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A Contextual GMM-HMM Smart Fiber Optic
Surveillance System for Pipeline Integrity Threat

Detection
Javier Tejedor, Javier Macias-Guarasa, Member, IEEE, Hugo F. Martins, Sonia Martin-Lopez, and Miguel

Gonzalez-Herraez

Abstract—This paper presents a novel pipeline integrity
surveillance system aimed to the detection and classification of
threats in the vicinity of a long gas pipeline. The sensing system
is based on phase-sensitive optical time domain reflectometry (φ-
OTDR) technology for signal acquisition and pattern recognition
strategies for threat identification. The proposal incorporates
contextual information at the feature level in a Gaussian Mix-
ture Model-Hidden Markov Model (GMM-HMM)-based pat-
tern classification system and applies a system combination
strategy for acoustic trace decision. System combination relies
on majority voting of the decisions given by the individual
contextual information sources and the number of states used
for HMM modelling. The system runs in two different modes:
(1) machine+activity identification, which recognizes the activity
being carried out by a certain machine, and (2) threat detection,
aimed to detect threats no matter what the real activity being
conducted is. In comparison with the previous systems based
on the same rigorous experimental setup, the results show that
the system combination from the contextual feature information
and the GMM-HMM approach improves the results for both
machine+activity identification (7.6% of relative improvement
with respect to the best published result in the literature on
this task) and threat detection (26.6% of relative improvement
in the false alarm rate with 2.1% relative reduction in the threat
detection rate).

Index Terms—Distributed fiber sensing, Acoustic sensing, Vi-
bration sensing, Pipeline integrity, phase-sensitive OTDR, Pattern
recognition

I. INTRODUCTION

Fiber optic distributed acoustic sensing (DAS) with phase-
sensitive optical time-domain reflectometer (φ-OTDR) tech-
nology has been widely used to build systems that aim to
continuous monitoring of potential threats to the pipeline
integrity. By adding a pattern recognition system (PRS), we
can effectively reduce the number of false alarms in the system
to an acceptable level and increase the cost-effectiveness of the
solution [1]–[6].

In [7], [8], we showed that most of the DAS+PRS pre-
sented to that date had significant issues with respect to
the pattern classification design and experimental evaluation
procedures. Since then, new works have been presented [9]–
[26], though they also suffer from similar issues, as there is a
lack of rigorous and realistic experimental procedures: no real
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classification nor results are presented [10], [14], [15], [21];
not enough details on the system description or experimental
procedure are provided [11]–[13], [17], [18], [26]; the data
were not acquired in a realistic field environment [9], [11]–
[13], [16], [17], [19], [20], [22]–[25]; and the lack of testing
signals [18], [20], [23].

To address the aforementioned issues, we presented a
DAS+PRS strategy that addressed pipeline integrity surveil-
lance under fully realistic conditions, and using a rigorous
experimental procedure [7], [27]–[30].

In our previous work [30], we presented a smart fiber optic
surveillance system for pipeline integrity threat detection based
on a Gaussian Mixture Model-Hidden Markov Model (GMM-
HMM) approach, which showed to outperform our baseline
GMM-based system [28]. On the other hand, in [7], we
also showed that adding contextual feature information into
our baseline GMM-based system also improved the system
performance.

The proposal presented in this paper extends our previous
work [30] by (1) incorporating contextual feature information
in the GMM-HMM modelling, and (2) presenting new deci-
sion combination techniques based on the contextual feature
information and different HMM sets.

The pipeline integrity surveillance system consists of a
combination of hardware and software modules. The hardware
side refers to the DAS system used to record the data, and the
software side refers to the pattern classification system that
classifies the acoustic data acquired by the sensing system.
Two different operation modes were set up in the system:
machine+activity identification, where both the machine and
the activity are identified, and threat detection, where just the
occurrence of a threat in the pipeline must be detected.

The rest of the paper is organized as follows: Section II
presents the pipeline integrity threat detection system. The
experimental procedure is presented in Section III. The ex-
periments, results, and discussion are presented in Section IV,
and Section V provides some conclusions and ideas for future
work.

II. PIPELINE INTEGRITY THREAT DETECTION SYSTEM

The pipeline integrity threat detection system integrates
different modules, as shown in Figure 1, being an evolution of
the architecture described in [30]. These modules are explained
in more detail next.
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Fig. 1: Pipeline integrity threat detection system architecture. Modules in bold are the new ones with respect to [7], [30].

