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Abstract
Mobile User (MU) localization in ultra dense networks often requires, on one
hand, the Access Points (APs) to be synchronized among each other, and, on
the other hand, the MU-AP synchronization. In this work, we firstly address
the former, which eventually provides a basis for the latter, i.e., for the joint
MU synchronization and localization (sync&loc). In particular, firstly, this work
focuses on tackling the time synchronization problem in 5G networks by adopting
a hybrid Bayesian approach for clock offset and skew estimation. Specifically,
we investigate and demonstrate the substantial benefit of Belief Propagation
(BP) running on Factor Graphs (FGs) in achieving precise network-wide synchro-
nization. Moreover, we take advantage of Bayesian Recursive Filtering (BRF)
to mitigate the time-stamping error in pairwise synchronization. Finally, we
reveal the merit of hybrid synchronization by dividing a large-scale network into
common and local synchronization domains, thereby being able to apply the
most suitable synchronization algorithm (BP- or BRF-based) on each domain.

Secondly, we propose a Deep Neural Network (DNN)-assisted Particle Filter-
based (DePF) approach to address the MU joint sync&loc problem. In particular,
DePF deploys an asymmetric time-stamp exchange mechanism between the MUs
and the APs, which provides information about the MUs’ clock offset, skew, and
AP-MU distance. In addition, to estimate the Angle of Arrival (AoA) of the received
synchronization packet, DePF draws on the Multiple Signal Classification (MUSIC)
algorithm that is fed by the Channel Impulse Response (CIR) experienced by
the sync packets. The CIR is also leveraged on to determine the link condition,
i.e. Line-of-Sight (LoS) or Non-LoS (NLoS). Finally DePF capitalizes on particle
Gaussian mixtures which allow for a hybrid particle-based and parametric BRF
fusion of the aforementioned pieces of information and jointly estimate the
position and clock parameters of the MUs.
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Kurzfassung
Die Lokalisierung von mobilen Nutzern (MU) in sehr dichten Netzen erfordert
häufig die Synchronisierung der Access Points (APs) untereinander. Erstens
konzentriert sich diese Arbeit auf die Lösung des Problems der Zeitsynchronisa-
tion in 5G-Netzwerken, indem ein hybrider Bayesischer Ansatz für die Schätzung
des Taktversatzes und des Versatzes verwendet wird. Wir untersuchen und
demonstrieren den beträchtlichen Nutzen der Belief Propagation (BP), die auf
factor graphs läuft, um eine präzise netzwerkweite Synchronisation zu erreichen.
Darüber hinaus nutzen wir die Vorteile der Bayesischen Rekursiven Filterung
(BRF), um den Zeitstempel-Fehler bei der paarweisen Synchronisierung zu ver-
ringern. Schließlich zeigen wir die Vorzüge der hybriden Synchronisation auf,
indem wir ein großes Netzwerk in gemeinsame und lokale Synchronisationsdomä-
nen unterteilen und so den am besten geeigneten Synchronisationsalgorithmus
(BP- oder BRF-basiert) auf jede Domäne anwenden können.

Zweitens schlagen wir einen Deep Neural Network (DNN)-gestützten Par-
ticle Filter-basierten (DePF)-Ansatz vor, um das gemeinsame MU-Sync&loc-
Problem zu lösen. Insbesondere setzt DePF einen asymmetrischen Zeitstempel-
Austauschmechanismus zwischen den MUs und den APs ein, der Informatio-
nen über den Taktversatz, die Zeitverschiebung der MUs, und die AP-MU Ab-
stand liefert. Zur Schätzung des Ankunftswinkels des empfangenen Synchro-
nisierungspakets nutzt DePF den multiple signal classification Algorithmus, der
durch die Channel Impulse Response (CIR) der Synchronisierungspakete gespeist
wird. Die CIR wird auch genutzt, um den Verbindungszustand zu bestimmen,
d. h. Line-of-Sight (LoS) oder Non-LoS (NLoS). Schließlich nutzt DePF particle
Gaussian mixtures, die eine hybride partikelbasierte und parametrische BRF-
Fusion der vorgenannten Informationen ermöglichen und die Position und die
Taktparameter der MUs gemeinsam schätzen.
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Chapter 1

Introduction

1.1 Why Synchronization and Localization Are

Important?

The fifth Generation (5G) of mobile networks is expected to deliver a wide

range of location-based services [1]–[3] such as user tracking [4] and location-

assisted beamforming [5]. To pave the way for those services, a myriad of precise

positioning techniques have been introduced in the literature, the majority of

which rely on the cooperation between the Access Points (APs) serving the Mobile

Users (MUs) [6]. Such APs are expected to be deployed in a high spatial density

manner to meet the increasing traffic demand, which results in MUs being in

Line-of-Sight (LoS) with a number of APs for most of the time. Moreover, these

APs are likely to be equipped with antenna arrays and Fine Time Measurement

(FTM) capability introduced in several standards, e.g., IEEE 802.11 [7]. The

former facilitates the Angle of Arrival (AoA) estimation, while the latter allows

for the inter-AP and AP-MU time-stamp exchange, by means of which inter-

AP and AP-MU synchronization and distance measurements are enabled. In

particular, to estimate the MU’s location, these techniques capitalize on the time

measurements carried out between the agents, i.e., MUs and APs, requiring them

to have a common time base [8]. Therefore, for the cooperative approaches

to function, the APs need to be accurately synchronized among each other as

well as with MUs [9], [10]. In summary, MU localization depends, on one

hand, on the inter-AP synchronization, and, on the other hand, on the MU-AP

synchronization. The latter can be performed jointly with the MU localization

itself. Therefore, in this section, we focus on the inter-AP synchronization and

MU joint synchronization and localization (sync&loc) problems and present their

corresponding backgrounds necessary for this dissertation.



2 Chapter 1 Introduction

1.2 Background

1.2.1 Synchronization

Time synchronization is primarily defined as the time alignment of multiple

devices, often based on a common time base. A wide variety of networks, from

Wireless Sensor Networks (WSN) [11] and wireless communication networks

[12], [13] to internet of things [14] can deliver most of their services only when

they rely on a common basic time. Traditionally, such an alignment is achieved

through a Global Positioning System (GPS) at every Base Station (BS), which

not only incurs a high financial cost, but also demands maintenance [12]. In

addition, the deployment of GPS in indoor environments is limited as its signals

can barely penetrate the buildings [15]. Furthermore, in the case where satellite

systems are unavailable, the BSs will be immediately out of service. To prevent

such network shutdowns, we typically resort to an alternative solution based on

the construction of time synchronization networks. Such networks deliver timing

information via the transport networks, usually using synchronization protocols

and algorithms.

The network synchronization algorithms are traditionally developed to satisfy

the maximum end-to-end allowable time error. Nevertheless, for a number of

applications such as localization, the absolute time error is of minor importance,

rather it is only necessary to achieve a certain precision at the local level. Given

the aforementioned points, to satisfy the time requirements of the absolute

time error at the global level and the relative time error in the local areas, the

synchronization network architecture of 5G is suggested by [12] to comprise

common synchronization areas and various synchronization clusters as shown

in Figure 1.1. The green and purple highlighted sections denote the common

area and clusters, respectively. If the networks are equipped with multiple

synchronization algorithms (or a combination thereof), each domain can, based

on its topology and capabilities, leverage the most suitable algorithm. In this

manner, the requirement of the relative time error is easier to satisfy in the

clusters. Such an approach brings a great deal of flexibility for the operators as

well. For instance, if one cluster area has an ultrahigh time accuracy requirement

such as providing positioning service, then a better synchronization technology

can be employed only for that specific area, without any need to update all

technologies for large-scale networks.

Generally, state-of-the-art synchronization algorithms rely on time-stamp ex-

change among the nodes to obtain the statistics required to estimate the clock
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MN
AP

BS

Figure 1.1: Division of the synchronization network to a common area (sur-
rounded by a green line) and several clusters (denoted by the purple
ellipses).

parameters. Such a time-stamp exchange mechanism is already defined in several

standards, i.e., IEEE 802.12 under the name fine time measurement [16], and

can be implemented by means of existing protocols, e.g., Precision Time Protocol

(PTP). Perhaps PTP, also denoted as IEEE 1588 [17], is the most well-known

synchronization protocol employed in a wide variety of applications. PTP uses

hardware time-stamping and pairwise communication between nodes to obtain

the pairwise time-stamps. The pairwise statistics derived from the time stamps,

can then be either directly employed in a structural way to perform network

synchronization, e.g., by pairwise synchronization in a layer-by-layer manner

[18]–[20], or can be utilized in a broader context to jointly estimate the clock

parameters of all nodes in a network [21]–[24]. The former is eminently suitable

for tree structure networks, while the latter can, in addition to tree networks,

address the synchronization problem in mesh networks. For example, in Fig-

ure 1.1, the common area, highlighted in green, is an example of a mesh network,

while the clusters, highlighted in purple, are examples of tree networks. We

elaborate on each type of algorithm in Chapter 3 and reveal the merit of each

when employed in their corresponding synchronization areas, i.e., common areas

or clusters.
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Figure 1.2: Mobile user joint synchronization and localization scenario.

1.2.2 Joint Mobile User Synchronization and Localization

In many systems, MU location is obtained from the time measurements between

the agents, e.g., in wireless communication, the agents are MU, APs, and BSs.

Typically, the distance between the agents can be obtained from the time of arrival

of a packet containing its own departure time-stamp. The MU location can then be

geometrically estimated by means of the obtained distances. Nevertheless, such

schemes presuppose a common time base among the agents, meaning that they

are required to be synchronized among each other with a high precision. In this

dissertation, the inter-agent synchronization problem is split into two phases. In

the first phase, as explained in Section 1.2.1, the BSs and the APs are synchronized

(shown in Figure 1.1), while in the second, the MU is synchronized with its

serving APs. Furthermore, the second phase is combined with the MU localization

representing the joint sync&loc problem. Figure 1.2 depicts a zoomed-in snapshot

of the network depicted in Figure 1.1 visualizing the scenario considered for joint

MU sync&loc. Specifically, MUs are moving in an urban area where they can

establish links to the available APs in their vicinity, which are in turn backhauled

by a BS.

The MU joint sync&loc problem has been the topic of many research works, e.g.,

[25]–[28], majority of which rely on Time of Arrival (ToA) or time-stamp exchange

among the agents to estimate the clock and position parameters in a centralized

or distributed manner. Nevertheless, they do not exploit additional available

information from agents which are not collected explicitly for the purpose of

synchronization or localization. An example of such data is the Channel Impulse

Response (CIR) available at APs. In particular, APs are expected to be equipped

with multiple antennas to ensure high signal-to-noise-ratio and provide services

such as beamforming [29]. Therefore, the CIR estimation capability in such multi-

antenna systems is anticipated. Furthermore, the CIR is essential to a number
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of tasks, e.g., equalization [30] and resource allocation [31], [32], rendering its

estimation vital for reliable functionality of future networks.

Some information about the location of MU is intrinsic to the AP-MU CIR.

There have been attempts in [33]–[35] to perform localization by means of CIR

and Machine Learning (ML) algorithms. Although a CIR contains invaluable

information about the environment and the scatterers wherein, it cannot alone

serve for high-precision localization, i.e., for achieving an accuracy of below

one meter. Nevertheless, the CIR can be used to, for example, determine the

link condition, i.e., Non-Line-of-Sight (NLoS) or LoS [36]. This is considered

as one of the most crucial decisions in wireless communication networks. The

reason is that measurements taken under NLoS conditions are highly erroneous

and can lead to a poor estimation of the location parameters, if not mitigated

or dropped. Before the advent of ML, such a decision used to be made based

on simple methods relying only on one aspect of the communication link, e.g.,

signal strength or ToA [37]. However, the remarkable ability of ML algorithms,

in particular DNNs, in extracting task-based features from the data (CIRs in the

case of this dissertation) has stimulated a number of research works in NLoS

identification, albeit in indoor environments. In this dissertation, we draw on

the same idea and employ CIR and DNNs for NLoS identification in outdoor

environments.

Another domain where the CIR can be leveraged to facilitate more accurate lo-

calization is AoA estimation, for which there exists a wide spectrum of approaches.

Algorithms such as Multiple Signal Classification (MUSIC) [38], Estimation of

Signal Parameters via Rotational Invariant Techniques (ESPRIT) [39], and their

variants [40] rely on the received signal to estimate the AoA in wireless com-

munication systems. They can treat CIRs as received signals and perform AoA

estimation, which can eventually be employed to enhance the accuracy of local-

ization [41]. If CIRs are collected under LoS conditions, the outcome of these

algorithms can be fused with the time-stamp exchange measurements to obtain

a more precise estimation of the location parameters.

All above-mentioned pieces of information, i.e., time-stamps, link condition,

and estimated AoA, can be combined to obtain the clock offset, skew, and the

MUs’ locations. The challenge is, however, the manner in which they are fused.

In particular, defining variables that are descriptive of multiple facets of the entire

phenomenon and the relation among them is integral to any accurate fusion

algorithm. In what follows, we further explain the tools we can employ to model
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the synchronization and localization problems and, subsequently, to compute the

MUs’ clock and position parameters.

