203 research outputs found

    Data-Driven Distributed Optical Vibration Sensors: A Review

    Get PDF
    Distributed optical vibration sensors (DOVS) have attracted much attention recently since it can be used to monitor mechanical vibrations or acoustic waves with long reach and high sensitivity. Phase-sensitive optical time domain reflectometry (Φ-OTDR) is one of the most commonly used DOVS schemes. For Φ-OTDR, the whole length of fiber under test (FUT) works as the sensing instrument and continuously generates sensing data during measurement. Researchers have made great efforts to try to extract external intrusions from the redundant data. High signal-to-noise ratio (SNR) is necessary in order to accurately locate and identify external intrusions in Φ-OTDR systems. Improvement in SNR is normally limited by the properties of light source, photodetector and FUT. But this limitation can also be overcome by post-processing of the received optical signals. In this context, detailed methodologies of SNR enhancement post-processing algorithms in Φ-OTDR systems have been described in this paper. Furthermore, after successfully locating the external vibrations, it is also important to identify the types of source of the vibrations. Pattern classification is a powerful tool in recognizing the intrusion types from the vibration signals in practical applications. Recent reports of Φ-OTDR systems employed with pattern classification algorithms are subsequently reviewed and discussed. This thorough review will provide a design pathway for improving the performance of Φ-OTDR while maintaining the cost of the system as no additional hardware is required

    A Contextual GMM-HMM Smart Fiber Optic Surveillance System for Pipeline Integrity Threat Detection

    Get PDF
    This paper presents a novel pipeline integrity surveillance system aimed to the detection and classification of threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical time domain reflectometry ( ϕ\phi -OTDR) technology for signal acquisition and pattern recognition strategies for threat identification. The proposal incorporates contextual information at the feature level in a Gaussian Mixture Model-Hidden Markov Model (GMM-HMM)-based pattern classification system and applies a system combination strategy for acoustic trace decision. System combination relies on majority voting of the decisions given by the individual contextual information sources and the number of states used for HMM modelling. The system runs in two different modes: (1) machine+activity identification, which recognizes the activity being carried out by a certain machine, and (2) threat detection, aimed to detect threats no matter what the real activity being conducted is. In comparison with the previous systems based on the same rigorous experimental setup, the results show that the system combination from the contextual feature information and the GMM-HMM approach improves the results for both machine+activity identification (7.6% of relative improvement with respect to the best published result in the literature on this task) and threat detection (26.6% of relative improvement in the false alarm rate with 2.1% relative reduction in the threat detection rate).European CommissionMinisterio de Economía y CompetitividadComunidad de Madri

    Investigating the build-up of precedence effect using reflection masking

    Get PDF
    The auditory processing level involved in the build‐up of precedence [Freyman et al., J. Acoust. Soc. Am. 90, 874–884 (1991)] has been investigated here by employing reflection masked threshold (RMT) techniques. Given that RMT techniques are generally assumed to address lower levels of the auditory signal processing, such an approach represents a bottom‐up approach to the buildup of precedence. Three conditioner configurations measuring a possible buildup of reflection suppression were compared to the baseline RMT for four reflection delays ranging from 2.5–15 ms. No buildup of reflection suppression was observed for any of the conditioner configurations. Buildup of template (decrease in RMT for two of the conditioners), on the other hand, was found to be delay dependent. For five of six listeners, with reflection delay=2.5 and 15 ms, RMT decreased relative to the baseline. For 5‐ and 10‐ms delay, no change in threshold was observed. It is concluded that the low‐level auditory processing involved in RMT is not sufficient to realize a buildup of reflection suppression. This confirms suggestions that higher level processing is involved in PE buildup. The observed enhancement of reflection detection (RMT) may contribute to active suppression at higher processing levels

    Sequential grouping constraints on across-channel auditory processing

    Get PDF

    Predicting room acoustical behavior with the ODEON computer model

    Get PDF

    Temporal processes involved in simultaneous reflection masking

    Get PDF
    corecore