A. Distributed Acoustic Sensing System

The DAS system is a commercially available φ-OTDR-
based sensor named FINDAS, manufactured and distributed by
FOCUS S.L. A detailed description of the sensing principle
and experimental setup used in the FINDAS sensor can be
found in [31].

The FINDAS has an (optical) spatial resolution of 5 meters
(readout resolution of one meter) and a typical sensing range
of up to 45 km, using standard single-mode fiber (SMF). A
sampling frequency of fs = 1085 Hz was used for signal
acquisition. When the energy of the vibrations monitored by
the FINDAS in a certain fiber position is above a predefined
threshold, the acoustic samples are recorded to form a 20-
second length acoustic trace. This acoustic trace is then sent
to the software module (described next) for classification
purposes. The simultaneous detection of multiple activities
at different positions is also possible, by setting a different
threshold for each fiber position.

B. Feature Extraction + Normalization

Feature extraction aims to extract the meaningful informa-
tion from the acoustic traces recorded by the FINDAS. This
information is stored in the so-called feature vectors, each of
which consists of numerical values that convey that meaningful
information. To do so, each 20-second length acoustic trace
is first split into segments (frames), which are 1-second long
each. For each frame, a feature vector is computed, and
each frame overlaps with the previous one 95% of its signal
values (i.e., 1030 values for the given sampling frequency
fs = 1085 Hz), hence producing a smooth change in the
frame values (i.e., 95% of the next acoustic segment share
the same signal values that the current acoustic segment),
so that a smooth change also occurs in the feature vector,
as shown in [28]. Then, the Fast Fourier Transform (FFT)
is applied to each frame to obtain its spectral information
(i.e., the acoustic frame is converted from the time-domain
to the frequency domain), since we showed in [28] that
the machines and activities presented a consistent spectral

behavior that made suitable for classification. The FFT size
was set to 8192 points so that each frequency bin comprises
0.066 Hz (being 542.5 Hz the maximum frequency in the
acoustic signal). Then, as in our previous work [30], the energy
values corresponding to 100 frequency bands for a 100 Hz
bandwidth are computed from the spectral information. These
energy values comprise the numerical values stored in each
feature vector. Then, a sensitivity-based normalization, which
consists of normalizing each energy value by the energy above
the considered bandwidth (from 100 Hz to 542.5 Hz) (see [28]
for more details) is applied to the feature vectors to deal with
the signal degradation when the distance between the sensed
point and the sensor increases. Therefore, NP -dimensional
normalized feature vectors, which will be referred as baseline
feature vectors, comprise the output of this module (NP =100).

C. Contextual Feature Extraction
The contextual feature extraction bases on the same multi-

layer perceptron (MLP) approach described in our previous
work [7]. An MLP, whose typical architecture is shown in
Figure 2, is a class of feedforward artificial neural network.
This consists of multiple layers of computational units (an
input layer, one or more hidden layers, and an output layer),
which are interconnected in a feed-forward way. Each neuron
in one layer has directed connections to the neurons in the
next layer (hence, denoting the forward direction). MLPs are
widely used in artificial intelligence tasks such as speech
recognition [32], [33], image recognition [34], [35], audio
segmentation [36], [37], etc., due to their ability of producing
a classification output from input features.

The MLP used in this work has three layers, as shown in
Figure 2: an input layer that consists of NP ·Wsize baseline
feature vector values, where Wsize is the number of baseline
feature vectors used as contextual information (for an acoustic
frame analyzed at time t, the MLP will use the Wsize/2
baseline feature vectors before t and the Wsize/2 baseline
feature vectors after t, along with the baseline feature vector
generated for time t), a hidden layer, whose number of units
is taken from our previous work [7], and an output layer, with
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the number of units equal to the number of classes involved in
the system modes (eight in the machine+activity identification
mode and two in the threat detection mode). Specifically,
three MLPs will be used to model the behavior of short,
medium and long temporal contexts, using Wshort, Wmedium

and Wlong feature temporal window sizes, respectively. As
in our previous work [7], the time lengths of each temporal
context are 5 s, 12.5 s and 20 s, corresponding to the short,
medium and long temporal contexts, respectively. 100 and 3
units were also employed in the hidden layer of the MLP for
the machine+activity identification and threat detection modes,
respectively [7].