1.2.3 Modeling of Synchronization and Localization Problem

From the mathematical point of view, all above-mentioned problems, i.e., syn-

chronization and MU localization, can be formulated as parameter estimation

problems. Specifically, synchronization is defined as the clock parameter (offset

and skew) estimation, while localization is considered as the location parameter

estimation, i.e., (xi, yi), where xi and yi denote the location of the i-th MU on

the x and y axes1. In other words, obtaining the value of those parameters is

equivalent to performing synchronization and localization.

Parameter estimation is defined as to experimentally determine the values of

the parameters of a particular system [42]. Therefore, the cornerstone of any

parameter estimation is the data obtained through measurements and the statis-

tics derived therefrom. In the work presented in this dissertation, the primary

source of such data is time-stamp exchange among the nodes as explained in

Section 1.2.1. Nevertheless, one of the aspects which distinguishes this work, is

that it also leverages other types of data which is not explicitly collected for the

purpose of localization or synchronization, i.e., CIRs. In particular, such approach

allows for taking advantage of all available information to reach a more accurate

and reliable estimation of the parameters of interest.

The data obtained from experiments contain valuable statistics about the

clock and position parameters. To derive these statistics, one needs to turn

to the tools available in probability theory and statistics. However, knowing

the statistics alone does not assist in parameter estimation if the relationships

between the parameters are not clear. Generally, such modelings are conducted

in the context of graph theory. In brief, what a successful parameter estimation

requires, is not only the statistics derived from the data, but also a descriptive

model of interaction between the parameters. Both of above-mentioned topics are

merged in the framework of Probabilistic Graphical Models (PGMs). The PGMs

are capable of modeling a real-world system by defining relevant parameters

and their interactions by combining tools stemming from probability and graph

theory. The framework is quite general in that many of the commonly proposed

statistical models (Kalman filters, hidden Markov models, etc.) can be described

as graphical models [43]. Once the models are ready, a wide variety of inference

1Throughout this dissertation, we focus on the two-dimensional localization and, therefore, we
do not mention the z axis.
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Derive statistics

Inter-parameter
relationships

Probabilistic Graphical Model

Data/Measurements

Synchronization

Localization

Parameter Estimation

Figure 1.3: Summary of the process leading to synchronization and localization.

algorithms can be run to perform parameter estimation. In brief, PGMs model

the random variables and their corresponding interconnections, paving the way

to perform parameter estimation with the aid of inference algorithms. Figure 1.3

summarizes the above-mentioned explanations.

Compared to other existing and popular frameworks, i.e., Neural networks

(NNs), PGMs allow for combining heuristics (by embedding prior knowledge

obtained from basic principles, intuition, etc.) and data to design more intelligent

algorithms. Furthermore, in contrast to the NNs, which lack interpretability,

PGMs provide detailed intermediate steps of the reasoning process leading to a

particular inference [44]. Nevertheless, PGMs and NNs should not be considered

as mutually exclusive frameworks, rather two different frameworks, each suitable

for certain types of problems and can be complementary to each other, e.g.,

by deploying NNs in the intermediate steps of reasoning of PGMs, as we do in

Chapter 4 of this dissertation. The details of PGM are explained in Chapter 2.

1.3 Dissertation Contributions and Organization

This dissertation aims at developing a precise MU localization technique, thereby

facilitating the provision of location-based services. It firstly focuses on the

network synchronization, which lays the ground for a precise localization. Subse-

quently, it tackles the MU joint sync&loc at the edge of wireless communication

networks.

Network synchronization in the Chapter 3 of this dissertation relies mainly

on the research published in [45]–[47]. In particular, in these publications, a

novel DBN- and BRF-based pairwise synchronization algorithm based on time-

stamp exchange has been developed. In addition, the principles of the FG- and

BP-based network-wide synchronization have been presented. Finally, a hybrid

synchronization approach was proposed to address the network synchronization

problem and to meet the local and global time error requirements.
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In addition to network synchronization, Chapter 4 of this dissertation provides

contributions towards joint synchronization and localization. These contributions

are based on the materials published in [48], [49]. Specifically, in the afore-

mentioned publications, the principles of CIR-based AoA estimation have been

presented. Furthermore, a novel DNN-based NLoS identification scheme has

been developed to determine the communication link condition. All aforemen-

tioned pieces as well as time-stamp exchange measurements have been combined

by two proposed algorithms, namely linearized BRF (L-BRF) and DNN-assisted

Particle-based Bayesian (DePF) joint sync&loc algorithm, to estimate the joint

probability distribution of MU’s clock and position parameters using Particle

Gaussian Mixture Filters (PGMFs).

The pillar of all above-mentioned contributions, i.e., hybrid network synchro-

nization and joint MU synch&loc, is PGMs. In particular, DBN, BRF, FG, BP, and

PGMF can be brought under the umbrella of PGMs, which are extensively de-

ployed across multiple applications to represent the conception of real-world

phenomena by means of interactive random variables in the shape of a graph

[50], [51]. Therefore, as a primary step, Chapter 2 of this dissertation begins

with elaborating on PGMs and the elements whereof integral to the algorithms

developed in this dissertation.

The contribution of this thesis is summarized as follows:

• The principles of DBN, BRF, FG, and BP are presented and discussed in the

context of PGMs.

• The fundamental ideas behind BP-based network-wide and BRF-based

pairwise synchronization are described.

• A hybrid statistical synchronization algorithm is developed by combining

two Bayesian approaches, i.e., BP- and BRF-based.

• The performance of the hybrid approach is analysed in terms of clock offset

and skew estimation error.

• A DNN-based NLoS identification algorithm is developed, and the principles

of AoA estimation are presented.

• A BRF-based joint sync&loc algorithm is proposed to perform MU joint

synchronization and localization.

• A DNN-assisted PF-based joint sync&loc algorithm is proposed to obtain

an estimation of the clock parameters and position of an MU in a hybrid

parametric and particle-based manner.
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• The performance of the proposed approaches are analysed and compared

with the state-of-the-art methods with the aid of detailed simulations in a

challenging real-world scenario.

The rest of this dissertation is structured as follows: In Chapter 2, the prelimi-

naries are extensively explained. In particular, the details of PGMs are explained

and discussed. Chapter 3 deals with the estimation methods for network-wide,

pairwise, and hybrid synchronization. Furthermore, the detailed analysis of the

synchronization algorithms developed in this work is presented and compared

with the state-of-the-art schemes by means of computer simulations. Chapter 4

illustrates the principles of the joint sync&loc algorithms. Moreover, an extensive

analysis is provided and a comparison with the state-of-the-art is provided. Fi-

nally, Chapter 5 concludes this work and points to the future work. Figure 1.4

depicts an in-detail representation of this dissertation as well as the structural

relationships among the chapters.

Remark: In order to make it easier for the readers to read this dissertation,

upon moving to a new chapter, we expand the previously defined acronyms when

used for the first time in that specific chapter.
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Introduction, Literature Review, Contributions Chapter 1

FGDBNBRF BP

Network-wide SyncPairwise Sync

Hybrid Sync

L-BRF DePF

Conclusion, Future Directions

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Figure 1.4: Flow of the dissertation and relations between the chapters. Gray
colored rectangles denote the parts where this dissertation delivers
its main contributions.
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Chapter 2

Review of Probabilistic Graphical
Models

In the previous chapter, we briefly discussed that Probabilistic Graphical Mod-

els (PGMs) can accomplish a successful parameter estimation by merging the

statistics derived from the data/measurements with a descriptive model of in-

teractions between the parameters. It was also mentioned that when compared

to other existing frameworks such as Neural Networks (NNs), PGMs permit the

embedding of priors as well as interpretability. In this chapter, we provide more

details on several PGMs that will be employed in the next chapters to perform

synchronization and localization. Throughout the whole chapter, wherever it is

possible, we elaborate on the relation between these two topics and the tools

described in this chapter.

2.1 Introduction

PGMs are widely employed across different fields to represent our understanding

of various phenomena in the world with the aid of interactive random variables

shown in the form of a graph. The probabilistic feature stems from the fact

that these models allow for dealing with a large amount of uncertainty due to

different reasons, e.g., having only partial knowledge, noisy observations, etc.

Moreover, they employ graphical representations from computer science to offer

the possibility of representing complicated models involving a large number of

variables. Such a combination of ideas from probability theory and computer

science provides, on the one hand, an intuitive and compact data structure for

capturing high-dimensional Probability Distribution Functions (PDFs), and, on

the other hand, with a set of methods and algorithms for efficient reasoning [52].
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Given that each of the random variables X1, · · · , Xn reflects the impact of a facet

of a real-world phenomenon, the first goal is to capture the uncertainty about the

possible states of the phenomenon in question in terms of the joint probability

distribution of the random variables, i.e., p(X1, · · · , Xn). It bears emphasizing

that even in simple cases, e.g. binary X and n = 10, the number of possible

states is substantially large (210), rendering the computation of joint distribution

extremely costly. What PGMs do instead, is to search for and exploit any structures

in the data to alleviate such burden.

Once the interaction between the random variables is graphically formed and

the probabilistic model is constructed, any question of interest can be answered by

running inference on the joint distribution. This can typically require a great deal

of computational effort and, therefore, is a crucial step if a successful modeling

is to be achieved. Figure 2.1 summarizes the above-mentioned steps.

Graphical modeling

X1, · · · , Xn InferenceReal-world Phenomenon

Figure 2.1: Steps taken in PGMs to model a phenomenon.

PGMs are generally classified into many categories such as Bayesian Network

(BN), clique tree, Factor Graph (FG), Markov random fields, etc. All the aforemen-

tioned models have their own strengths and weaknesses. Nonetheless, they are

different representations of the same information and can be converted between

them. Which model to employ is highly dependent on the type of the problem

one deals with. For the purpose of this work, we focus on two powerful and

widely used ones, namely, BN and FG. In the sections to come, we will elaborate

on the upsides and downsides of each as well as the inference algorithms that

can be run on them.

2.2 Bayesian Networks

BNs, also called belief networks or causal networks, comprise a set of nodes

connected to each other via directed edges. The former represents a set of
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random variables while the latter indicates the influence of its corresponding

nodes on each other, or alternatively, their conditional dependencies. Figure 2.2

depicts a simple example of a BN.

X1 X2 X3

Figure 2.2: An example of a BN.

We know from the chain rule of probability theory that any joint distribution

can be written in the form of a product of a set of conditional distributions [53].
For instance, using the chain rule we can write

p(X1, X2, X3) = p(X3|X2, X1)p(X2|X1)p(X1). (2.1)

whose corresponding BN is given in Figure 2.3, which is an example of fully

connected BNs, where each random variable is connected to all lower-numbered

variables. Therefore, a BN is considered a directed acyclic graph, where following

the edge direction never leads to a loop.

X1 X2 X3

Figure 2.3: An example of a fully connected BN.

Given this, the joint probability distribution modelled by a belief network can

be given by [54],

p(X1, · · · , XN ) =
N∏

i=1

p(Xi|pa(Xi)) (2.2)

where pa(Xi) represents the parental variables of Xi. Consequently, the joint

distribution corresponding to the PGM in Figure 2.2 is given by

p(X1, X2, X3) = p(X1)p(X2|X1)p(X3|X2). (2.3)

Note that the Markov condition is implicit in Equation (2.2). That is, every node

of a BN is conditionally independent of its non-descendants given its parents.

There are, in general, many types of BNs, each featuring a special modeling

capability. One specific form, incorporating the temporal aspect of a phenomenon,

is called Dynamic Bayesian Network (DBN). Such a model is particularly useful

when the same type of inference needs to be repeated on a structurally fixed
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X1X0

Z1

X2

Z2

· · · Xn

Zn

t = 1 t = 2 t = n

Basic BN

Figure 2.4: An example of a DBN with time indices 1, · · · , n.

BN, albeit with different variable values [55]. In the sequel, we describe the

properties of DBNs in detail.

2.2.1 Dynamic Bayesian Networks

DBNs are a singly connected variant of BNs specifically suitable for modeling of

time series [56]. There is in principle no difference between the variables and

edges of DBNs and those of BNs. Nevertheless, the variables carry a time index

accounting for their temporal dimension, what also enables DBNs to model a

dynamic phenomenon. All variables with the same time index are considered

as a state of DBN. The states of DBN satisfy the Markovian property, that is, the

state of the system at time t depends only on its immediate past, i.e., its state at

time t − 1 [57].
Figure 2.4 depicts an example of a DBN which is constructed by beginning

from an initial state X0 and then repeating a simple BN block comprising two

variable nodes and one directed edge. The dash arrow designates the temporal

evolution of the DBN while the solid one connects the nodes in the basic BN. As

mentioned before, there is no difference between these two edges and we only

differentiate them to properly describe the temporal behavior of the DBN.

The joint PDF corresponding to the DBN in Figure 2.4 can be written as

p(X1, · · · , Xn, Xn+1, Z1, · · · , Zn) = p(X0)
n∏

t=1

p(Xt |Xt−1)p(Zt |Xt), (2.4)

where p(Xt |Xt−1) accounts for the temporal dependencies between the states

while p(Zt |Xt) indicates the dependencies between X and Z at time t. It turns out

that the DBN in Figure 2.4 is capable of modeling of a wide range of phenomena in

practice. For example, in the context of synchronization between two nodes, the

clock parameters of the nodes can be modeled by X while the time measurements

can be represented by Z , which are periodically collected. Similar modeling can
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be done for the localization problem. In the Section 2.4.1, we deal with the

inference on DBNs and in particular the methods applicable to the model shown

in Figure 2.4.

