowband Colored noise : different SNR 

Experiment under low room reverberation (foam) 

 

 

 

 
Figure 22: Narrowband signal : different SNR 

Figure adapted from [32] for simulation with room reflectivity set to 0.  
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Figures 21, 22 show the effect of β area under ROC curve for a narrowband colored 

noise signal under room conditions discussed above.  

The difference in ROC performance for high and low SNR signals in Figure 21 and the 

trend in variation of 𝐴𝑧  with β agrees with those from Figure 22.  

For higher β values the ROC area starts dropping for the narrowband signals because 

the signal content in the spectrum is lesser compared to broadband signals and the effect of 

spectral whitening starts emphasizing spectral components in the higher frequency range 

(noise).  

The difference in performance is for 0.6 ≤ β ≤ 1, where there is a more dramatic drop in 

𝐴𝑧  values for the experimental results than those of simulations. This can be explained by 

the fact that for narrowband signals, the number and intensity of noise peaks inside FOV 

increases dramatically as β approaches 1 (refer to Figure 18 (a), (b), (c)). In the results from 

simulation, this performance degradation for higher β is not dramatic because the 

narrowband signal had coherent energy extending to the Nyquist frequency (8 kHz). But in 

actual data, the coherence of the signal is lost due to the 16-bit quantization in the hardware 

and the noise floor of the amplifier. So, for β=1, the incoherent noise levels increase 

affecting the ROC performance for the target with a narrow spectral range. 

Suggested values of β under similar conditions: 0.5 to 0.65 
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Figure 23: Narrowband impulse: different SNR 

Experiment under low room reverberation (foam) 

 

 

 
Figure 24: Narrowband impulse: different SNR 

Figure adapted from [32] for simulation with room reflectivity set to 0.  
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From the ROC curve comparison between experimental results in Figure 23 with those 

of simulations in Figure 24 for a narrowband impulse signal, the simulation results predict 

a drop in ROC performance towards higher values of β. This trend is present in the 

experimental results too but the drop is much higher than those of simulations. This is 

again due to reason for a similar observation in results of figure 21 for a narrowband 

colored noise signal. 

The increase in ROC performance for 0 ≤ β ≤ 0.6 expected in the simulation results is 

not seen in the experimental results because experimental SNR was too high. 

 

 

 

 

 

3.2.3 Constant high reverberation (plexi only) & different signal SNR 

The experimental results in Figures 25, 27, 29 and 31, show the 𝐴𝑧  estimates for 

narrowband and broadband targets in reverberant room conditions. The plexi has a high 

reflection coefficient and results in a highly reverberant condition inside the test 

environment. The signal SNR is due to the coherent noise and reverberation also adds to 

the partial coherences.  

 

The range of β values resulting in improvement in performance is shown for different 

cases. The legends in the plots indicate the different signal SNR levels. 
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Figure 25: Broadband Colored noise : different SNR 

Experiment under high room reverberation (plexi) 

 

 

 

   
Figure 26: Broadband signal : different SNR 

Figure adapted from [32] for simulation with room reflectivity set to 0.  
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 Figure 25 shows the effect of change in β on area under ROC curve for a broadband  

Colored noise signal for a highly reverberant room environment.  

Compared to the simulated results in Figure 26, the effect of β on ROC performance is 

similar in the Figure 25 with respect to the improvement in ROC values as β approaches 

0.8. Beyond this point, there is a slight drop in ROC value due to increase in noise peak 

values as a result of the whitening effect of PHAT. 

The plot in Figure 26 presents results from a simulated room with no reverberation. So, 

comparing the ROC curves of Figure 26 with the experimental results in Figure 25, it can 

be observed that there is an overall reduction in ROC values when there is high level of 

room reverberation.  

 

Suggested values of β under similar conditions: 0.65 to 0.85 
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Figure 27: Narrowband Colored noise : different SNR 

Experiment under low room reverberation (plexi) 

 

 

 

 

 
Figure 28: Narrowband signal : different SNR 

Figure adapted from [32] for simulation with room reflectivity set to 0.  
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𝐴𝑧  values in Figure 27 show the effect of β for a narrowband colored noise signal 

under highly reverberant room conditions. 