The MLP models required for each temporal context (re-
ferred to as MLPS , MLPM and MLPL in Figure 3) are trained
by the MLP training module in Figure 1. The standard back-
propagation algorithm [38] is employed to learn the MLP
weights (i.e., connections between all of the units of the input
and hidden layers and connections between all of the units
of the hidden and output layers, as shown in Figure 2) so
that the classification error on the training data is minimized.
Therefore, three different sets of weights are learned (one for
each temporal context), which are used next to obtain the
posterior probability vectors.

The contextual feature extraction involves two different
stages, which are applied to each of the different temporal
contexts:

1) Posterior Probability Vector Computation: For each set
of normalized feature vectors (i.e., baseline feature vectors)
and using the weights computed during MLP training, the
MLP is employed to calculate a posterior probability for each
class to be identified that is next used to enhance the baseline
feature vector. A posterior probability is the probability given
to each of the classes involved in the classification when the
baseline feature vector is fed in the MLP. Therefore, a set of
NC-dimensional posterior probability vectors per MLP (i.e.,
per temporal context) is obtained, as shown in Figure 2.

Fig. 2: Architecture of the three-layer MLP employed in the
contextual feature extraction module.

Figure 3 shows the detailed architecture of the contextual
feature extraction module (that contains the three MLP models
MLPS , MLPM and MLPL trained from the MLP training

module in Figure 1), and its connection to the HMM-based
pattern classification modules.

Fig. 3: Detailed architecture of the contextual feature extrac-
tion module and its connection to the HMM-based pattern
classification modules.

2) Tandem Feature Vector Building: This stage concate-
nates the baseline NP -dimensional normalized feature vec-
tors (those generated by the Feature extraction+normalization
module) and the NC-dimensional posterior probability vectors
computed by the MLPs. Therefore, (NP + NC)-dimensional
tandem feature vectors are built (in our implementation,
NP +NC = 108 for the machine+activity identification mode
and NP +NC = 102 for the threat detection mode).

For MLP training, posterior probability vector computa-
tion and tandem feature vector building, the ICSI QuickNet
toolkit [39] has been employed.

D. Pattern classification

Pattern classification is carried out using a GMM-HMM
approach, for which training and recognition stages are nec-
essary. HMMs have been widely used in machine learning
related tasks such as speech recognition [40], [41], image
recognition [42], [43], etc.

1) HMM basis: A Markov model is a statistical model in
which each state corresponds to an observable (physical) event.
An extension of it produces an HMM, which is a statistical
model in which the observation is a probabilistic function of
the state (and hence can be modelled from a GMM generating
a GMM-HMM). Therefore, the resulting HMM is a doubly
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embedded process with an underlying statistical process that is
not observable (i.e., hidden), but can only be observed through
another set of statistical processes that produce the sequence
of observation. An example of an HMM is shown in Figure 4,
where each state is modelled from a single Gaussian.

Fig. 4: HMM example with 3 states. Symbols aij denote the
state transition probabilities.

2) HMM training: Training is carried out with data ac-
quired in real field recordings, and just needs to run once. Data
employed from HMM training come from (1) the contextual
feature extraction and (2) the feature extraction+normalization
stages, so that the tandem feature vectors and the baseline
feature vectors are both used for HMM training. From data in
(1), which are the new ones with respect to the data used
in [30], an HMM with a single Gaussian component for
each of the activities in the machine+activity identification
mode, and two different HMMs (one representing the threat
class and the other representing the non-threat class) with
a single Gaussian component each, in the threat detection
mode1 are trained. Therefore, given the short, medium, and
long temporal contexts, three different sets of HMMs, denoted
as HMMs short term, HMMs medium term, and HMMs
long term, respectively in Figure 1, are separately built for the
machine+activity identification and threat detection modes.

From data in (2), which are the same as those presented
in [30], an HMM training that only employs the baseline fea-
ture vectors (i.e., the Np-dimensional feature vectors obtained
in the Feature extraction+normalization stage) has also been
carried out. This aims to take advantage of the complementary
information that may exist between the baseline and the en-
hanced feature vectors. This HMM set, referred to as HMMs
EB in Figure 1, also employs a single Gaussian component.

For each HMM set, three different HMMs that only differ
in the number of states have been built. To do so, 1, 2, and
3-state HMMs have been built for each HMM set, which are
next used in the recognition stage.

The HMM training consists of the estimation of the mean
and the full covariance matrix of the Gaussian component, and
the transition matrix probabilities for each state of the HMM
from the Baum-Welch algorithm [44]. This Baum-Welch al-
gorithm is a special case of the Expectation-Maximization
algorithm applied to HMMs [45].