2.3 Factor Graphs

FGs are bipartite graphs used to represent the factorization of a PDF. An FG

consists of a number of nodes, each representing a variable, and several factor

nodes, each being a function of its neighboring variables. The variable nodes

are normally represented by circles while factors are denoted by rectangles.

Furthermore, the edges between all nodes are undirected. Figure 2.5 depicts

an example of an FG with three variable nodes X1, X2 and X3 connected to each

other via the factor nodes denoted by rectangles, each representing a function

f (·).
X1

X2 X3

f1(X1, X2) f2(X1, X3)

f3(X2, X3)

Figure 2.5: An example of FGs.

In general, the joint probability distribution corresponding to a factor graph is

given by

p(X1, · · · , Xn) =
m∏

j=1

f j(Sj), (2.5)

where f j(·) denotes the j-th factor, whose argument is the j-th subset of the

variables represented by Sj. We know from Equation (2.2) that the BNs also

represent their corresponding joint distributions by means of factorization on the

basis of conditional dependencies. Given that, BNs and FGs can be transformed

into each other, whereby each factor is equal to a specific conditional probability

or a multiplication of several. Figure 2.6b depicts the factor graph equivalent to

the BN in Figure 2.6a where

f1(X1, X2) = p(X1)p(X2|X1), f2(X2) = p(X2), f3(X2, X3) = p(X3|X2).
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X1 X2 X3

(a) An example of a BN.

X1 X2 X3f1(X1, X2)

f2(X2)

f3(X2, X3)

(b) The FG equivalent to the BN.

Figure 2.6: BN and its equivalent FG.

It is worth mentioning that both BN and FG are different representations of

the same information, i.e., the joint probability distribution of a set of random

variables. In fact, if we had two exact inference algorithms for an equivalent BN

and FG, the results of inference would be equal. Nevertheless, depending on the

context and the type of problem we are dealing with, one might be preferred

over another to facilitate inference. An example where FG eases the inference is

the sum-product algorithm, also known as Belief Propagation (BP). In the next

section, we delve into the details of this algorithm.

2.4 Inference

Assuming that all relevant variables X1, · · · , Xn for the phenomenon in question

are identified and the probabilistic model p(X1, · · · , Xn) is constructed, inference,

or alternatively reasoning, is then performed by introducing evidence that sets the

variables in known states and, consequently, allows for computing any probability

of interest conditioned on this evidence [58]. Among all the possible inferences,

marginal inference is of crucial importance as a substantial number of real-world

inferences can be brought under the umbrella of this term. The term marginal

is defined as the distribution of a subset of variables calculated from the joint

distribution. For example,

p(X1, X2) =

∫
p(X1, · · · , Xn)dX3 · · · dXn, (2.6)

where p(X1, X2) is a marginal of distribution p(X1, · · · , Xn) and the process in

Equation (2.6) is referred to as marginalization. Given this, marginal inference

is defined as the computation of the distribution of a subset of variables given

another subset.
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2.4.1 Inference in Dynamic Bayesian Networks

To further clarify the concept of inference in PGMs, let us calculate two PDFs

of interest typical for networks with the structure similar to that of Figure 2.4.

In particular, we are interested in the probability of Xn+1 given all the previous

variables Zn∀n= 1, · · · , n. Furthermore, we seek to calculate the probability of

Xn given Zn∀n= 1, · · · , n. In the context of filtering, the former is referred to as

prediction while the latter is called estimation.

p(Xn+1|zn)∝
∫

p(X1, · · · , Xn, Xn+1, Z1, · · · , Zn)dxn, (2.7)

where xn = [X1, · · · , Xn] and zn = [Z1, · · · , Zn]. Given Equation (2.4), the inte-

grand of Equation (2.7) can be rewritten as

p(Xn+1|zn)∝
∫ �

p(X0)
n∏

t=1

p(Xt |Xt−1)p(Zt |Xt)

�
p(Xn+1|Xn)dx. (2.8)

We can rewrite the above equation as

p(Xn+1|zn)∝∫
p(Zn|Xn)p(Xn+1|Xn)dXn

∫ �
p(X0)

n−1∏
t=1

p(Xt |Xt−1)p(Zt |Xt)

�
p(Xn|Xn−1)dxn−1.

(2.9)

It is straightforward to see that

p(Xn|zn−1)∝
∫ �

p(X0)
n−1∏
t=1

p(Xt |Xt−1)p(Zt |Xt)

�
p(Xn|Xn−1)dxn−1

is obtained by decrementing the indices in Equation (2.8). Finally,

p(Xn+1|zn)∝
∫

p(Xn|zn−1)p(Zn|Xn)p(Xn+1|Xn)dXn. (2.10)

Reconducting the steps in Equations (2.7)-(2.10) for p(Xn|zn) results in

p(Xn|zn)∝ p(Xn|zn−1)p(Zn|Xn). (2.11)

It is worth mentioning that both Equations (2.10) and (2.11) are recursive rela-

tions [59]. Such a property is extremely vital for applications where X is only



18 Chapter 2 Review of Probabilistic Graphical Models

indirectly observable through Z , e.g., parameter estimation in synchronization

and localization. In particular, it allows for efficiently updating the previous

estimate of X upon reception of the new observation Z without recomputing all

previous distributions.

In the context of statistical signal processing and estimation, Equation (2.11)

is referred to as Bayesian Recursive Filtering (BRF)[59]. The term p(Xn|zn−1)
denotes the prediction step while p(Zn|Xn) is known as measurement update or

correction step. These steps are integral to performing synchronization and joint

sync&loc in Chapters 3 and 4.

2.4.2 Inference in Factor Graphs

We mentioned before that inference is defined as the calculation of a probability

of interest given specific evidence. Such calculation is costly in many applications

where the number of variables is high. Nevertheless, graphical representations

can, depending on the type of the problem, lighten the computational burden

by revealing conditional dependencies or enabling distributed computation. A

famous example is BP running over FGs, where the factorization enables efficient

inference [60]. In what follows, we describe the details of BP when running over

singly connected and loopy FGs.

2.4.2.1 Belief Propagation

Belief propagation is an efficient inference algorithm for tree-structured graphical

models [54]. It relies mainly on one of the central concepts fundamental to every

efficient inference, namely message passing, where information from the graph

is summarized in local messages and passed over. Imagine we would like to

calculate the marginal p(X1) in the FG of Figure 2.6b. We can write

p(X1) =

∫
p(X1, X2, X3)dX2dX3 =

∫
f1(X1, X2) f2(X1) f3(X2, X3)dX2dX3.

(2.12)

Since f1(X1, X2) is not dependent on X3, the above integral can be rewritten as

p(X1) =

∫
f1(X1, X2) f2(X2)

�∫
f3(X2, X3)dX3

�
︸ ︷︷ ︸

λ f3→X2︸ ︷︷ ︸
λX2→ f1

dX2

︸ ︷︷ ︸
λ f1→X1

, (2.13)
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where λ denotes the messages between the nodes. What was conducted in

Equation (2.13) is called variable elimination since we sequentially take the

integral over the variables, or, alternatively, we eliminate them one by one from

the distribution. The elimination of a variable can be viewed as passing a message

from a node to its neighboring node. Such a mathematical procedure can be

generalized to more complex networks, e.g., multi-node FGs, resulting in their

corresponding inter-node messages.

The messages in FGs are divided into two categories, variable-to-factor and

factor-to-variable messages. The message from variable node i to factor node j

is calculated as

λXi→ f j
=

∏
fk∈{ne(Xi)\ f j}

λ fk→Xi
(2.14)

where ne(Xi) denotes the set of neighboring factor nodes of Xi. The message

from the factor j to the variable node i is calculated as

λ f j→Xi
=

∫
ne( f j)\Xi

f j(ne( f j))

⎡
⎣ ∏

Xk∈{ne( f j)\Xi}
λXk→ f j

⎤
⎦ , (2.15)

where ne( f j) denotes the set of neighboring variable nodes of f j. Figures 2.7a and

2.7b depict the principles described in Equations (2.14) and (2.15), respectively.

... Xi

λ
f1→X

i

λ f n
→X i

λXi→ f j

f1

fn

f j

(a) Node to factor message.

X1

...

Xn

Xi

λ
X
1→

fj

λ X n
→ f j

λ f j→Xi
f j

(b) Factor to node message.

Figure 2.7: Principles of message passing in FGs.

2.4.2.2 Loopy Belief Propagation

As explained in the Section 2.4.2.1, BP is a technique to draw the exact inference

of marginals p(Xi) in singly-connected FGs. The algorithm is purely local, i.e., the

message update at each node is performed without any awareness of the graph’s
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global structure, relying only on the local neighborhood. Given this, even if the

graph is loopy (multiply-connected), the algorithm can still be deployed in the

hope that it converges, albeit with a good approximation [61], [62]. Although

the convergence is generally not guaranteed, when it converges, the results can

be surprisingly accurate. There are a number of applications such as [21], [23],
[63], [64] where loopy BP is guaranteed to converge under certain conditions.

We will deal with these applications further in Chapter 3.

2.5 Summary

In this chapter, we discussed the principles of PGMs and their capabilities in

modeling real-world phenomena by reviewing some aspects of graph and proba-

bility theory. In particular, we elaborated on how DBNs and FGs can be helpful

when aiming to estimate a particular random variable representing an aspect of

a phenomenon. Finally, we presented two inference algorithms that can be run

on DBNs and FGs for estimating any distribution of interest (see Table 2.1). In

the following chapters, we leverage the preliminaries presented in this chapter to

perform synchronization and localization in wireless communication networks.

Table 2.1: Summary of the algorithms presented in this chapter.

Inference Alg. Corresponding
PGM

Strengths Procedure

Bayesian
Recursive Fil-
tering (BRF)

Dynamic
Bayesian Net-
works (DBNs)

Time-series mod-
eling

Recursive predic-
tion, correction,
and estimation

Belief Propa-
gation (BP)

Factor Graphs
(FGs)

Factorized PDF
modeling

Message passing
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Chapter 3

Statistical Network Synchronization

3.1 Introduction

Network synchronization is integral to a large variety of services such as dis-

tributed beamforming [65], tracking [4], mobility prediction [66], and localiza-

tion [8], [9], [26]. To pave the way for these services, considerable effort has

been made to design fast, continuous, and precise synchronization algorithms

across different networks, from Wireless Sensor Networks (WSNs) to wireless

communication networks [13]. Generally, state-of-the-art synchronization algo-

rithms adopt two main macroscopic approaches: a) designing a network-wide

synchronization algorithm from scratch [21]–[24], and b) employing the existing

pairwise synchronization protocols in a structural manner, e.g. layer-by-layer

pairwise synchronization [18]–[20].
Network-wide synchronization in WSNs has been addressed in [21], [23], [24]

by employing the Belief Propagation (BP) algorithm. Typically, BP runs on a

Factor Graph (FG) corresponding to the network and calculates the marginals at

each node by iteratively exchanging beliefs between neighboring nodes [67]. The

algorithm is advantageous in the sense that it is fully distributed and estimates

the clock offset and skew with high accuracy. However, the amount of time

required to compute the pairwise conditional Probability Distribution Functions

(PDFs) needed for FGs, and then conducting the iterative message passing, can be

considered as a potential drawback rendering its practical applicability limited.

Pairwise synchronization is mostly conducted by exchanging time-stamps be-

tween the nodes using the Precision Time Protocol (PTP) [68]. To perform

network synchronization in a layer-by-layer manner, the PTP is then combined

with the Best Master Clock Algorithm (BMCA), whose purpose is to determine the

Master Node (MN) in the network. While this combination operates sufficiently

robust in tree-structured networks with medium time-sensitivity (sub-μs range),
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BMCA’s poor performance in networks with mesh topology on the one hand, and

uncertainty in time-stamping on the other hand, render the algorithm futile in

highly time-sensitive (sub-hundred nanosecond (ns) range) loopy networks. De-

spite the attempts in [18] and [45] to address the time-stamping uncertainty (or

error) by virtue of Kalman filtering, this approach is not optimal in the Bayesian

sense since not all information available from time-stamps is utilized. Instead, the

Bayesian Recursive Filtering (BRF) utilized in [11] can be employed on a Dynmaic

Bayesian Network (DBN) to capture all available information in time-stamps,

thereby optimally rectifying the time-stamping error.

Although all the aforementioned techniques have made invaluable contribu-

tions, none of them alone can be expected to meet the global and local time

precision aimed for by 5G for accurate localization [69]. Instead, a combina-

tion of these algorithms is more likely to deliver a superior performance owing

to diverse network topologies (mesh, tree, or a combination thereof) [45]. In

particular, to successfully achieve precise network synchronization, each domain

can, based on its topology and capabilities, leverage the most suitable algorithm,

whereby satisfying its own requirement of the relative time error while keeping

the absolute time error low. This is particularly of interest in applications where

ultra-high time accuracy is required in a specific synchronization domain, e.g.,

for positioning services.