There is a strong agreement in the general trend in ROC performance variation with β 

upto 0.6. For higher β values the ROC area starts dropping for the narrowband signals 

because the signal content in the spectrum is lesser compared to broadband signals and is 

due to the effect of spectral whitening (PHAT) that starts emphasizing the higher frequency 

components (noise). 

The difference in performance however is for 0.6 ≤ β ≤ 1, where there is a very 

dramatic drop in 𝐴𝑧  values for the experimental results than those of simulations. This can 

be explained by the fact that for narrowband signals, the number and intensity of noise 

peaks inside FOV increases dramatically as β approaches 1 (refer to Figure 18 (a), (b), (c)). 

This in turn affects the ROC performance as observed previously from results of 

narrowband signals in low reverberation environment in figures 21, 23. 

Similar to the Figure 25, there is a significant drop in the experimental ROC 

performance because the room reverberation levels are higher when plexi glass is used.  

Suggested values of β under similar conditions: 0.5 to 0.65 
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3.2.4 Constant signal SNR (lowest) & different reverberation levels 

 

Experimental results for ROC area for narrowband and broadband targets with high 

and low levels of room reverberation are shown in Figures 29, 31. The range of β values 

resulting in improvement in performance is shown for different cases. The reverberation 

levels for each ROC curve is indicated in the legend. Also, these plots were generated for 

source signals with lowest SNR levels. 

The reverberation levels in the experiment and simulated results are indicated in the 

legend. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 

 
Figure 29: Broadband colored noise : different reverberation 

Experiment under fixed SNR 

 

 

 

 
Figure 30: Broadband signal : different reverberation  

Figure adapted from [32] for simulation of low SNR source. 
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Figures 29 shows the 𝐴𝑧  estimate for a broadband colored noise signal for high 

(plexi) and low (foam) reverberation levels for fixed SNR fixed. Figure 30 shows ROC 

performance variation for similar conditions but from simulations in [32]. 

The trend in the ROC curves is similar in both reverberation conditions for all values 

of β, i.e., there is improvement in 𝐴𝑧  value as β increases from 0 to 0.8. Beyond this, there 

is a small drop in performance as β increases closer to 1. But the positive influence of β 

(around 0.6-0.8) in improving detection performance is evident. 

Also, there is a clear difference in the ROC values between foam (low reverberation) 

& plexi (high reverberation) as expected. The use of plexi glass increases reverberations 

inside the FOV, which has a more detrimental impact on target detection than room noise 

because reverberant noise is correlated with the target signal of interest. Hence, the ROC 

improvement due to PHAT β in a high reverberation case is more beneficial especially in 

normal talking scenarios. 

 

The initial values of 𝐴𝑧  for the plexi (high reverberation) case is less than 0.5 for β 

upto 0.6. This could be due to the increased levels of correlated noise under high 

reverberation which affects ROC performance. But as β ≥0.6, the 𝐴𝑧  performance 

improves and this is a strong indicator for the effectiveness of PHAT-β in target improving 

detection. 
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Figure 31: Narrowband colored noise: different reverberation 

Experiment under fixed SNR 

 

 

 

 
Figure 32: Narrowband signal : different reverberation 

Figure adapted from [32] for simulation of low SNR source. 
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ROC area values in Figure 31 show the effect of β for a narrowband colored noise 

signal under different levels of room reverberation levels from the experiment. 

There is a strong agreement in the general trend in ROC performance variation with β 

for both high and low room reverberation conditions. For higher β values the ROC area 

starts dropping for the narrowband signals which is the trend observed in the experimental 

results presented before (Figures 21, 23, 25). 