3) HMM recognition: HMM recognition employs the three
sets of tandem feature vectors (i.e., HMMs short term,
HMMs medium term, and HMMs long term in Figure 1)
along with the baseline feature vector (i.e., HMMs EB in
Figure 1) for signal classification.

1A single Gaussian component was employed for each mode due to its best
performance on the GMM-based system presented in [28].

The Viterbi algorithm [44] is used to classify each test
acoustic frame as the class (machine+activity or threat/non-
threat) with the highest probability. The Viterbi algorithm
finds the “best” path between the test acoustic frames and the
previously trained HMMs. As shown in Figure 1, four sets
of recognition processes (each using the set of HMM with 1,
2, and 3 states) are run from the different temporal contexts
(tandem feature vectors) and the baseline feature vector to
compute the individual frame-level decisions (likelihood and
state sequence) for each test acoustic frame.

E. Decision combination
The HMM-based recognition stage produces different out-

puts depending on the number of states and the temporal
context/baseline feature vector sets. Therefore, a strategy to
combine all these outputs in a single decision for each acoustic
trace is necessary. Let OEBi

, OSi
, OMi

, and OLi
, where

i ∈ 1, 2, 3, be the output of the recognition processes that
employ the baseline feature vector, and the short, medium,
and long temporal context information, respectively.

Two different strategies are proposed in this work, namely
State-based decision combination and Temporal context-based
decision combination. In the former, a contextual information
is selected first, and then we test different state-wise combina-
tions; while in the latter, the state-wise information is selected
first, and then we test different temporal context combinations.
These are explained in more detail next.

1) State-based decision combination: Given temporal con-
texts in isolation from the corresponding context information
(CI) (CI = EB, CI = S, CI =M , or CI = L) or temporal
context-wise combination, all individual, pair, and trio HMM
state-wise combinations are merged by majority voting. For
example for CI =M , and the HMM state combination (SC)
SC = 1−2, the combination employs the recognition outputs
OM1

and OM2
. The majority voting scheme means that the

class assigned to each acoustic trace is the one for which more
frames are classified as that such class.

It must be noted that this decision combination method is
an improvement over that presented in our previous work [30],
since this combination now employs additional state combi-
nations (in [30], only the state combination SC = 1 − 2 − 3
was used) and includes context information.

2) Temporal context-based decision combination: From the
classification outputs obtained with the 1-state, 2-state, and 3-
state HMMs, state combination is employed for a given context
information/baseline feature vector. Therefore, given states in
isolation (SC = 1, SC = 2, or SC = 3), or state-wise
combination, all individual, pair, and trio context information-
wise combinations are merged by the majority voting approach
explained above. For example, given the state combination
SC = 1 − 2, and the context informations CI = S and
CI = M , the combination employs the recognition outputs
OS1

, OS2
, OM1

, and OM2
.

III. EXPERIMENTAL PROCEDURE

A. Database Description
For comparison, the database employed in the experiments

is the same as that used in our previous works [7], [28], [30].
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TABLE I: Experimental database. ‘Big excavator’ is a 5 ton Kubota KX161-3. ‘Small excavator’ is a 1.5 ton Kubota KX41-3V.

Machine Activity Duration in each location (in seconds) Threat
Non-threatLOC1 LOC2 LOC3 LOC4 LOC5 LOC6 Total

Big
excavator

Moving along the ground 1100 1100 3540 1740 1620 4160 13260 Non-threat
Hitting the ground 120 140 240 220 80 260 1060 Threat

Scrapping the ground 460 460 920 620 200 580 3240 Threat

Small
excavator

Moving along the ground 600 500 1700 820 820 1660 6100 Non-threat
Hitting the ground 200 180 220 220 80 240 1140 Threat

Scrapping the ground 420 340 780 360 180 520 2600 Threat
Pneumatic hammer Compacting ground 660 0 580 1320 0 1320 3880 Non-threat

Plate compactor Compacting ground 740 0 740 1240 0 1680 4400 Non-threat

We provide here the fundamental details, referring the reader
to those references for additional information.