In summary, what is covered in this chapter is as follows:

• We provide a discussion on the time-stamp exchange mechanism on the the-

oretical and practical level. The mechanism helps collecting the necessary

measurements to estimate the nodes’ clock parameters.

• We present the principles of a network-wide synchronization algorithm

based on the BP running on an FG. Such an approach achieves end-to-end

synchronization by passing messages among the neighboring nodes.

• We develop a pairwise synchronization algorithm based on the BRF per-

forming on a DBN, where the focus is primarily on the fast synchronization

of two neighboring nodes.

• We adopt a hybrid approach to accurately estimate the clock offset and

skew, whose performance is then studied and evaluated by comparing it

with a non-hybrid algorithm, i.e., BP.

In what follows, we firstly introduce the system model, i.e., the clock model

as well as time-stamp exchange mechanism. Subsequently, we deal with the
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estimation methods for network-wide, pairwise, and hybrid synchronization

based on the principles explained in Chapter 2. Finally, we present an in-depth

analysis of the algorithms proposed in this chapter with the aid of simulation

results.

3.2 System Model

In this section, we firstly present the clock model for each node in the com-

munication network. Then, we explain the components constructing the clock

offset in detail. Finally, the time-stamp exchange mechanism is comprehensively

described.

3.2.1 Clock Model

The clock behavior for each node i is modeled as [70]

ci(t) = γi t + θi, (3.1)

where ci(t) shows the local time at each node, t represents the reference time, γi

denotes the clock skew, and θi is the clock offset. We consider the parameter γi as

random and varying over time. However, it is common to assume that it remains

unchanged during one synchronization period [18], [23]. Moreover, θi consists of

several components, all thoroughly discussed in the following subsection. In the

light of above-mentioned points, time synchronization can be deemed equivalent

to estimating γi and θi (or transformations thereof) for each node. Corrections

are then applied such that, ideally, all clocks show the same time as the reference

time t.

3.2.2 Clock Offset Decomposition

We decompose the clock offset θi as shown in Figure 3.1, thereby elaborating on

its constituent components. The parameter ti/t j is the time it takes for a packet to

leave the transmitter after being time-stamped (the term “time-stamp” is referred

to hardware time-stamping hereafter), (
dji

vc
)/(

di j

vc
) denotes the propagation delay,

and ri/rj represents the time that a packet needs to reach the time-stamping
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Time-Stamping

node j
node i

tj dji ri

dijrj ti
Time-Stamping

Figure 3.1: Decomposition of delay into its constituent components.
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=8969207
-8969984
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Figure 3.2: Experiment conducted to monitor the clock offset and skew evolution.

point upon arrival at the receiver. Furthermore, di j/dji and vc represent the

distance from node i/ j to node j/i and the speed of light, respectively. Generally,

ti +
di j

vc
+ rj �= t j +

dji

vc
+ ri,

meaning that the packets sent from node i to node j do not experience the

same delay as the packets sent from node j to node i. In particular Ti j = ti + rj,

and Ri j = t j + ri are random variables due to multiple hardware-related random

independent processes and can, therefore, be assumed i.i.d. Gaussian random

variables distributed as� (Ti j|μT ,σ2
T ) and� (Ri j|μR,σ2

R), respectively [21], [23],
[24]. Conversely, di j and dji are usually assumed to be deterministic and sym-

metric (di j = dji)[21]. To provide more insights into the statistical behavior of

the clock offset, the experiment depicted in Figure 3.2 was conducted in [71,

Section 6]. One Microsemi TP4100 node is configured as master and the other as

slave. They are connected to two street nodes equipped with Transparent Clocks

(TC) capable of time-stamping a packet upon entering and exiting the node. The

clock frequency of the nodes is 125 MHz (8 ns time step). The total delay (offset

+ time of flight) is calculated as the difference between the Master and slave clocks

minus the TC correction time (the time a packet travels within the two street nodes).
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Figure 3.3: Histogram of measured offset and its Gaussian fit for 5000 packet
exchange.

Figure 3.3 depicts the histogram of the clock offset and its Gaussian fit for

5000 packet exchanges 1. In particular, the variance of the offset turns out to be

around 9 ns, what is crucial to know if we are to reduce the error in the clock

offset/skew estimation. Another experiment which verifies our results is the

distance measurement using two-way ranging conducted in [72]. There, we also

observe a Gaussian distribution of distance error that corresponds to a Gaussian

distribution for the delay. In the following, we describe the time-stamp exchange

mechanism.

3.2.3 Time-stamp Exchange Mechanism

We employ the asymmetric time-stamping mechanism introduced in [73], em-

ployed in [8], [23], and shown in Figure 3.4. It functions as follows: node j

transmits a sync message wherein the local time cj(tk
1) is incorporated. Node i

receives the packet and records the local reception time ci(tk
2). After a certain

time, the process repeats again with cj(tk
3) and ci(tk

4). Subsequently, at local time

ci(tk
5), node i sends back a sync message to node j with ci(tk

2), ci(tk
4) and ci(tk

5)

1The uncertainty in time-stamping is due to the precision of the devices as well as the manner
of hardware time-stamping implementation. For the nodes in this experiment, the precision
of time-stamping was 8 ns, meaning that the time-stamps were always an integer multiple of
8 ns. Newly designed devices can fulfill the accuracy of below 5 ns.
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incorporated. Upon reception, node j records the local time cj(tk
6). Given that,

the relation between local clocks can be written as:

1
γi
(ci(t

k
2)− θi) =

1
γ j
(cj(t

k
1)− θ j) + di j + T k,0

i j , (3.2)

1
γi
(ci(t

k
4)− θi) =

1
γ j
(cj(t

k
3)− θ j) + di j + T k,1

i j , (3.3)

1
γi
(ci(t

k
5)− θi) =

1
γ j
(cj(t

k
6)− θ j)− di j − Rk

i j , (3.4)

where (tk
1, tk

3)/t
k
6 and tk

5/(t
k
2, tk

4) are the time points where neighboring nodes j

and i send/receive the sync messages, respectively. Stacking the weighted sum

of Equations (3.2), (3.3) and (3.4) for K rounds of time-stamp exchange gives

W jiϑi +Wi jϑ j = zi j, (3.5)

where W ji and Wi j are K × 2 matrices with the k-th row being

�
1
2

�
ci(t

k
2) + ci(t

k
4)
�
+ ci(t

k
3),−2

�
,

and

−
�

1
2

�
ci(t

k
3) + ci(t

k
4)
�
+ cj(t

k
4),−2

�
,

respectively. Moreover, we introduce the vector variables ϑi �
�

1
γi

, θi
γi

�T
, and ϑ j ��

1
γ j

,
θ j

γ j

�T
with 1

γi
, θi
γi

, 1
γ j

, and
θ j

γ j
being Gaussian distributed [8], [24]. Finally zi j ∼

� (z|0,σ2
i jIK), where σ2

i j =
σ2

Ti j

2 +σ
2
Ri j

. In concrete terms, what Equation (3.5)

implicitly states is that for given ϑi and ϑ j, the probability that we measure W ji

and Wi j is equal to � (z=W jiϑi +Wi jϑ j|0,σ2
i jIN ). This can be expressed as

p(W ji,Wi j|ϑi,ϑ j)∼� (z=W jiϑi +Wi jϑ j|0,σ2
i jIN ). (3.6)

As we will see in the following sections, the structure obtained in (3.6) will help

us in approximating the joint distribution of all the clock parameters by a more

tractable mathematical expression.

3.3 Clock Offset and Skew Estimation

In this section, first, the principles of BP-based network-wide synchronization are

described. Subsequently, we introduce the BRF-based pairwise synchronization.
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i j di j + Rk
i j

node i

node j

Figure 3.4: Asymmetric time-stamp exchange between node i and node j.

Lastly, we present an approach, where both techniques are employed in a hybrid

manner.

3.3.1 Network-wide Offset and Skew Estimation

In network-wide synchronization, the goal is to synchronize each node with

a global MN. Alternatively, the problem can be reformulated as an estimation

of parameters γi and θi (or vector parameter ϑi), based on the observation

matrices W ji and Wi j. Mathematically, this is translated to the following marginal

calculation:

p(ϑi|{W ji,Wi j}i=1:M , j∈ne(i)) =∫
· · ·
∫

p(ϑ1, · · · ,ϑM |{W ji,Wi j}i=1:M , j∈ne(i))dϑ1 · · · dϑi−1dϑi+1 · · · dϑM , (3.7)

where ne(i) denotes the set of neighboring nodes of node i and M is the total

number of the nodes in the network. Consequently, ϑi can be estimated as

ϑ̂i = argmax
ϑi

p(ϑi|{W ji,Wi j}i=1:M , j∈ne(i)), (3.8)

where ϑ̂i denotes the estimated value of the clock parameters. Unfortunately,

the computation cost and complexity of the marginal PDF in Equation (3.7) is

extremely high. Instead, as a compromise, one can resort to approximating the

integrand of Equation (3.7). This is carried out in the following with the aid of

variational methods.
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3.3.1.1 Variational Methods

The basic idea underpinning variational methods is to approximate an intractable

complex distribution p(x) by a straightforward tractable distribution q(x). To this

end, one can minimize the discrepancy measure Kullback-Leibler (KL) divergence

between p(x) and q(x), given by [67]

DK L(p‖q) =
∫ +∞

−∞
p(x) log

�
p(x)
q(x)

�
dx. (3.9)

The minimization is then achieved by deploying the Bethe method, which imposes

the following structure on q(x) [74]:

q(x)∝∏
i

q(xi)
∏

i, j

q(xi, x j), (3.10)

where x j and xi are neighboring nodes. The structure in Equation (3.10) can be

appropriately represented by an FG, the details of which are extensively explained

in Section 2.3.

Adopting the above-mentioned approximation, the conditional probability

under the integral of Equation (3.7) turns into

p(ϑ1, · · · ,ϑM |{W ji,Wi j}i=1:M , j∈ ne(i))∝
∏

p(ϑi)
∏

p(Wi j,W ji|ϑi,ϑ j), (3.11)

where p(ϑi) indicates the Gaussian distributed prior knowledge on ϑi and

p(W ji,Wi j|ϑi,ϑ j) is the pairwise conditional probability computed from Equa-

tion (3.6). The approximation in (3.11) can be well represented by FGs. In the

following section, we present the details of this representation and how it can

facilitate the clock parameter estimation.

3.3.1.2 Factor Graph and Belief propagation

We construct the graphical model in Figure 3.5, where a number of APs are back-

hauled by a mesh network, each represented by ϑi. Note that, when performing

network-wide synchronization, APs are also considered as variable nodes and

there is a factor node between each AP and its corresponding backhauling node.

This has not been depicted in the figure to avoid unnecessary complexity. The

main objective is then to compute the marginal illustrated in Equation (3.7) by

means of BP described in Section 2.4.2.1.

As mentioned before, BP is a technique which relies primarily on the exchange

of beliefs between neighboring nodes to infer the marginals. This inference is
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Figure 3.5: The FG corresponding to an exemplifying network. Note that the FG is
drawn only for the backhaul network to avoid unnecessary complexity.
To draw the FG of the whole network, one can simply consider APs
as variable nodes connected to their corresponding backhaul nodes
via factor nodes.

ϑi ϑj  p(Wij, Wji|ϑi, ϑj)
λpi j→ϑi

λϑi→pi j

λϑ j→pi j

λpi j→ϑ j

Figure 3.6: Message passing principles in BP.

proved to be exact when the graphs are singly connected and approximate if they

contain loops [67]. While generally there is no guarantee that the algorithm

converges in loopy graphs, [24] and [23] have indicated that, if there exists

at least one MN in the network, the convergence of BP is certain. Figure 3.6

illustrates the details of the message passing in BP for the nodes ϑi and ϑ j. For the

sake of simplicity, we denote the factor p(W ji,Wi j|ϑi,ϑ j) with pi j. The message

from a factor vertex pi j to a variable vertex ϑi in iteration l is then given by [67]

λ
(l)
pi j→ϑi

(ϑi) =

∫
p(W ji,Wi j|ϑi,ϑ j)λ

(l)
ϑ j→pi j

(ϑ j)dϑ j, (3.12)
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where λ(l)ϑ j→pi j
(ϑ j) denotes the message from a variable node ϑ j to the variable

vertex pi j and is given by

λ
(l)
ϑ j→pi j

(ϑ j) = p(ϑ j)
∏

k∈{� ( j)\i}
λ
(l−1)
pk j→ϑ j

(ϑ j). (3.13)

Finally,

b(l)(ϑi)∝ p(ϑi)
∏
k∈� i

λ
(l)
pik→ϑi

(ϑi), (3.14)

where b(l)(ϑi) denotes the marginal belief of variable node ϑi in the l-th iteration.

It is expected that the result of the integral in Equation (3.12) is Gaussian dis-

tributed as its arguments are also Gaussian distributed. We note that, in practice,

both Equation (3.12) and Equation (3.13) are locally computed at each node

and only λ(l)pi j→ϑi
(ϑi) is transmitted from node j to node i as shown in Figure 3.7.