When compared to the ROC curves in Figure 32, the performance results in Figure 31 

(experiment) indicate a more dramatic influence of PHAT-β on performance improvement 

both in low and highly reverberant conditions, particularly for higher reverberation 

condition. This is a strong factor in support of not choosing the conventional PHAT (β = 1). 
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To summarize the above analysis, it is clear that partial PHAT weighting with β 

improves ROC performance low reverberation conditions (foam only) and more 

importantly in high reverberation conditions (plexi only) by almost 20%. 

 This gain in ROC performance is evident for β in range of 0 to 0.6 for both narrowband 

and broadband source types. 

 For β values greater than 0.6: 

o The ROC area starts dropping drastically for the narrowband. This is because 

the signal bandwidth is small and whitening of the spectrum for β > 0.6 starts 

emphasizing spectral components in the higher frequency range. Hence the 

ROC values fall more drastically when compared to the results from 

simulations of [32]. 

o On the other hand, the broadband signal has a wider spectrum and the gain in 

noise peaks happens along with gain in target peaks. So, ROC performance 

with β improves significantly till β = 0.8 beyond which there is a slight roll of in 

ROC as β approaches 1 due to increase in high frequency (noise) peak values by 

PHAT which causes a small drop in ROC area values. 

 

The analysis of the results clearly demonstrates that reverberation has a more detrimental 

impact on target detection than uncorrelated room noise because reverberant noise is 

correlated with the target. This increases the variance at the actual target position, and also 

at non–target positions by increasing the overall noise power through additional energy 

from multi–path signals. Hence, the ROC improvement due to PHAT β in a high 

reverberation case is more beneficial especially in normal talking scenarios. 

 Also, the ROC curves for the experimental cases were a little different when compared 

to those for simulations in [32] because:  

 Overall effect of using acoustic foam on the walls is not equivalent to the simulated 

room with “0” reverberation because the foam does not effectively block all 

reverberations. 
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 The microphone placement in the simulation was exactly at the required locations 

whereas in actual experimental situation these measurements were not precise. 

Even a small error (few centimeters) in microphone placement would cause 

location error for sources with high frequency content. 

 The sources used in the experiments were directional while the results presented in 

[32] are based on simulation of an omni-directional source. To offset the effect of 

the source directionality on experimental analysis, the experiments were conducted 

with sound sources facing 2 opposite orientations at each test position in the FOV 

during data collection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 59 

4 CHAPTER  5 

5  

Conclusions and Future Work 

 

The chapter focuses on the contributions made and the inferences derived based on the 

results of the experimental evaluation of SRP-PHAT-β on signals of varying 

characteristics under different operating situations. The outcomes of the experiments and a 

summary of the performance of SRP-PHAT-β are discussed in Section 5.1. Section 5.2 

describes the possible future research directions that could be followed in developing a 

comprehensive system for Speaker source detection and localization. 

5.1 Summary  

The thesis used an ROC area analysis for assessing the detection performance of SSL 

processes for real experimental data. Comparisons between ROC performance for real data 

and those of simulated conditions highlight performance sensitivities in the ROC area 

statistics. The analysis reemphasized the performance gains offered by β in SRP-PHAT 

and at the same time, suggesting the need for a proper choice of β based on operating 

conditions to achieve optimal performance.  

It has been shown that is the use of conventional PHAT (β = 1) improves SRP 

performance compared to not using PHAT at all (β = 0) [27, 34, 40] and also that PHAT is 

an optimal weighting approach for SRP under noisy and reverberant conditions [42]. But, 

the analysis results from Chapter 4 on narrow and broadband signal sources showed a 

consistent loss in detection performance when using the conventional PHAT (β = 1) under 

noisy and reverberant conditions. The losses were most significant under high 

reverberation and for narrowband signal types. A significant performance improvement 

was consistently seen for broadband targets especially in reverberant conditions.  

The PHAT-β allowed for a parametric variation on the amount of influence given to 

the original spectral amplitude on the final coherent power values. It is a useful parameter 

to vary the impact of the PHAT based on operating conditions and a way to make the 

performance of the PHAT more robust over a range of narrow and broadband target 

sources under different operating conditions.  
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The values of β suggested for use under different conditions based on analysis in 

Chapter 4 are summarized in Table 4 below. 