An active gas transmission pipeline operated by Fluxys
Belgium S.A. was used for the database acquisition, thus
operating in a real scenario. The FINDAS sensor is placed
at one end of the fiber that runs in parallel to the inspected
pipeline. The six different locations (LOC1 through LOC6)
cover different pipeline “reference positions” selected at high
distances from the sensing equipment (being at 22.24, 22.49,
23.75, 27.43, 27.53 and 34.27 km far from the FINDAS box,
respectively) to evaluate the system in conditions close to the
actual sensing limits and to ensure feature variabilities in terms
of soil characteristics and weather conditions. Table I presents
the different machine+activity pairs recorded in each location
along with the time duration and the threat/no-threat labelling
used in the threat detection mode of the system.

B. Evaluation Metrics

Classification accuracy is the main metric to evaluate the
system performance both for the machine+activity identifica-
tion and threat detection modes. This is computed as the ratio
between the number of correctly classified testing machines
and activities, and the total number of evaluated activities. A
machine+activity pair is considered to be correctly detected
in case the machine and the activity output by the system
coincides with that of the ground truth and is within the
temporal limits of the activity ground-truth time span. In the
same way, a threat is correctly detected in case the system
generates a threat decision within the ground truth temporal
limits.

For the machine+activity identification mode, the full con-
fusion matrix (i.e., a table showing the percentage of testing
frames of a given class that have been classified as any of the
considered classes) will also be presented.

Additionally, for the threat detection mode, the Threat
Detection Rate (TDR), which corresponds to the percentage
of threat testing activities that are classified as threat, usually
referred to as true positives, and the False Alarm Rate (FAR),
which corresponds to the percentage of non-threat testing
activities that are classified as threats, usually referred to as
false positives, were also calculated.

In the result tables, we will compare our new proposal
with our previous strategies described in [7] and [30], and to
provide a visual cue, we will set the background color of the
table cells with the following convention: a green background
means that the new proposal is better than [7], blue means

that the new proposal is better than [30], and orange means
that the new proposal is better than both previous systems.

IV. EXPERIMENTS AND RESULTS

Experiments follow a leave-one-out cross-validation (CV)
scheme with 6-folds (each containing the data recorded in
each location), where 5 folds are used for any kind of training
(GMM-HMMs and MLP weights), and the other location is
used for test. The final test results are obtained from averaging
the individual test results corresponding to each fold. For both
the machine+activity identification and threat detection modes,
results from the two different decision combination methods
(temporal context-based decision combination and state-based
decision combination) are presented in Tables II and Table V,
respectively.

A. Machine+activity identification mode

Experiments rely on the combination of medium and long
temporal contexts due to their best performance in [7]. These
temporal contexts are further combined with the results ob-
tained from the baseline feature vector to take advantage of the
complementary errors both sets of feature vectors are expected
to produce. The HMM state combination relies on a top-down
architecture in which the combinations of all the three, two
and three states, and just three states have been analyzed.
The results presented in Table II show that for each temporal
context combination, combining all the recognition outputs
from the three states performs the best (see rows with 1-2-
3 in the HMM states column). This is due to the fact that the
models trained with 1, 2, and 3 states, are able to model the
feature space in a versatile way so that different activities get
complementary behavior, hence improving the overall system
performance. The best performance is obtained by combining
the medium and long temporal contexts (row EB + M-L
and 1-2-3 in Table II), which is consistent with the results
obtained in our previous work [7]. Adding the short temporal
context does not provide any additional gain, probably due to
the HMM modelling in medium and long temporal contexts
is able to cope with the variability introduced in the short
temporal context. This best performance is consistent along
the different classes compared with [7] (except for the small
excavator+scrapping, for which the performance is roughly
similar). When comparing these results with the work pre-
sented in [30], the hitting and scrapping activities obtain a
worse performance. This could be due to the fact that these
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TABLE II: Decision combination results for the machine+activity identification mode with the best result in bold font. ‘EB’
denotes the baseline feature vector, ‘S’, ‘M’ and ‘L’ denote small, medium and long window sizes, in the contextual feature
extraction. ‘Acc.’ stands for accuracy, ‘Mov.’ for moving, ‘Hit.’ for hitting, ‘Scrap.’ for scrapping, and ‘Compact.’ for compacting.
Combination columns integrate both decision combination methods (Temporal context refers to the temporal context-based
decision combination and HMM states refers to the state-based decision combination).

Machine+activity identification

Combination Big excavator Small excavator Pneumatic
Hammer

Plate
Compactor Acc.Temporal context HMM states Mov. Hit. Scrap. Mov. Hit. Scrap. Compact. Compact.