Let λ(l)j→i(ϑi)�� (ϑi|μ(l)j→i,Σ
(l)
j→i) denote the message sent from j to i. Consid-

ering Equations (3.12) and (3.13), the covariance matrix Σ(l)j→i can be calculated

by [24], [46], [75]

Σ(l)j→i =
�
WT

ji

�
Ω(l−1)

j→i

�−1
W ji

�−1

, (3.15)

where

Ω(l−1)
j→i = σ

2
i jIN +Wi j

⎡
⎣Σ−1

j +
∑

k∈ne( j)\i

�
Σ
(l−1)
k→ j

�−1

⎤
⎦
−1

WT
i j, (3.16)

and Σ j is the covariance matrix of p(ϑ j). Furthermore,

μ(l)j→i =

−Σ(l)j→iW
T
jiΩ
(l−1)
j→i Wi j

⎡
⎣Σ−1

j +
∑

k∈ne( j)\i

�
Σ(l−1)

k→ j

�−1

⎤
⎦
−1

×
⎡
⎣Σ−1

j μ j +
∑

k∈ne( j)\i

�
Σ(l−1)

k→ j

�−1
μ(l−1)

k→ j

⎤
⎦ , (3.17)

where μ j represents the mean vector of p(ϑ j). It should be noted that Σ j and

μ j remain unchanged during the message updating process. The BP algorithm

initializes the message from node j to node i as λ(0)j→i(ϑi) � � (ϑi|0,+∞I2).
Node j computes its outgoing message to node i according to Equations (3.15)
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ϑi ϑj  p(Wij, Wji|ϑi, ϑj)   p(Wij, Wji|ϑi, ϑj)

physical node i

physical node j

λi→ j

λ j→i

Figure 3.7: λi→ j = λpi j→ϑ j
and λ j→i = λpi j→ϑi

illustrate the BP messages ex-
changed between physical nodes in practice.

and (3.17) in iteration l with its available Σ(l−1)
k→ j and μ(l−1)

k→ j (k ∈ ne( j) \ i). The

belief of node i is then computed as

b(l)(ϑi)�� (ϑi|ν(l)i ,P(l)i ), (3.18)

where

P(l)i =

⎡
⎣Σ−1

i +
∑

j∈ne(i)

�
Σ(l−1)

j→i

�−1

⎤
⎦
−1

, (3.19)

and

ν(l)i = P(l)i

⎡
⎣Σ−1

i μi +
∑

j∈ne(i)

�
Σ(l−1)

j→i

�−1
μ(l−1)

j→i

⎤
⎦ . (3.20)

Finally, the clock skew and offset estimation can be computed by

γ̂
(l)
i =

1

ν(l)i (1)
, θ̂ (l)i =

ν(l)i (2)

ν(l)i (1)
. (3.21)

The calculation in (3.21) stems from the transformation ϑi =
�

1
γi

, θi
γi

�T
. In what

follows, we describe the procedure of pairwise synchronization.
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3.3.2 Pairwise Offset and Skew Estimation

In pairwise synchronization, one node is assumed to be the MN. In particular, in

Figure 3.4, instead of a global reference c(t) = t, we take node j as MN. We can

then introduce the transformations

1
γ̃i
=
γ j

γi
, (3.22)

θ̃i = θi − γ̃iθ j, (3.23)

d̃i j + T̃ k
i j = γ j(di j + T k

i j), (3.24)

d̃i j − R̃k
i j = γ j(di j − Rk

i j). (3.25)

For the sake of simplicity, as done in [4], we assume d̃i j = di j, R̃k
i j = Rk

i j, and

T̃ k
i j = T k

i j. This is valid owing to γ j ≈ 1 and the value of di j + T k
i j and di j − Rk

i j

being low. Finally, Equations (3.2), (3.3) and (3.4) turn into

1
γ̃i
(ci(t

k
2)− θ̃i) = cj(t

k
1) + di j + T k,0

i j , (3.26)

1
γ̃i
(ci(t

k
4)− θ̃i) = cj(t

k
3) + di j + T k,1

i j , (3.27)

1
γ̃i
(ci(t

k
5)− θ̃i) = cj(t

k
6)− di j − Rk

i j. (3.28)

By the end of the k-th round of time-stamp exchange, each node is expected to

have collected the time-stamps c1:k
i j =

�
c1

i j, · · · ,ck
i j

�T
, where

ck
i j =

�
cj(t

k
1), ci(t

k
2), cj(t

k
3), ci(t

k
4), ci(t

k
5), cj(t

k
6)
�

.

Let ϑ̃k
i be the state of the vector variable ϑ̃i �

�
1
γ̃i

, θ̃i
γ̃i

�T
after the k-th round of

time-stamp exchange (visualized in Figure 3.8). Similar to Equation (3.7) the

PDF corresponding to the k-th state can be written as

p(ϑ̃k
i |c1:k

i j ) =

∫
p(ϑ̃0

i , · · · , ϑ̃k
i |c1:k

i j ) dϑ̃0
i · · · dϑ̃k−1

i . (3.29)

Following the steps explained in Section 2.4.1, Equation (3.29) can be simplified

to

p(ϑ̃k
i |c1:k

i j )∝ p(ϑ̃k
i |c1:k−1

i j )p(ck
i j|ϑ̃k

i )∼� (ϑ̃k
i |μk

i ,Σk
i ). (3.30)
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c1
i j c2
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Figure 3.8: Bayesian representation of offset and skew estimation.

The term p(ϑ̃k
i |c1:k−1

i j ) is known as prediction step while the term p(ck
i j|ϑ̃k

i ) is

referred to as measurement update or correction step [59]. Considering the clock

properties discussed in Section 3.2.1, it is typical in wireless networks to assume

that ϑ̃k
i is Gaussian distributed [4], [8], [23]. Given this assumption, in the sequel,

we show that the relation between the states is linear, implying that the marginal

in Equation (3.30) is also Gaussian distributed. In particular, we first describe

the details of prediction step, where all the parameters are denoted by (·)−. Next,

we obtain the likelihood of the measurements whose parameters are represented

by (·)+. Lastly, we compute the parameters of the posterior distribution in (3.30).

3.3.2.1 Prediction

Assuming a constant skew in one synchronization period (= K rounds of time-

stamp exchange), a reasonable prediction for ϑ̃k
i is given by [18]

ϑ̃k
i = Aϑ̃k−1

i + nk−1
i , (3.31)

where A =

�
1 0

cj(tk
1)− cj(tk−1

1 ) 1

�
, and nk−1

i denotes the Gaussian noise vector.

Given Equation (3.31), the prediction term can be written as

p(ϑ̃k
i |c1:k−1

i j )∼� (ϑ̃k
i |(μk

i )−, (Σ
k
i )−), (3.32)

where (μk
i )− = Aμk−1

i and (Σk
i )− = AΣk−1

i AT +Qn with Qn representing the noise

covariance matrix.
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3.3.2.2 Correction

To obtain the correction term in Equation (3.30) we conduct the following math-

ematical manipulations. Subtracting Equation (3.26) from Equation (3.27) leads

to
1
γ̃i
(ci(t

k
4)− ci(t

k
2)) = cj(t

k
3)− cj(t

k
1) + T k,1

i j − T k,0
i j , (3.33)

while weighted sum of Equations (3.26), (3.27) and (3.28) gives

1
γ̃i
(
ci(tk

2) + ci(tk
4)

2
+ ci(t

k
5)− 2θ̃i) =

cj(tk
1) + cj(tk

3)

2
+ cj(t

k
6) +

T k,0
i j + T k,1

i j

2
− Rk

i j,

(3.34)

where, given the assumptions in Section 3.2.2,
T k,0

i j +T k,1
i j

2 − Rk
i j and T k

i j − T k−1
i j are

zero mean and have the variances
σ2

Ti j

2 + σ
2
Ri j

and 2σ2
Ti j

, respectively. This is

straightforward to observe since they are a linear subtraction of independent

random processes. Alternatively, we can write Equations (3.33) and (3.34) in

matrix form as

Bi jϑ̃
k
i = ri j + zi j, (3.35)

where zi j ∼� (z|0,Ri j) with

Ri j = diag

 
[2σ2

Ti j
,
σ2

Ti j

2
+σ2

Ri j
]

!
, Bi j =

�
ci(tk

4)− ci(tk
2) 0

ci(tk
2)+ci(tk

4)
2 + ci(tk

5) −2

�
,

and ri j =
�
cj(tk

3)− cj(tk
1),

c j(tk
1)+c j(tk

3)
2 + cj(tk

6)
�T

. Consequently,

p(ck
i j|ϑ̃k

i )∼� (ϑ̃k
i |(μk

i )+, (Σk
i )+), (3.36)

where (μk
i )+ = B−1

i j ri j and (Σk
i )+ = B−1

i j Ri jB
−T
i j .

3.3.2.3 Estimation

Considering Equations (3.32) and (3.36), the estimated distribution in Equa-

tion (3.30) is given by

p(ϑ̃k
i |c1:k

i j )∼� (ϑ̃k
i |μk

i ,Σk
i ), (3.37)
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Algorithm 1 Pairwise synchronization based on BRF

1: Initialize p(ϑ̃0
i ) to be non-informative

2: for k = 1,2, · · · , K do
3: Calculate the mean vector and covariance matrix of the prediction PDF

using Equation (3.32)
4: Construct Bi j, Ri j, and ri j using the measurements and obtain the mean

vector and covariance matrix of update PDF using Equation (3.36)
5: Compute the mean vector and covariance matrix of the PDF of ϑ̃k

i using
Equation (3.37)

6: Compute the final estimation of offset and skew using Equation (3.40)
7: end for

where

μk
i =

�
(Σk

i )− + (Σ
k
i )+
�−1 �

(Σk
i )−(μ

k
i )+ + (Σ

k
i )+(μ

k
i )−
�

, (3.38)

Σk
i =

�
(Σk

i )
−1
− + (Σ

k
i )
−1
+

�−1
. (3.39)

The parameters in Equations (3.32), (3.36) and (3.37) are calculated recursively

and, in each iteration k, an estimation of the clock skew and offset can be obtained

by

γ̃k
i =

1

μk
i (1)

and θ̃ k
i =
μk

i (2)

μk
i (1)

. (3.40)

The calculations conducted in (3.40) are the results of the transformation ϑ̃i =�
1
γ̃i

, θ̃i
γ̃i

�T
introduced in Section 3.3.2.

Algorithm 1 summarizes the above-mentioned recursive process. In particular,

after initializing the PDFs in step 1, the recursive process begins with computing

the prediction PDF using Equation (3.32) in step 3. Next, in step 4, the matrices

and vectors corresponding to the measurements are constructed, i.e., Bi j, Ri j,

and ri j. Finally, in step 5 the mean vector and covariance matrix of the clock

parameters can be obtained by Equation (3.37). In each iteration, one can obtain

the clock offset and skew using Equation (3.40) (step 6).

3.3.3 Hybrid Synchronization

Given Sections 3.3.1 and 3.3.2, to ensure a low end-to-end synchronization error

at the global level, BP can be performed over the backhaul network. At the same

time, we can employ the BRF algorithm to perform synchronization between

the backhaul nodes and the APs at the edge of the network, where fast and

frequent synchronization is required to keep the relative time error small. This is,
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Algorithm 2 Hybrid synchronization algorithm
1: Determine the suitable algorithm for each cluster (BP-nodes and BRF-nodes)
2: Commence time-stamp exchange and the BRF-based synchronization (algo-

rithm 1) at BRF-nodes
3: Start the time-stamp exchange between adjacent BP-nodes and, subsequently,

construct W ji and Wi j for each pair
4: for l = 1, 2, · · · , L do
5: Calculate the messages using Equations (3.15) and (3.17) for each BP-node

and send them to its neighboring nodes.
6: Update the beliefs at each BP-node by means of Equation (3.18)
7: if ϑ̂(l)i − ϑ̂(l−1)

i ≤ ε ∀i then
8: Compute the offset and skew estimation using Equation (3.21)
9: Go to step 3

10: end if
11: end for

in particular, crucial to a number of applications such as localization as will be

discussed in Chapter 4.

The steps of the hybrid synchronization are described in algorithm 2. Firstly,

step 1 determines the network sections suitable for BP and BRF (they are labeled

as BP-nodes and BRF-nodes, respectively). Then, step 2 initiates the time-stamp

exchange mechanism (Figure 3.4) and, correspondingly, the BRF algorithm at BRF-

nodes. Step 3, triggers the time-stamp exchange among the BP-nodes, thereby

collecting the required time-stamps to construct the matrices W ji and Wi j. Step 4

is where the BP iterations commence and continue until it converges, or the

maximum number of iterations L is achieved. In step 5, the outgoing messages

are computed by each BP-node using Equations (3.15) and (3.17). They are then

sent to their corresponding nodes. Step 6 updates each node’s belief. Lastly, in

steps 7-10, we check for the convergence by comparing the difference between

clock offset and skew estimation in iterations (l) and (l − 1) with a predefined

small value ε. If the algorithm has converged, the clock offset and skew estimation

are calculated by means of Equation (3.18) and Equation (3.21), respectively.