Table 5: Suggested β values 

 High SNR Low SNR 
High 

reverberation 

Low 

reverberation 

Narrowband 0.6 0.55-0.6 0.55-0.6 0.6 

Broadband 0.65-0.8 0.65-0.8 0.65-0.75 0.7 

 

Based on experimental results listed in the table above, for a source signal which is 

complex in nature like human speech (varying combination of narrowband and broadband 

components), β values between 0.55-0.65 could be used for robust performance 

enhancement under different application environments. 

5.2 Future work 

 Since the overall objective of this thesis was to evaluate and emphasize the 

effectiveness of partial weighting factor: β on SRP-PHAT, the experimental setup and test 

conditions used were similar to those in the simulations described in [32]. For a more 

comprehensive performance evaluation, different experimental setups could be 

investigated, such as:  

 changes in the number of microphones in the array 

 microphone spacing (logarithmic spacing, etc.) 

 other microphone geometries (planar array , 3D array) 

 even the low SNR signals used for the experiment were strong enough which 

resulted in small changes in ROC performance with SNR variation. Even lower 

values of signal SNR could be tested for a better comparison of the effect of SNR 

on target detection performance.  
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APPENDICES 

 

Appendix A: Acoustic signal modeling 

 

This appendix gives an overview of the theory and concepts on acoustic signal 

propagation and the different factors to be considered for implementation of sound source 

location techniques. 

1 Sound Propagation 

Sound waves propagate through an air medium by the movement of molecules along 

the direction of propagation. These are referred to as compressional waves. The wave 

equation for acoustic waves propagating in a homogeneous and lossless medium is given 

by: 

∇2𝑠 𝑡, 𝑟 =
1

𝑐2

𝜕2

𝜕𝑡2
𝑠 𝑡, 𝑟 =  0 

(25) 

 

where, s(t, r) represents the sound pressure at a time instant „t‟ for a point in space with 

Cartesian coordinates r = [x, y, z]
T
. Here, ∇2 is the Laplacian operator and „T‟ is the 

transpose operator. The variable „c‟ is the speed of sound, which depends on the pressure 

and density of the medium, and is constant for a given wave type and medium. 

In general, for a far-field sound source, waves propagate as spherical waves, with the 

amplitude decaying at a rate proportional to the distance from the source [44]. These 

properties result in complex mathematical analysis of propagating signals, which is a major 

issue in array processing for a near-field source. However, at a sufficiently long distance 

from the source, acoustic waves may be considered as plane waves, considerably 

simplifying the analysis. 

The solution to the wave equation for a plane wave is: 

𝑠 𝑡, 𝑟 =  𝐴𝑒𝑗 (Ω𝑡−𝑘𝑇𝑟)
 

(26) 
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where, A is the wave amplitude, the angular frequency is Ω = 2πF (F is the real frequency 

in Hertz), and k is the wave number vector, which is a function of the speed and direction of 

the wave propagation. 

2 Acoustic Noise Field 

 

Noise field (or background noise field) is generally considered as the acoustic field in 

the absence of information transmission. It constitutes unwanted or disturbing acoustic 

waves introduced by man-made and natural sources. Hence, depending on the correlation 

between noise signals at distinct spatial locations, the following common categories of 

noise fields can exist for microphone-array applications that affect their performance  

[45]. 

Coherent versus Incoherent Noise Field 

A coherent noise field corresponds to noise signals propagating from their source 

without undergoing reflection, dispersion or dissipation. These are characterized by 

high-correlation with the direct path signals. In general, a source in open air environment 

without obstacles to sound propagation causes coherent noise field. 

On the other hand, an incoherent noise field is characterized by uncorrelated noise 

signals. An example of incoherent noise is electrical noise in microphones, which is 

considered to follow a random distribution. 