EB (best in [30]) 1-2-3 44.5% 35.9% 31.5% 46.6% 31.6% 53.1% 78.4% 31.4% 45.7%
M-L (best in [7]) N/A 66.1% 22.2% 33.7% 57.9% 14.3% 36.6% 78.4% 41.3% 54.9%

EB + M
1-2-3 61.7% 18.9% 37.0% 60.0% 12.3% 42.3% 79.9% 44.1% 54.7%
2-3 56.1% 37.7% 34.0% 59.0% 22.8% 33.1% 79.4% 36.8% 51.5%
3 63.0% 26.4% 32.1% 58.0% 42.1% 17.7% 78.5% 34.5% 52.5%

EB + L
1-2-3 70.7% 26.4% 30.9% 62.6% 15.8% 46.9% 83.0% 42.3% 58.7%
2-3 60.3% 34.0% 30.2% 62.3% 26.3% 34.6% 82.0% 38.2% 53.8%
3 69.4% 35.8% 29.6% 61.3% 40.4% 23.8% 80.4% 38.2% 56.5%

EB + M-L
1-2-3 69.8% 22.6% 34.6% 63.9% 14.0% 45.4% 83.0% 45.5% 59.1%
2-3 63.3% 32.1% 35.8% 64.3% 17.5% 40.0% 80.9% 41.8% 56.2%
3 70.6% 26.4% 36.4% 62.6% 19.3% 32.3% 79.4% 43.6% 58.0%

EB + S-M-L
1-2-3 69.7% 24.5% 36.4% 62.3% 8.8% 44.6% 83.0% 48.2% 59.1%
2-3 63.7% 34.0% 37.0% 63.3% 8.8% 40.0% 82.0% 46.8% 56.7%
3 70.1% 30.2% 35.8% 61.6% 12.3% 36.9% 81.4% 48.2% 58.6%

activities have the lowest amount of training data, which makes
the MLP training obtain a less discriminative set of contextual
features that drops the HMM performance.

Table III shows the confusion matrix corresponding to the
best combination (row EB + M-L and 1-2-3 in Table II),
where the values below chance (1/8 = 12.5%) have been
removed to ease the visualization and analysis, and where
color information as a visual aid has been added. In gen-
eral, it is clearly seen that the diagonal contains the highest
figures for each class (with at least 11.8% absolute better
accuracy compared to the second most recognized one, i.e.,
34.6%−22.8% = 11.8% in the big excavator+scrapping class),
except for the hitting activity, which is confused with moving
and scrapping. Hitting and scrapping are the classes with the
lowest amount of training data, which derives in a less robust
HMM modelling, and they present different acoustic behaviors
(moving up the shovel, moving it down, hitting, scrapping,
moving, etc.), which may be more difficult to model.

It is also worthy the significant improvements in the iden-
tification rates with respect to the baseline system [30] and
also with the proposal in [7], as shown in Table IV. The
relative performance improvement between the baseline [30]
and our new proposal has an average value of 29.3%. When
compared with [7] (which achieves the best results published
so far in the literature on this task), we still get an average
improvement of 7.6%, which is especially important for the
small excavator+scrapping class (24.1% relative improvement)
while it achieves smaller improvements for the other hitting
and scrapping activities, with a marginal degradation from
14.3% to 14.0% in the small excavator+hitting class.

B. Threat detection mode

Experiments rely on the combination of all the three tem-
poral contexts due to its best performance in [7]. Different
HMM state combinations are presented in our results below:

(1) The combination that employs all the three states; (2)
the combination that merges the recognition outputs from 1
and 3 state-HMMs. This second combination aims to take
advantage of a short-duration model (that may fit better the
stable activities such as moving and compacting) and a long-
duration model (that may fit better the non-stable activities
such as hitting and scrapping); (3) the combination with a
single state to let the reader know the actual limits of the
system. Results in Table V show the following findings: (1)
The best threat detection rate is obtained by combining the
results from the baseline feature vector and the short temporal
context information with 1 and 3 state-HMMs. On the one
hand, the use of short and long duration models is giving
complementary errors so that the combination obtains a better
result. On the other hand, the short temporal context is able
to cope with the intra-class variability that exists in the threat
detection mode of the system, in which different activities are
modelled in a single model; (2) the lowest false alarm rate is
obtained with the fusion of the recognition outputs obtained
from the baseline feature vector, and the medium and long
temporal contexts with a single state for HMM modelling.
The non-threat classes present a more stable behavior than
the threat classes and those non-threat classes largely benefit
from a single state and longer temporal contexts, since just
a single behavior needs to be modelled. Since the amount of
non-threat test data is larger than that of the threat classes,
the FAR will decrease as long as these non-threat classes are
correctly identified. An optimal trade-off between both rates
can be found when combining the results obtained from 1-
state HMM-based recognition processes, each employing the
baseline feature vector, and the short and medium temporal
contexts (TDR=89.1%, FAR=39.4% as shown in row EB +
S-M and 1 in Table V). This represents a 26.6% relative
improvement in the FAR with 2.1% relative reduction in the
TDR compared with the baseline GMM-HMM system [30],
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TABLE III: Confusion matrix of the EB + M-L temporal context-based decision combination and 1-2-3 HMM state-based
decision combination in Table II for the machine+activity identification mode. Classification accuracy is shown in each cell.
The values between brackets represent the number of frames that are classified as the recognized class or that belong to the
real class.

Recognized Class

Big Excavator Small Excavator Pneumatic
Hammer

Plate
Compactor

[243190]
Moving

[27805]
Hitting

[73040]
Scrapping

[104165]
Moving

[41085]
Hitting

[111635]
Scrapping

[75115]
Compacting

[64325]
Compacting

R
ea

l
cl

as
s

Big
excavator

[275145] Moving 69.8
[21995] Hitting 20.8 22.6 22.6 22.6
[67230] Scrapping 16.7 34.6 22.8

Small
excavator

[126575] Moving 15.1 63.9 15.4
[23655] Hitting 14.0 38.6 15.8
[53950] Scrapping 45.4

Pneumatic hammer [80510] Compacting 83.0
Plate Compactor [91300] Compacting 12.7 25.0 45.5

TABLE IV: Machine+activity identification mode rate comparison with previous works [7], [30]. Relative improvement is
calculated as 100 · (novelaccuracy−baselineaccuracy)

baselineaccuracy
. The new proposal refers to the results obtained from the EB + M-L temporal

context-based decision combination and the 1-2-3 HMM state-based decision combination in Table II.

Big excavator Small excavator Pneumatic
Hammer

Plate
Compactor Accuracy

Moving Hitting Scrapping Moving Hitting Scrapping Compacting Compacting
Baseline [30] 44.5% 35.9% 31.5% 46.6% 31.6% 53.1% 78.4% 31.4% 45.7%
Context [7] 66.1% 22.2% 33.7% 57.9% 14.3% 36.6% 78.4% 41.3% 54.9%

New proposal 69.8% 22.6% 34.6% 63.9% 14.0% 45.4% 83.0% 45.5% 59.1%
Relative improv. new proposal vs. [30] 56.9% -36.9% 9.8% 37.2% -55.6% -14.5% 5.9% 44.8% 29.3%
Relative improv. new proposal vs. [7] 5.7% 2.2% 2.5% 10.4% -2.0% 24.1% 5.9% 10.1% 7.6%

and 9.9% relative improvement in the TDR with a relative
increase of 11.3% in the FAR compared with the baseline
contextual feature information GMM system [7].

V. CONCLUSIONS AND FUTURE WORK

This paper has presented an evolution of the system pre-
sented in [30] combined with the strategy described in [7], and
is able to continuously monitor potential threats to the pipeline
integrity in real field conditions. An augmented system that
combines contextual feature information with HMM modelling
is able to outperform the baseline HMM system and the
contextual feature system by merging both approaches. The
proposal has been tested on a machine+activity identification
task, where both the machine and the activity that is carried
out are detected, and in a threat detection task, where just the
occurrence of a threat is detected.

In the machine+activity identification mode, the new system
combination proposal achieves an accuracy improvement of
29.3% compared with the baseline system described in [30],
and is still better than the best results obtained so far in this
task and described in [7], with an average improvement of
7.6% in this case.

In the threat detection mode, the new proposal achieves a
TDR that is very close to the best one published so far in [30]
(89.1% versus 91%), and obtains very relevant improvements
in the FAR (39.4% versus 53.7%) and the overall accuracy
(67.0% versus 56.4%). Although our previous system in [7]
gets slightly better rates in false alarms and overall accuracy,
its threat detection rate is much lower (81.1%).

Future work will analyze new decision combination meth-
ods that aim to take advantage of the complementary errors
different classification systems may convey.
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