Note that step 2 and steps 3-11 can run simultaneously.

3.3.3.1 Convergence analysis

Convergence of the hybrid synchronization algorithm depends on the behavior

of BRF, and BP. In particular, at the edge of the network where we aim to locally

synchronize the APs using BRF, the convergence has no meaning. Nevertheless,

as a measure to evaluate the estimator’s performance, given the set of linear equa-

tions presented in Section 3.3.2, we can refer to BRF with Gaussian parameters
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as minimum variance unbiased estimator [76]. Thus, the convergence of algo-

rithm 2 depends solely on the convergence of BP, which is of crucial importance

for global network synchronization.

While BP converges to the exact marginal on loop-free FGs, its convergence

on loopy FGs is highly conditional. In the context of clock synchronization, a

detailed convergence analysis of loopy BP has been conducted in [21], [23], [24],
[77]. For the set of message passing formulas presented in this paper, we can

leverage on [24, Lemma 1] and [24, Lemma 2] to prove that the mean vector

ν(l)i in Equation (3.20) and the covariance matrix P(l)i in Equation (3.19) of the

belief b(l)(ϑi) in Equation (3.18) converge to a constant vector/matrix regardless

of the network topology [24, Theorem 1], [24, Theorem 2]. The crucial point

of this proof is that, regardless of the network topology, the belief parameters

(mean vector and covariance matrix) converge as long as there is an informative

prior, i.e., there exist at least one MN in the network.

3.4 Simulation Results and Comparison with

State-of-the-Art

In this section, we evaluate the performance of the hybrid synchronization algo-

rithm proposed in this work. A detailed analysis of its impact on the achievable

performance of the joint synchronization and localization (sync&loc) algorithm

at the edge of the network is left to the next chapter.

Figure 3.5 exemplifies a wireless network where the algorithm proposed in

this work can be applied. It comprises a number of APs, all backhauled by a

Table 3.1: Simulation parameters.

Parameters Values
Number of independent simulations 10000
Master node ϑ1

Initial random skew interval � (1− 10−4, 1+ 10−4)
Initial random delays interval � (−103,103) ns
Number of time-stamp exchange (K) 10
Standard deviation of T k

i j and Rk
i j 9 ns

Pairwise random propagation delay [200,300] ns
Initial PDF of the offset/skew for each node � (0,+∞)/� (1,10−4)
Initial PDF of the offset/skew of MN � (0, 0)/� (1,0)
Process noise covariance matrix (Qn) diag(10−5, 100)
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Figure 3.9: BP applied to the whole network.

wireless mesh network and delivering services to MUs. The following scenarios

are simulated: a) synchronizing the whole network using only BP (the APs in

Figure 3.5 are assumed to be variable nodes connected to the mesh network via

factor nodes), b) performing hybrid synchronization as described in algorithm 2,

where we synchronize the mesh backhaul network by means of BP and the APs at

the edge of the network using BRF, and c) carrying out synchronization across the

rounds of time-stamp exchange K . Scenario (a) is considered as the baseline for

comparison with the hybrid approach. Furthermore, we compute the Root Mean

Square Error (RMSE) of clock offset and skew estimation as a measure to evaluate

the performance. For the sake of simplicity and without loss of generality, in (a),

(b), and (c), we consider only the nodes ϑ8 and ϑ9 and their corresponding APs.

We initialize all the clock offsets from the uniform distribution � (−103, 103)
ns. The initial skews of all clocks are drawn from the uniform distribution

� (1− 10−4, 1+ 10−4), which corresponds to skew values between 0 and 100

part-per-million (ppm). The covariance of the clock process noise Qn(ϑ̃i) is set to

diag(10−5, 100) to account for the residual errors from the previous iterations

as well as the external noises on the clock skew and offset. Further simulation

parameters can be found in Table 3.1.
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Figure 3.10: BP and BRF applied to the network in a hybrid manner.

Figure 3.9 shows the RMSEs of the clock offset and skew estimation versus the

number of message passing iterations for scenario (a). The RMSEs of offset and

skew are indicated in ns and ppm, respectively. As can be observed, BP converges

after four iterations and achieves an offset and skew RMSE below 6 ns and 0.2

ppm, respectively. As shown in [21], [67], when there exist at least one MN in

the network, the convergence is guaranteed. However, the value to which BP

converges in loopy networks is deemed to be approximate. Note that, although

this simulation setup reveals the potential performance of BP, the nodes, and

particularly the APs, must wait at least four message passing iterations in addi-

tion to K rounds of time-stamp exchange (required for obtaining the conditional

probabilities) to be fully synchronized. This is particularly unfavorable in cer-

tain synchronization-based services such as localization, where continuous time

alignment is essential for accurate estimation of the MUs’ positions. Therefore, it

is necessary that the APs synchronize themselves to the backhaul network more

frequently to be able to deliver those services at an increased performance as

required in 5G networks.

Figure 3.10 depicts the RMSEs of the clock offset and skew estimation versus

the number of message passing and BRF iterations for scenario (b). We can
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observe a slight deterioration in performance (RMSE increases by 2− 3 ns for

the offset and 0.5− 0.6 ppm for the skew) compared to scenario (a). In fact,

this is the cost of economizing on the number of BP iterations as well as rounds

of time-stamp exchange. To clarify, BP commences only when the nodes have

already conducted K rounds of time-stamp exchange (to construct Wi j and W ji).

Even then, it takes four iterations, or n if there are n nodes between an AP

and the MN, to estimate the clock parameters and correspondingly perform

synchronization. Conversely, BRF is faster, as it is directly applied after each

round of time-stamp exchange and runs independently (it does not need any

information from the other network sections as BP does). Therefore, it can

conduct more iterations, thereby continuously fulfilling the requirement of very

low relative time error on a local level. Given the above-mentioned properties

of BP and BRF, the hybrid approach sacrifices a fraction of global accuracy to

rapidly achieve synchronization at a local level, which is crucial to a number of

applications such as Mobile User (MU) localization.

Figure 3.11 presents the RMSEs of the clock offset and skew estimation versus

the rounds of time-stamp exchange K. As can be observed, the RMSEs of both

offset and skew estimation decrease as K grows, indicating that the higher number

of time-stamp exchanges leads to a more accurate estimation. The gradient is,

however, slightly smaller for the APs owing to the fact that their RMSEs comprise

two components, i.e., the synchronization error of the backhaul mesh network

and the error arising when synchronizing APs with their corresponding backhaul

nodes. Although the former decreases as K grows, the latter remains constant,

resulting in a slower decline of RMSEs of clock offset and skew estimation at the

APs.

The network in Figure 3.9 is only a random example picked to lucidly convey

the fundamental concepts of hybrid synchronization introduced in this work.

However, the intuitions obtained from the above simulations are still valid even

if we replace the network by any other network with arbitrary size. Nevertheless,

while the size of the network, in particular the backhaul network, does not play a

role when locally synchronizing adjacent APs, it can prolong the time needed for

reaching convergence for BP depending on the number of nodes between node i

and the MN.
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Figure 3.11: Impact of number of time-stamp exchanges K .

3.5 Summary

In this chapter, we presented three synchronization methods (summarized in

Table 3.2) based on the PGMs and inference algorithms described in Chapter 2.

The first method based on BP running on an FG, representing the statistical

relation between the network nodes. The second relies on pairwise statistical

relations and is only capable of synchronizing pairs of nodes. The former can

achieve a high precision network-wide, while the latter is capable of performing

fast pairwise synchronization at the cost of a slight deterioration in precision.

We then combined these two methods to construct the hybrid synchronization

algorithm. Hybrid synchronization can maintain a low end-to-end time error

while providing fast synchronization at the local level. This approach provides

a high-accuracy inter-AP synchronization at the edge of the network, thereby

paving the way for a precise joint mobile user synchronization and localization,

the details of which will be discussed in the upcoming chapter.
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Table 3.2: Summary of the synchronization algorithms presented in this chapter.

Sync. Algorithm Corresponding
PGM

Strengths Weaknesses

Pairwise BRF-
based

Dynamic
Bayesian Net-
works (DBNs)

Fast, mitigates
the time-stamp
uncertainty

Synchronizes
only two nodes

Network-wide
BP-based

Factor Graphs
(FGs)

High accuracy on
both local and
global levels

Slow due to the
message-passing

Hybrid BP-BRF DBNs and FGs High accuracy on
the global and lo-
cal levels, fast on
the local level

Slow on the
global level
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Chapter 4

Joint Statistical Synchronization &
Localization

4.1 Introduction

State-of-the-art Mobile User (MU) localization techniques rely primarily on the

cooperation among the Access Points (APs), requiring them to be precisely syn-

chronized. In addition, for many of the existing techniques to function, the clock

parameters of the MUs need to be known (or to be continuously corrected).

Therefore, it appears that the aforementioned problems, namely inter-AP syn-

chronization, MU’s clock parameter estimation, and MU localization, are closely

intertwined and can be tackled jointly.

In Chapter 3, we have addressed the end-to-end synchronization in 5G net-

works. In particular, we employed Belief Propagation (BP) and Bayesian Recursive

Filtering (BRF) not only to achieve high-precision end-to-end synchronization,

but also to keep the inter-AP relative clock offset and skew low. In other words,

the algorithms therein pave the way for the joint synchronization and localization

(sync&loc) of MUs by accurately synchronizing the neighboring APs.

The joint MU synchronization and localization problem has been extensively

addressed in the literature. The authors in [64] rely on symmetric AP-MU time-

stamp exchange and the BP to jointly estimate MUs’ location and clock offset.

Furthermore, the authors of [8], [14] adopt a similar approach by means of

the asymmetric time-stamp exchange mechanism proposed in [73]. While time-

stamp exchange is expected to be supported in 5G networks [7], the high number

of message-passings required by BP renders the approach limited in practice.

Additionally, [7], [8], [14], [64], [73] provide the estimation of the clock and

position parameters at MUs, whereas for the location-based services to be deliv-

ered, these parameters need to be computed on the network side. In [6], [9],
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the authors leverage Extended Kalman Filtering (EKF) to obtain the estimation

of clock parameters and position in ultra-dense networks. In particular, they

assume accurate inter-AP synchronization and perform MU joint sync&loc in the

presence of uncertainty about Time of Arrival (ToA) and Angle of Arrival (AoA)

parameters. The level of uncertainty is then determined based on the derived

Cramer Rao Bound (CRB). While EKF can partially mitigate the destructive im-

pact of nonlinearities in the measurements, in addition to the covariance matrix

underestimation, it is likely to diverge if a reliable estimate of the initial state

is not available [78]. A promising approach, on the one hand, to avoid such

shortcomings of EKF and, on the other hand, to boost the accuracy of position

estimation, is estimating the (prediction, measurement likelihood, and posterior)

distributions by means of Particle Gaussian Mixture Filters (PGMFs) introduced

in [79]. Specifically, in this approach, instead of a single Gaussian function,

each distribution is approximated with a sum of weighted Gaussian functions, or

alternatively, mixtures [80]. Nevertheless, the problem that immediately arises

when using PGMFs is dimensionality, rendering the approach computationally ex-

pensive for multi-variable estimation. To overcome this drawback, we resort to a

hybrid parametric and particle-based approach where we capitalize on the linear

relations in the measurements to reduce the dimensionality. In comparison to the

standard Particle Filer (PF), such an approach has, as a result of Rao-Blackwell’s

lemma discussed in [81], a strictly lower estimation variance and leads to more

accurate estimates given the same number of particles [80]. Specifically, PGMF’s

performance stands out when the uncertainty increases.

However, even the PGMF-based localization techniques can suffer from di-

vergence under certain conditions, e.g., improper tuning of the filter’s hyper-

parameters and faulty measurements, resulting mostly from Non-Line-of-Sight

(NLoS) links [82]. The former must be addressed when designing the filter, while

the latter can be dealt with using NLoS mitigation methods such as those proposed

in [83]–[85]. The technique in [83] relies on the multipath components of NLoS

links to enhance the positioning accuracy. However, such a method functions

well only in the presence of strong multipath components and prior statistics

on NLoS-induced errors. The latter are also estimated and utilized along with

trajectory tracking in [84] to perform indoor positioning. The authors in [85],
however, take another approach and model the measurement noise by a two-

mode mixture distribution and approximate the maximum likelihood estimator

using expectation maximization. Such approaches add an extra computation

overhead that may not be necessary in dense networks where the LoS probability
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is around 0.8 and increases with the AP density [86]. Therefore, to mitigate

the estimation inaccuracy stemming from the faulty measurements, we deploy

NLoS identification techniques to identify the NLoS links and discard them. Such

an approach boosts the accuracy and features less complexity compared to the

methods proposed in [83]–[85].
There is a wide spectrum of NLoS identification approaches adopted in the

literature, e.g., hypothesis testing as in [87], the statistical approach taken in

[88], and Machine Learning (ML)-based methods such as that of [89]. How-

ever, recently ML algorithms, particularly Deep Neural Network (DNN)-based

approaches such as AmpN [36], have drawn substantial attention in classification

problems. In particular, DNNs exhibit a remarkable performance due to their

ability, on one hand, in implementing almost any classifier function, and, on

the other hand, in extracting task-related features from the input data [90],
[91]. Other approaches such as Support Vector Machine (SVM), or Bayesian

sequential testing require human intervention that may be, given the limited

intuition, flawed, and erroneous. Furthermore, DNN units are also expected

to be part of the communication devices as they are the cornerstone of many

solutions for different communication problems such as slice management and

anomaly detection [92]. Therefore, a DNN-based NLoS identifier appears to be a

reasonable choice. The input to the DNN can be signals containing class-relevant

features such as received signal strength or Channel Impulse Response (CIR).

