657 research outputs found

    Localization algorithm design and performance analysis in probabilistic LOS/NLOS environment

    Full text link
    © 2016 IEEE. Non-line-of-sight (NLOS) propagation, which widely exists in wireless systems, will degrade the performance of wireless positioning system if it is not taken into consideration in the localization algorithm design. The 3rd Generation Partnership Project (3GPP) suggests that the probabilities of line-of-sight (LOS) and NLOS are related to the distance between the receiver and the transmitter. In this paper, we propose a Maximum Likelihood Estimator (MLE) for localization, which incorporates the distance dependent LOS/NLOS probabilities. Then, the position error bound is derived using Cramer-Rao Lower Bound (CRLB). Through numerical analysis, the impact of NLOS propagation on the position error bound is evaluated. The performance of our proposed algorithm is verified by real world experimental data

    Mean Shift-Based Mobile Localization Method in Mixed LOS/NLOS Environments for Wireless Sensor Network

    Get PDF
    Mobile localization estimation is a significant research topic in the fields of wireless sensor network (WSN), which is of concern greatly in the past decades. Non-line-of-sight (NLOS) propagation seriously decreases the positioning accuracy if it is not considered when the mobile localization algorithm is designed. NLOS propagation has been a serious challenge. This paper presents a novel mobile localization method in order to overcome the effects of NLOS errors by utilizing the mean shift-based Kalman filter. The binary hypothesis is firstly carried out to detect the measurements which contain the NLOS errors. For NLOS propagation condition, mean shift algorithm is utilized to evaluate the means of the NLOS measurements and the data association method is proposed to mitigate the NLOS errors. Simulation results show that the proposed method can provide higher location accuracy in comparison with some traditional methods

    Probabilistic Graphical Models: an Application in Synchronization and Localization

    Get PDF
    Die Lokalisierung von mobilen Nutzern (MU) in sehr dichten Netzen erfordert häufig die Synchronisierung der Access Points (APs) untereinander. Erstens konzentriert sich diese Arbeit auf die Lösung des Problems der Zeitsynchronisation in 5G-Netzwerken, indem ein hybrider Bayesischer Ansatz für die Schätzung des Taktversatzes und des Versatzes verwendet wird. Wir untersuchen und demonstrieren den beträchtlichen Nutzen der Belief Propagation (BP), die auf factor graphs läuft, um eine präzise netzwerkweite Synchronisation zu erreichen. Darüber hinaus nutzen wir die Vorteile der Bayesischen Rekursiven Filterung (BRF), um den Zeitstempel-Fehler bei der paarweisen Synchronisierung zu verringern. Schließlich zeigen wir die Vorzüge der hybriden Synchronisation auf, indem wir ein großes Netzwerk in gemeinsame und lokale Synchronisationsdomänen unterteilen und so den am besten geeigneten Synchronisationsalgorithmus (BP- oder BRF-basiert) auf jede Domäne anwenden können. Zweitens schlagen wir einen Deep Neural Network (DNN)-gestützten Particle Filter-basierten (DePF)-Ansatz vor, um das gemeinsame MU-Sync&loc-Problem zu lösen. Insbesondere setzt DePF einen asymmetrischen Zeitstempel-Austauschmechanismus zwischen den MUs und den APs ein, der Informationen über den Taktversatz, die Zeitverschiebung der MUs, und die AP-MU Abstand liefert. Zur Schätzung des Ankunftswinkels des empfangenen Synchronisierungspakets nutzt DePF den multiple signal classification Algorithmus, der durch die Channel Impulse Response (CIR) der Synchronisierungspakete gespeist wird. Die CIR wird auch genutzt, um den Verbindungszustand zu bestimmen, d. h. Line-of-Sight (LoS) oder Non-LoS (NLoS). Schließlich nutzt DePF particle Gaussian mixtures, die eine hybride partikelbasierte und parametrische BRF-Fusion der vorgenannten Informationen ermöglichen und die Position und die Taktparameter der MUs gemeinsam schätzen.Mobile User (MU) localization in ultra dense networks often requires, on one hand, the Access Points (APs) to be synchronized among each other, and, on the other hand, the MU-AP synchronization. In this work, we firstly address the former, which eventually provides a basis for the latter, i.e., for the joint MU synchronization and localization (sync&loc). In particular, firstly, this work focuses on tackling the time synchronization problem in 5G networks by adopting a hybrid Bayesian approach for clock offset and skew estimation. Specifically, we investigate and demonstrate the substantial benefit of Belief Propagation (BP) running on Factor Graphs (FGs) in achieving precise network-wide synchronization. Moreover, we take advantage of Bayesian Recursive Filtering (BRF) to mitigate the time-stamping error in pairwise synchronization. Finally, we reveal the merit of hybrid synchronization by dividing a large-scale network into common and local synchronization domains, thereby being able to apply the most suitable synchronization algorithm (BP- or BRF-based) on each domain. Secondly, we propose a Deep Neural Network (DNN)-assisted Particle Filter-based (DePF) approach to address the MU joint sync&loc problem. In particular, DePF deploys an asymmetric time-stamp exchange mechanism between the MUs and the APs, which provides information about the MUs' clock offset, skew, and AP-MU distance. In addition, to estimate the Angle of Arrival (AoA) of the received synchronization packet, DePF draws on the Multiple Signal Classification (MUSIC) algorithm that is fed by the Channel Impulse Response (CIR) experienced by the sync packets. The CIR is also leveraged on to determine the link condition, i.e. Line-of-Sight (LoS) or Non-LoS (NLoS). Finally DePF capitalizes on particle Gaussian mixtures which allow for a hybrid particle-based and parametric BRF fusion of the aforementioned pieces of information and jointly estimate the position and clock parameters of the MUs