Diffuse Noise Field 

Noise signals propagating in all directions simultaneously, with almost equal energy 

and low spatial correlation make up a diffuse noise field. A perfectly diffuse sound field is 

typically generated by distant, uncorrelated sources of random noise over all directions. 

Many noise environments, such as car cabin, office environment, etc, to a certain extent, 

can be characterized by a diffuse noise field. 

Background Noise 

In urban environment, noise is omnipresent. Most background noise is generated by 

traffic movement, air circulation systems in public places. High levels of background noise 

reduce the intelligibility in perception of a sound source such as that from a human speaker. 
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Background noise generally degrades the performance of SSL systems depending on the 

SNR.  

The above mentioned acoustic disturbances are considered to arrive from all 

directions, and so they are generally characterized as surrounding noise sources. Although 

different noise characteristics can be attributed to different types of sources, background 

noise has higher levels of low-frequency content. Also, background noise commonly 

displays a nearly Gaussian distribution. By exploiting the a priori knowledge about the 

spectral content of the source signal, if available, noise suppression techniques can be 

implemented to target a specific characteristic for improvement in SSL performance. 

3 Reverberation 

Reverberation is common in acoustic signals that propagate in lightly damped 

enclosures. In closed environments, the source signal is reflected by walls, floors, ceilings 

and objects inside the room. These multiple reflections are added to the direct-path speech 

signal component (after some attenuation and phase shift). Hence, the signal impinging on 

the microphones is affected by reverberation. In most cases, room reverberation is 

characterized by the reverberation time, RT60, which is the time required for reverberation 

energy to decay by 60dB. It is dependent on the room size and furnishings, as well as the 

reflection coefficients of the constituents of the room [46]. 

The position of the source and the acoustic sensors in the room and their relative 

distances also define the strength of reverberation. The intelligibility of captured signal is 

considerably reduced in a highly reverberant environment. Additionally, performances of 

conventional noise reduction algorithms are greatly affected in reverberant conditions. 

De-reverberation can be performed by identifying the reverberant channel effects and 

compensating for them [47]. Reverberation effects are given equal weight age for 

evaluating SRP-PHAT-β algorithm to that of acoustic noise conditions. 

4 Localized interference 

In public places, the desired source signal may be corrupted with noise from 

neighboring sources, also referred to as “cocktail party effect” [48]. This effect is mostly 

encountered in situations involving human speech as signal source. It can be countered by 

making use of a multi-microphone-based system, where the spatial separation between the 
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desired source and the acoustic interference sources is exploited to improve SSL 

performance [6, 23, 35, 36]. 

5 Acoustic coupling effects 

The far-end signal emitted by the source propagates in the environment and is captured 

by the microphones in the same way as other interfering signals. Hence, acoustic feedback 

constitutes another source of disturbance in the case of a source-loudspeaker setup. This 

„noise‟ situation is easily handled using a reference signal at the loudspeaker for the tuning 

of echo suppression systems. Also, since the relative positioning of the microphones and 

loudspeakers in most situations is known, it helps in maximal utilization of spatial filtering 

techniques [26]. 

6 Acoustic Room Modeling 

Acoustic room modeling is commonly used to simulate the propagation of source 

signals in a typical room. This is accomplished by convolving source signal sequence with 

simulated room impulse responses for specific room characteristics and positions of the 

speaker and microphone. 

The modeling of sound fields in reverberant rooms can be performed by solving the 

wave equation for boundary conditions defined by the enclosure limits. This approach 

results in a description of the spatial distribution of acoustic field in the room by identifying 

the enclosure‟s spatial and spectral modes. However, it does not provide a direct 

reconstruction of an impulse response [49]. A number of geometric approaches have been 

developed for modeling the sound propagation in a room such as image methods, ray 

tracing, and beam tracing. The principle of the image method first introduced in [50] has 

been predominantly used, since all reflections up to a given order or reverberation time are 

modeled easily. However, its computational complexity grows exponentially. 