The CIR turns out to be more informative about the communication environment

and link condition. Therefore, for the sake of prediction accuracy, we rely on

AP-MU CIRs in this work.

In addition to NLoS-identification, the CIR can also be fed into one of the

state-of-the-art AoA estimation algorithms to obtain the signal’s direction of

arrival. AoA estimation has been extensively investigated in the literature. Algo-

rithms such as Multiple Signal Classification (MUSIC) [93], reduced-dimension

MUSIC [94], and Estimation of Signal Parameters via Rational Invariance Tech-

niques (ESPRIT) [95] can accurately estimate the AoA. A detailed comparison

between them has been conducted in [96] concluding that the difference is negli-

gible, albeit MUSIC slightly outperforms the others and, therefore, it is employed

for the purpose of this work.

In this chapter, as a first step, we propose a Linearized BRF (L-BRF)-based

approach for the joint sync&loc. It particularly relies on Taylor expansions of the

non-linear terms in the measurements (i.e., time-stamp exchange and AoA) to

obtain an estimate of the clock and position parameters. Next, to overcome the
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drawbacks of L-BRF, we propose a DNN-assisted PF-based (DePF) joint sync&loc

algorithm which uses the CIR to estimate the AoA and to determine the link

condition, i.e., LoS or NLoS, thereby excluding the faulty measurements to enable

a more precise parameter estimation. DePF then estimates the joint probability

distribution of MUs’ clock and position parameters using the PGMF. The dimension

of the PGMF is then reduced by revealing and exploiting the existing linearities

in the measurements, thereby tackling the dimensionality problem. To the best of

our knowledge, this is the first work employing PGMF in a hybrid particle-based

and parametric manner to perform joint sync&loc.

The contribution of this chapter is summarized as follows:

• We present and discuss the principles of asymmetric time-stamp exchange

and AoA estimation. The former assists in the estimation of the clock

skew, offset, and the AP-MU distance, while the latter aids in the position

estimation by providing the direction of an MU relative to the position and

orientation of its serving APs.

• We develop a DNN for NLoS identification based on AP-MU CIRs. The

outcome of such a DNN helps to identify erroneous measurements, i.e.,

time-stamps and AoAs, and discard them, thereby preventing large errors

in the estimation.

• We propose a joint sync&loc algorithm based on the linearized BRF, which

estimates the clock parameters and the position of an MU by drawing on the

Taylor expansion of the measurement equations. Such an approach features

low complexity, albeit it needs prior knowledge on the initial position of

MUs and is prone to divergence.

• We propose a DNN-assisted particle filter-based joint sync&loc algorithm

that estimates the clock parameters and the position of an MU in a hybrid

parametric and particle-based manner. Such an approach not only boosts

the estimation accuracy but also overcomes the dimensionality problem

that arises in particle Gaussian mixture filters due to the high number of

parameters.

• We analyze the performance of the proposed techniques with the aid of

detailed simulations in a challenging real-world scenario. In particular, the

MUs’ movement profile comprises acceleration, deceleration, and constant

speed. Furthermore, the APs are distributed to provide signal coverage for

the MUs.
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In the sequel, we firstly introduce the system model. Subsequently, we deal

with the preliminaries of the Bayesian joint sync&loc algorithms, i.e., NLoS

identification and AoA estimation. Later on, we present the principles of the

L-BRF and DePF joint sync&loc algorithms, based on the synchronization scheme

developed in Chapter 3. Finally, we present an in-depth analysis of the algorithms

proposed in this chapter with the aid of simulation results.

4.2 System Model and Preliminaries

We consider a network of multiple APs with known locations, all backhauled

by BSs. The APs are assumed to feature Uniform Planar Arrays (UPA), which

allows for accurate azimuth and elevation AoA estimations, and to be able to

continuously synchronize themselves with the backhauling BSs using the hybrid

synchronization algorithm described in [46], [47]. This, in particular, guarantees

a low time error among the neighboring APs, enabling a more precise cooperative

localization. Further assumption is that, at each sync&loc period T , a set of APs,

denoted by ne(i), are able to periodically exchange time-stamps with the i-th MU

using the Fine Time Measurement (FTM) feature embedded in the communication

devices and implemented by an existing protocol, e.g., Precision Time Protocol

(PTP) [17]. From a packet containing these time-stamps, APs can also estimate

the CIRs and AoA. The AP-MU link condition is considered both LoS and NLoS

for the sake of generality. Nevertheless, it is known from [86], that for such a

scenario the LoS probability is around 0.8, even growing to 0.95 when the AP

density is 40 meters. A DNN trained by means of CIRs is employed to distinguish

the LoS condition from the NLoS, permitting the localization unit to neglect

the measurements conducted under NLoS conditions, thereby enhancing the

accuracy of synchronization and localization. In what follows, we firstly present

the DNN architecture that allows for a reliable NLoS/LoS identification based on

the CIR. Subsequently, we briefly describe the principles of the MUSIC algorithm

for AoA estimation.

4.2.1 Channel Impulse Response and NLoS Identification

The ability to estimate the CIR, or the Channel Frequency Responses (CFRs),

is highly ubiquitous among the APs. It can be usually performed relatively

straightforward with the already existing hardware and software components.

Thus, relying on the CIR (or CFR) to develop localization algorithms appears to be

a realistic approach. In fact, the AP-MU CIR is a rich source of information about
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Figure 4.1: An example where MU joint sync&loc can be carried out.

the condition of the communication link, e.g., LoS or NLoS, and the location of

the MU. More precisely, the former is crucial to know when estimating the latter

since the reliability of the distance, time, and AoA measurements significantly

decrease if they are conducted under NLoS conditions.

Furthermore, DNN units are also expected to be a part of communication

devices as they are the cornerstone of many solutions for different communication

problems such as slice management and anomaly detection [92]. Apart from that,

in this specific application, i.e., NLoS identification, DNNs are proven to have

a superb performance due to their remarkable ability to extract task-relevant

features, which eventually paves the way towards an accurate prediction. On

the contrary, other approaches such as SVM or Bayesian sequential test require

human intervention which may be flawed and erroneous, given the limited

intuition. In particular, humans may ignore/take into account the features that

are relevant/irrelevant. Nevertheless, the challenge when using DNNs is to

choose the optimal number of layers and neurons.

Figure 4.2 shows the architecture of the DNN deployed for NLoS-identification.

The input layer has one channel fed with N samples, i.e., with the magnitude

of the CIR 1. The number of hidden layers and neurons in each hidden layer is

set to lH and nH , respectively. The rationale for selecting these numbers is that,

according to [90], any classifier function can be realized by two hidden layers, i.e.,

1We note that the phase of the CIR is extremely noisy and therefore extracting any information
from it requires removing the noise. This is out of the scope of this work and, therefore, we
simply rely only on the magnitude.
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Figure 4.2: DNN architecture for NLoS-identification.

currently there is no theoretical reason to use more than two. However, the lack

of evidence does not imply that the DNNs with more hidden layers do not improve

the accuracy of classification. It rather suggests that the number of required

hidden layers does not follow a well-established logic and is mostly determined

by a trial-and-error process. Therefore, for the algorithm proposed in this work,

we empirically determine the lH that delivers the best performance. Furthermore,

as a rule of thumb, the number of neurons is suggested to be between the number

of inputs and that of the outputs to prevent under/overfitting.

Let the output probability vector of the DNN be [1− pnlos, pnlos], where pnlos

denotes the probability of the CIR corresponding to an NLoS link. For the NLoS-

identifier, we seek to train the DNN such that the output probability vector is as

close as possible to [1,0]/[0,1] for the LoS/NLoS CIRs. In other words, from

the optimization point of view, we aim to design a loss function whose output

is small when the DNN returns the correct vector and it is large otherwise. It

turns out that the function that possesses the above-mentioned property is the

logarithmic function [97]. Mathematically, the loss function is given by [91]

� = − 1
Mc

Mc∑
i=1

pi
nlos log(p̂i

nlos) + (1− pi
nlos) log(1− p̂i

nlos), (4.1)

where pi
nlos denotes the true label corresponding to the i-th CIR sample in the

data set and is ‘1’ if the CIR corresponds to an NLoS link and ‘0’ otherwise.

Furthermore, Mc represents the total number of CIRs in the training set. The

formulation in (4.1) is also known in the literature as the binary cross-entropy

loss function. The goal of training is then to adjust the weights of the neurons

such that (4.1) is minimized. Finally, when the trained DNN is employed in

the context of the joint sync&loc algorithm, the decision on the link condition

between the i-th MU and the j-th AP is fed into the algorithm using the binary

parameter ζi j, which is set to ‘1’ when pnlos > 0.5 and ‘0’ otherwise. Specifically,
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if ζi j is ‘1’, the communication link is considered NLoS and any measurement

corresponding to it, i.e., time-stamp exchange and AoA, is dropped.

In the sequel, we present the principles of the AoA estimation algorithm, which

draws on the same CIRs previously employed for NLoS identification.

4.2.2 Angle of Arrival

The CIRs/CFRs fed into the DNN to identify the link condition can be treated as a

signal and be passed into the MUSIC algorithm to obtain the AoA. In the sequel,

we present the principles of AoA estimation for UPAs based on [98]–[100]. The

estimated AoA is given by

(ϕi j,αi j) = arg max
ϕ,α

1
an(ϕ,α)HNNHan(ϕ,α)

, (4.2)

where ϕi j and αi j are the azimuth and elevation AoA of the signal received from

the MU i at AP j, respectively. Parameter an(ϕ,α) is the signal vector rotation on

the n-th subcarrier and is given by

an(ϕ,α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ei 2πd
λ sin(α)(sin(ϕ)+cos(ϕ))

ei 2πd
λ sin(α)(sin(ϕ)+2cos(ϕ))

...

ei 2πd
λ sin(α)((Nant−1) sin(ϕ)+(Nant−2) cos(ϕ))

ei 2πd
λ (Nant−1) sin(α)(sin(ϕ)+cos(ϕ))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N2
ant×1

, (4.3)

where Nant denotes the number of AP antennas in one row (or column). Matrix

N is constructed by N 2
ant − 1 far right columns of the eigenvectors obtained when

performing the eigen decomposition of the covariance matrix of the received

signal. That is

R= VAVH , (4.4)

where matrices A and V contain the eigenvalues and eigenvectors, respectively.

Furthermore,

R=
1
Ns

Ns∑
n=1

xnxH
n , (4.5)

where the vector xn is of dimension N 2
ant × 1 and represents the n-th element of

the complex CIRs/CFRs. The number of time points/subcarriers (the size of FFT)

is denoted by Ns. It is worth mentioning that, when constructing N, the eigen
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decomposition in (4.4) is assumed to sort the eigenvalues in a decreasing order.

Lastly, each AP is assumed to have N 2
ant CIRs at its disposal.

4.3 Clock Parameters and Position Estimation

4.3.1 Probabilistic Formulation of the Problem

Let ξk
i be the state of the vector variable ξi �

�
ϑ̃i pi

�T
where ϑ̃i =

�
1
γ̃i

θ̃i
γ̃i

�
and

pi =
�

xi yi

�
after the k-th round of time-stamp exchange. Parameters xi and yi

denote the position of node i on the x and y axes, respectively. The aim is then

to infer the PDF corresponding to the k-th state, which can be written as

p(ξk
i |{c1:k

i j ,ϕ1:k
i j ,ζ1:k

i j }∀ j∈ne(i)) =

∫
p(ξ0

i , · · · ,ξk
i |{c1:k

i j ,ϕ1:k
i j ,ζ1:k

i j }∀ j∈ne(i)) dξ0
i · · · dξk−1

i .

(4.6)

Following the steps explained in Section 2.4.1, Equation (4.6) can be simplified

to

p(ξk
i |{c1:k

i j ,ϕ1:k
i j ,ζ1:k

i j }∀ j∈ne(i))∝
p(ξk

i |{c1:k−1
i j ,ϕ1:k−1

i j ,ζ1:k−1
i j }∀ j∈ne(i))p({ck

i j,ϕ
k
i j,ζ

k
i j}∀ j∈ne(i)|ξk

i ). (4.7)

Figure 4.3 depicts the temporal evolution of ξi as well as its relation to the

measurements at each time step. If the Gaussian assumption about ξ0
i held and

the relation between all the states in Figure 4.3 were linear, we could conclude

that the marginal in (4.7) would also be Gaussian distributed. Unfortunately, that

is not the case in the joint sync&loc problem as the measurement equations (and

consequently the correction steps) are partially non-linear. In concrete terms,

the aforementioned problem stems from the non-linear relation between, on one

hand, di j and the time-stamps in (3.2), (3.3), (3.4), and, on the other hand, the

xi/yi and the measured AoA, ϕi j, in (4.2).