    CIR Parametric Rules Precocity For Ranging Error Mitigation In IR-UWB

    Get PDF
    The cutting-edge technology to support high ranging accuracy within the indoor environment is Impulse Radio Ultra Wide Band (IR-UWB) standard. Besides accuracy, IR-UWB’s low-complex architecture and low power consumption align well with mobile devices. A prime challenge in indoor IR-UWB based localization is to achieve a position accuracy under non-line-of-sight (NLOS) and multipath propagation (MPP) conditions. Another challenge is to achieve acceptable accuracy in the conditions mentioned above without any significant increase in latency and computational burden. This dissertation proposes a solution for addressing the accuracy and reliability problem of indoor localization system satisfying acceptable delay or computational complexity overhead. The proposed methodology is based on rules for identification of line-of-sight (LOS) and NLOS and the range error bias estimation and correction due to NLOS and MPP conditions. The proposed methodology provides accuracy for two major application domains, namely, wireless sensor networks (WSNs) and indoor tracking and navigation (ITN). This dissertation offers two different solutions for the localization problem. The first solution is a rules-based classification of LOS / NLOS and geometric-based range correction for WSN. In the first solution, the Boolean logic based classification is designed for identification of LOS/NLOS. The logic is based on channel impulse response (CIR) parameters. The second solution is based on fuzzy logic. The fuzzy based solution is appealing well for the stringent precision requirements in ITN. In this solution, the parametric Boolean logic from the first solution is converted and expanded into rules. These rules are implemented into a fuzzy logic based mechanism for designing a fuzzy inference system. The system estimates the ranging errors and correcting unmitigated ranges. The expanded rules and designed methodology are based on theoretical analysis and empirical observations of the parameters. The rules accommodate the parameters uncertainties for estimating the ranging error through the relationship between the input parameters uncertainties and ranging error using fuzzy inference mechanism. The proposed solutions are evaluated using real-world measurements in different indoor environments. The performance of the proposed solutions is also evaluated in terms of true classification rate, residual ranging errors’ cumulative distributions and probability density distributions, as well as outage probabilities. Evaluation results show that the true classification rate is more than 95%. Moreover, using the proposed fuzzy logic based solution, the residual errors convergence of 90% is attained for error threshold of 10 cm, and the reliability of the localization system is also more than 90% for error threshold of 15 cm

    Probabilistic Time of Arrival Localization

    Get PDF
    In this letter, we take a new approach for time of arrival geo-localization. We show that the main sources of error in metropolitan areas are due to environmental imperfections that bias our solutions, and that we can rely on a probabilistic model to learn and compensate for them. The resulting localization error is validated using measurements from a live LTE cellular network to be less than 10 meters, representing an order-of-magnitude improvement

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    • …
    corecore