7 Acoustic Array Properties 

Acoustic sensor arrays consist of a set of acoustic sensors placed at different locations 

in order to receive a signal carried by propagating waves. Sensor arrays are commonly 

considered as spatially sampled versions of continuous sensors, also referred to as 

apertures. From this perspective, sensor array fundamentals can conveniently be derived 

from continuous aperture principles by means of the sampling theory. 
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Continuous Aperture 

A continuous aperture is an extended finite area over which signal energy is gathered. 

The two important terminologies used in the study of continuous aperture are the aperture 

function and the directivity pattern. 

The aperture function: defines the response of a spatial position along the aperture to 

a propagating wave. The aperture function, takes values between zero and one inside the 

region where the sensor integrates the field and is null outside the aperture area [45]. 

The directivity pattern: also known as beam pattern or aperture smoothing function, 

corresponds to the aperture response as a function of frequency and direction of arrival. 

The directivity pattern corresponding to a uniform aperture function is illustrated in Figure 

42. 

 

 
Figure 33: Directivity pattern of a linear aperture  

Figure adapted from: Yermeche, Z., Soft-Constrained Sub band beamforming for Speech 

Enhancement 

 

From the Figure 33, the zeros in the directivity pattern are located at αx = i(λ/L), where 

i is an integer and the beam width of main lobe is 2λ/L = 2c/(FL). Thus, when the aperture 

length is constant, the main lobe is wider for lower frequencies and vice versa.  
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With respect to the horizontal directivity pattern (i.e., φ = π/2), whose polar plot is 

shown in Figure 34, It can be seen that higher the frequency, i.e., L/λ higher (right), 

narrower is the main beam width. 

 

 
Figure 34: Polar plot of the directivity pattern of a linear aperture  

as a function of the horizontal direction θ, with L/λ = 2 (left) and L/λ = 6 (right). 

Figure adapted from: Yermeche, Z., Soft-Constrained Sub band beamforming for Speech 

Enhancement 

 

Linear Sensor Array 

A sensor array can be viewed as a continuous aperture excited at a certain finite 

number of points. In the case of equally weighted sensors, increasing the number of sensors 

results in reduced energy in the side lobes. On the other hand, for a fixed number of 

sensors, the beam width of the main lobe is inversely proportional to the sensor spacing d. 

Taking all the above factors into consideration, a proper selection of sensor array 

parameters helps avoid the effect of „Spatial Aliasing‟ described in the following section. 

Spatial Aliasing 

Similar to the concept of temporal sampling in any continuous-time signal, spatial 

sampling can result in aliasing [45]. Spatial aliasing appears as spurious lobes in the 
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directivity pattern, as illustrated in figure 35. The requirement to fulfill the spatial sampling 

theorem, so as to avoid spatial aliasing, is given by: 

𝑑 <  
𝜆𝑚𝑖𝑛

2
 

(27) 

 

where, 𝜆𝑚𝑖𝑛  is the minimum wavelength in the propagating signal. For example, the 

critical spacing distance required for processing signals within the human speech 

bandwidth (300Hz to 5.4kHz) is approx d ≈ 5 cm. 

 

 
Figure 35: Polar plot of the directivity pattern of a linear sensor array  

with four elements, as a function of the horizontal direction θ; with a critical spatial 

sampling, d = λ/2 (left) and aliasing effects for d = λ (right). 

Figure adapted from: Yermeche, Z., Soft-Constrained Sub band beamforming for Speech 

Enhancement 
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2 Appendix B: Review of different SSL techniques 

 

This appendix gives a brief introduction into the existing approaches for sound source 

localization, their merits and the factors that affect their performance.  

1  Sound Source Localization 

Speaker localization is of particular interest in applications that require information of 

the source position. Based on the localized speaker position, the microphone array can be 

steered in the corresponding direction to continue tracking the source if it‟s in motion. This 

approach is appropriate for a moving source (e.g. video-conferencing), where the source 

position estimate is input to a video-system [26]. Localization systems are also used in a 

multi-speaker scenario to enhance speech from a particular source with respect to other 

sources in the area of interest.  

Existing source localization procedures may be loosely grouped into three general 

categories: 

a. approaches employing time-difference of arrival (TDOA) information 

b. techniques adopting high-resolution spectral estimation concepts and  

c. principle of maximizing the steered response power (SRP) of a beamformer. 

 

These broad classifications are delineated by the application environment and method 

of estimation. The first category includes procedures which calculate source locations from 

a set of delay estimates measured across various combinations of microphones in an array 

of sensors. The second method refers to any localization scheme relying upon an 

application of the signal correlation matrix for source position estimation. The last 

approach refers to any situation where the location estimate is derived directly from a 

filtered, weighted and summed version of the signal data received at the sensors. 
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2  Time Difference of Arrival – TDOA 

The most widely used source localization approach exploits time-difference of arrival 

(TDOA) information. With this localization strategy, a two-step procedure is adapted. 

Time delay estimate (TDE) of the signals from a point source, relative to pairs of spatially 

distinct microphones is determined. This value along with knowledge of the microphone 

positions is used to determine an estimate for the source location. A specific delay can be 

mapped to a number of different spatial points along a hyperbolic curve, as illustrated in 

Figure 43. The curves are then intersected in some optimal sense to arrive at a source 

location estimate. A number of variations on this principle have been developed [22]. They 

differ considerably in the method of derivation, the extent of their applicability (2-D vs. 

3-D, near vs. distant sources, etc.) and the means of arriving at the solution. Primarily 

because of their computational practicality and reasonable performance under amicable 

conditions, the bulk of passive talker localization systems in use are TDOA-based. 

 

Figure 36: Sound source location using TDOA on a microphone array. 
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Acquiring good TDE of the received speech signals is essential in achieving effective 

speaker localization. The two major sources of signal degradation which complicate this 

estimation problem are background noise and channel multi-path due to room 

reverberations. The noise-alone case has been addressed at length and is well understood 

and applied successfully to speech source localization in low-multipath environments 

[30-32]. However, once room reverberations rise above minimal levels, TDOA based 

methods begin to exhibit dramatic performance degradations and become unreliable [31]. 

Another common limitation is the inability to accommodate multi-source scenarios. 

The algorithms assume a single source model. While some TDOA-based methods are used 

to track several individuals by operating at short analysis intervals, the presence of multiple 

simultaneous talkers, excessive ambient noise, or moderate to high reverberation levels in 

the acoustic field typically result in poor TDOA results and subsequently, unreliable 

location estimates. A TDOA based locator in such an environment would require a means 

for evaluating the validity and accuracy of the delay and location estimates. 

 

3  High Resolution Spectral Estimation 

 This second categorization of location estimation techniques includes the modern 

beamforming methods adapted from the field of high-resolution spectral analysis like: 

autoregressive (AR) modeling, minimum variance (MV) spectral estimation, and a variety 

of Eigen-analysis based techniques (e.g. MUSIC algorithm) [45, 51]. Though the above 

approaches have been successfully implemented in a variety of applications, they possess 

certain restrictions that limit their effectiveness with the speech-source localization 

problem. 

The high-resolution approaches discussed above are based on calculation of the 

spatio-spectral correlation matrix derived from the signals received at the sensors. This 

matrix is obtained from ensemble average of the signals over an interval in which the 

sources and noise are assumed to be statistically stationary. For practical situations, 

fulfilling these conditions is difficult and this contributes to performance degradation [26]. 



 71 

 

With regard to the localization problem, these methods were developed in the context of 

far-field plane waves coupled with the use of a linear microphone-array. Though the AR 

model and Eigen-analysis approaches are limited to the far-field, uniform linear array 

situation, the MV and MUSIC algorithms have shown to be extendible to the case of 

general array geometries and near-field sources [26]. As far as computational expense is 

concerned, a search of the entire location space is required. While the computation required 

at each iteration is lesser compared to steered-beamformer, the situation is compounded if 

a complex source model is adapted. Additionally, it should be noted that these 

high-resolution methods are all designed for narrowband signals. They can be extended to 

wideband signals, including speech, either through simple serial application of the 

narrowband methods or more sophisticated generalizations of these approaches [26]. 

Either of these routes increases the computational requirements considerably. 

These algorithms tend to be significantly less robust to source and sensor modeling 

errors than conventional beamforming methods [26]. The incorporated models typically 

assume ideal source radiators, uniform sensor channel characteristics, and exact 

knowledge of the sensor positions. The sensitivity of these high-resolution methods to the 

modeling assumptions can be reduced, but at the cost of performance. Additionally, signal 

coherence, (reverberant conditions) is detrimental to algorithmic performance, particularly 

with the Eigen-analysis approaches. 

4  Steered-Beamformer-Based Locators 

This family of SSL approaches uses passive arrays for which the system input is an 

acoustic signal produced by the source. The optimal Maximum Likelihood (ML) location 

estimator in this situation amounts to a focused beamformer which steers the array to 

various locations and searches for a peak in output power (focalization) [44, 52]. 

Theoretical and practical variance bounds obtained via focalization are detailed in and the 

steered-beamformer approach has been extended to the case of multiple-signal sources in 

[26]. 
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The simplest type of steered response is obtained using the output of a delay-and-sum 

beamformer. This is what is most often referred to as a conventional beamformer. 

Delay-and-sum beamformer applies time shifts to the array signals to compensate for the 

propagation delays in the arrival of the source signal at each microphone. These signals are 

time-aligned and summed together to form a single output signal. More sophisticated beam 

formers operate filters on the array signals as well as time alignment. The derivation of the 

filters in these filter-and-sum beam formers distinguishes one method from another. 

Beamforming techniques have been applied to both source-signal capture and source 

localization. If the location of the source is known, then a beamformer can be focused on 

the source, and its output becomes an enhanced version of the inputs from the 

microphones. If the location of the source is not known, then a beamformer can be used to 

scan, or steer, over a predefined spatial region by adjusting its steering delays. The output 

of a beamformer, when used in this way, is known as the steered response. The steered 

response power (SRP) may peak under a variety of circumstances, but with favorable 

conditions, it is maximized when the steering delays match the propagation delays. By 

predicting the properties of the propagating waves, these steering delays can be mapped to 

a location, which should coincide with the location of the source.  

Due to the efficiency and satisfactory performance of other methods, SRP has rarely 

been applied to the talker localization problem. The use of standard iterative optimization 

methods, such as steepest descent and Newton-Raphson, for this process was addressed by 

[53]. A shortcoming of each of these approaches is that the objective function to be 

minimized does not have a strong global peak and frequently contains several local 

maxima. As a result, this genre of efficient search methods is often inaccurate and 

extremely sensitive to the initial search location. In [5] an optimization method appropriate 

for a multi-modal objective function, Stochastic Region Contraction (SRC), while 

improving the robustness of the location estimate, the resulted in increased computation 

requirement compared to other less robust SSL techniques. The above factors have been 

major reasons to prohibit its use in the majority of practical, real-time source locators. 

Furthermore, the steered response of a conventional beamformer is highly dependent 

on the spectral content of the source signal. Many optimal derivations are based on prior 
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knowledge of the spectral content of the back ground noise, as well as the source signal 

[26]. In the presence of significant reverberation, the noise and source signals are highly 

correlated, increasing estimation error. Furthermore, in nearly all array-applications, little 

or nothing is known about the source signal. Hence, such optimal estimators are not very 

practical in realistic speech-array environments. 

The beamforming principle may be used as foundation for source localization by 

steering the array to various spatial points to find the peak in the output power. 

Localization methods based on the maximization of the steered response power (SRP) of a 

beamformer have been shown to be robust [26]. However, they present a high dependency 

on the spectral content of the source signal, which in most practical situations is unknown. 

The following chapters discuss a modified version of the SRP-PHAT algorithm [32] for 

use in sound source detection applications. 
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