There are several approaches to tackle the non-linearity problem and, conse-

quently, estimate the non-Gaussian posterior distribution. In [48], we proposed

to undertake the Taylor expansion of the non-linear terms around the prediction

point, while [6], [9], [101] have employed EKF to address the non-linearity. In

addition to being prone to divergence, which is hard to mitigate analytically, all

of these methods require initialization and even then are only able to deliver

medium accuracy. In what follows, we first discuss the principles of the L-BRF
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Figure 4.3: Dynamic Bayesian network representing the temporal evolution of
the vector variable ξi and its relation to the measurements.

approach we proposed in [47], [48]. Subsequently, we present the details of a

novel joint sync&loc approach based on PGMFs introduced in [49].

4.3.2 Linear Bayesian Recursive Filtering (L-BRF)

The non-linearity in BRF stems from the relation between the distance mea-

surements and the time-stamps, on the one hand, and the relation between the

location parameters and the AoA measurements, on the other hand. In particular,

location-related parameters appear when expanding the propagation delay di j

(or dji) as

di j =
$
(xi − x j)2 + (yi − yj)2, (4.8)

Furthermore, each AP is assumed to be equipped with an UPA and is able to

perform Angle of Arrival (AoA) estimation in each round of time-stamp exchange.

This estimation is given by

arctan
yi − yj

xi − x j
= ϕi j + nϕ, (4.9)

where ϕi j denotes the true AoA and � (nϕ|0,σ2
ϕ
) is the zero mean Gaussian

noise stemming from the AoA estimation algorithm. In our simulations we rely

on the MUSIC algorithm explained in Section 4.2.2, to calculate σϕ while ϕi j is

computed when feeding the corresponding CIR to the MUSIC algorithm.

In what follows, we further delve into the steps of parameter estimation of the

above-mentioned distribution. Firstly, the details of prediction step are described,

where all the parameters are denoted by (·)−. Next, we obtain the likelihood of
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the measurements whose parameters are represented by (·)+. Lastly, we compute

the parameters of the posterior distribution in (4.7).

4.3.2.1 Prediction

Given the dynamics of MUs’ clocks and movements, a reasonable prediction for

ξk
i is given in [8]. That is,

ξk
i = Aξk−1

i + u+ nk−1
i , (4.10)

where

A=

⎡
⎢⎢⎢⎣

1 0 0 0

T 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ , u=

�
0 T 0 0

�T
.

Parameter T denotes the duration of one time-stamping round. Furthermore,

nk−1
i denotes the Gaussian noise vector and assumed to have zero mean and

covariance matrix Qn = diag(σ2
γ
,σ2
θ
,σ2

x ,σ2
y). In general, the design of Qn is a

difficult task. In particular, if it is too small, the filter will be overconfident in its

prediction model and will diverge from the actual solution. In contrast, if it is

too large, then it will be unduly dominated by the noise in the measurements

and perform sub-optimally. In this work, we follow the design model discussed

in [101], [102]. Given (4.10), the prediction term can be written as

p(ξk
i |{c1:k−1

i j ,ϕ1:k−1
i j ,ζ1:k−1

i j }∀ j∈ne(i))∼� (ξk
i |(μk

i )−, (Σ
k
i )−), (4.11)

where (μk
i )− = Aμk−1

i and (Σk
i )− = AΣk−1

i AT +Qn. Such recursive relationships

are straightforward to obtain given Equation (4.10).

4.3.2.2 Correction

To permit (4.7) to have a closed-form solution, the relation between parameters in

the measurement equations (3.2), (3.3), (3.4), and (4.9) must be linear. However,

this is not the case as the distance function is not linear. Therefore, we draw

on Taylor expansion to linearize the non-linear terms, thereby allowing for a
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closed-form solution for (4.7). In particular, we write the Taylor expansion around

the point predicted by the prediction step in (4.10). Thus

di j

vc
≈ ak

i j,0 + ak
i j • (pi − (pk

i )−), (4.12)

arctan(
yi − yj

xi − x j
)≈ bk

i j,0 + bk
i j • (pi − (pk

i )−), (4.13)

with “•” denoting the inner scalar product of vectors. Furthermore, ak
i j,0, ak

i j, bk
i j,0,

and bk
i j are calculated by

ak
i j,0 =

1
vc

%%%%(pk
i )− − p j

%%%% , ak
i j =

1

v2
c ak

i j,0

�
(pk

i )− − p j

�
, (4.14)

bk
i j,0 = arctan(

ak
i j[2]

ak
i j[1]

), bk
i j =

1

ak
i j,0

�−ak
i j[2], ak

i j[1]
�

, (4.15)

where || · || denotes the Euclidean norm. Given Equations (4.12) and (4.13), for

the localization performed by a single AP2, we can write Equations (3.2), (3.3),

(3.4) and (4.9) in matrix form as

Bi jξ
k
i = ri j + zi j, (4.16)

where zi j ∼� (z|0,Ri j) with Ri j = diag(σ2
Ti j

,σ2
Ti j

,σ2
Ri j

,σ2
ϕ
), and

Bi j =

⎡
⎢⎢⎢⎣

ci(tk
2) −1 −ak

i j

ci(tk
4) −1 −ak

i j

ci(tk
5) −1 ak

i j

0 0 bk
i j

⎤
⎥⎥⎥⎦ ,

and ri j is constructed as

ri j =�
cj(tk

1)− ak
i j • (pk

i )−, cj(tk
3)− ak

i j • (pk
i )−, cj(tk

6) + ak
i j • (pk

i )−, ϕ
k
i j + bk

i j • (pk
i )−
�T

.

(4.17)

2We note that the extension to the multiple-AP case is straightforward as the process is recursive
and can incorporate new measurements from any additional AP.
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Finally, we can write the correction term as

p({ck
i j,ϕ

k
i j,ζ

k
i j}∀ j∈ne(i)|ξk

i )∼� ((μk
i )+, (Σk

i )+), (4.18)

where (μk
i )+ = (B

T
i jBi j)−1BT

i jri j, and (Σk
i )+ = (B

T
i jBi j)−1BT

i jRi jBi j(BT
i jBi j)−T . Such

recursive relationships for the mean vector and the covariance matrix are readily

obtained from Equation (4.16).

4.3.2.3 Estimation

Considering (4.11) and (4.18), the estimated distribution in (4.7) is given by

p(ξk
i |{c1:k

i j ,ϕ1:k
i j ,ζ1:k

i j }∀ j∈ne(i))∼� (μk
i ,Σk

i ), (4.19)

where

μk
i =

�
(Σk

i )+ + (Σ
k
i )−
�−1 �

(Σk
i )+(μ

k
i )− + (Σ

k
i )−(μ

k
i )+
�

, (4.20)

Σk
i =

�
(Σk

i )
−1
− + (Σ

k
i )
−1
+

�−1
. (4.21)

The parameters in (4.11), (4.18), and (4.19) are calculated recursively and, in

each iteration k, an estimation of the clock skew, clock offset, and position can

be obtained by

γ̃k
i =

1

μk
i (1)

, θ̃ k
i =
μk

i (2)

μk
i (1)

, xk
i = μ

k
i (3), and yk

i = μ
k
i (4). (4.22)

Algorithm 3 summarizes this recursive process. In particular, we initialize the

prior distribution p(ξ0
i ) in step 1. It is worth mentioning that the position ini-

tialization has a major impact on the performance of the algorithm and can,

if inappropriately chosen, lead to its divergence. For the L-BRF, similar to [6],
we assume that the initial position of the MUs is available via Global Naviga-

tion Satellite System (GNSS). The initialization of clock parameters is, however,

straightforward and can be done according to [24], [45], [46], with � (γi|1,∞)
and � (θi|0,∞) for clock skew and offset, respectively. In steps 2-6, the time-

stamps are exchanged between a mobile user and its serving APs. Then, the CIRs

are computed, the AoAs are estimated, and the link conditions for all MU-AP links

are determined. In steps 7-11 the posterior distribution is computed recursively

using the measurements from the APs with LoS to the MU. Finally, in step 12 an

estimation of the clock and position parameters can be obtained. The process

repeats itself periodically.



56 Chapter 4 Joint Statistical Synchronization & Localization

Algorithm 3 BRF-based joint sync&loc.
1: Initialize p(ξ0

i ) using information about MU position available via, e.g., GNSS.

2: for all the APs in ne(i) do
3: Perform the time-stamp exchange mechanism described in Section 3.2.3

and Figure 3.4.
4: Estimate the CIR using QuaDRiGa model.
5: Estimate the AoA and the link condition
6: end for
7: for all LoS links (ζk

i j=0) do
8: Calculate the mean vector and covariance matrix of the prediction using

(4.11).
9: Construct Bi j, Ri j, and ri j using the measurements and obtain the mean

vector and covariance matrix of correction PDF using (4.18).
10: Update the parameters of the posterior distribution using (4.19).
11: end for
12: Estimate the clock and position parameters using (4.22).
13: Go to step 7.

4.3.3 Particle Gaussian Mixture Filter

The idea underpinning PGMFs is to approximate a posterior PDF by the sum of

weighted Gaussian density functions (gdfs) [79]. Leveraging on this idea, we can

write the posterior distribution in (4.7) as

p(ξk
i |{c1:k

i j ,ϕ1:k
i j ,ζ1:k

i j }∀ j∈ne(i)) =
F∑

f =1

wk
f� (ξk

i |μk
f ,Σk

f ) (4.23)

where
F∑

f =1

wk
f = 1, wk

f ≥ 0 ∀ f .

Moreover, μk
f =

�
μ(ϑ̃i)kf μ(pi)kf

�
and

Σk
f =

�
Σ(ϑ̃i)kf 02

02 Σ(pi)kf

�

denote the mean vector and covariance matrix of the f -th gdf in the k-th round

of estimation, respectively. Parameter F represents the total number of gdfs.

Furthermore, μ(ϑ̃i)kf /μ(pi)kf and Σ(ϑ̃i)kf /Σ(pi)kf represent the mean vector and

covariance matrix respectively corresponding to the vector variable ϑ̃i/pi.

As mentioned before, one of the limitations of PGMFs is the dimensionality

problem. To deal with this problem, we can capitalize on the linear relationships
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in the measurements, if there exist any. Seeking to further simplify (4.23), we

reformulate (3.2), (3.3), and (3.4) as follows. Subtracting (3.2) from (3.3) leads

to

1
γ̃i
(ci(t

k
4)− ci(t

k
2)) = cj(t

k
3)− cj(t

k
1) + T k,1

i j − T k,0
i j , (4.24)

while summing up (3.3) and (3.4)

1
γ̃i
(ci(t

k
4) + ci(t

k
5)− 2θ̃i) = cj(t

k
3) + cj(t

k
6) + T k,1

i j − Rk
i j. (4.25)

It is straightforward to observe that ϑ̃k
i , on one hand, is linearly dependent on

the time-stamps, and, on the other hand, does not depend on pi. This suggests

that, although the p(ck
i j|ξi) cannot be considered Gaussian distributed in general,

it can be indeed considered Gaussian across the ϑ̃i axis as both Ti j and Ri j are

Gaussian distributed and ϑ̃k
i has linear relationship with the measurements (time-

stamps). In fact, we exploit the linear substructures in the model to keep the

state dimensions low. Consequently, the gdfs can be employed only across the pi

axis transforming the structure of (4.23) into multiplication of a single gdf across

ϑ̃i and sum of multiple weighted gdfs across pi (visualized in Figure 4.4). Such

a structure not only lays the ground for the hybrid parametric and particle-based

implementation of BRF-based joint sync&loc estimation, but also dramatically

reduces the computational burden. Given above, (4.23) can be simplified as

p({c1:k
i j ,ϕ1:k

i j ,ζ1:k
i j }∀ j∈ne(i)|ξk

i ) =� (ϑ̃k
i |μ(ϑ̃i)

k,Σ(ϑ̃i)
k)

F∑
f =1

wk
f� (pk

i |μ(pi)
k
f ,Σ(pi)

k
f ).

(4.26)

We note that when Σ(pi)kf approaches 0, the term � (pk
i |μ(pi)kf ,Σ(pi)kf ) tends

towards δ(pk
i −μ(pi)kf ), where δ(·) denote the Dirac impulse function. Such a

function forms the basis of the classical particle filter. In what follows, we further

delve into the steps of parameter estimation of the above-mentioned distribution.

Firstly, the details of prediction step are described, where all the parameters

are denoted by (·)−. Next, we obtain the likelihood of the measurements whose

parameters are represented by (·)+. Lastly, we compute the parameters of the

posterior distribution in (4.26) and perform the resampling.
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Figure 4.4: An example distribution of the ξi for a given time-stamp measurement.
Parameters θi and di j represent the clock offset and the distance,
respectively. Note that ξi has been reduced to only two parameters
for the purpose of visualization.

4.3.3.1 Prediction

Given the linear dynamics of MUs’ clocks and movements, a reasonable prediction

for ξk
i is given by

p(ξk
i |{c1:k−1

i j ,ϕ1:k−1
i j ,ζ1:k−1

i j }∀ j∈ne(i)) =

� (ϑ̃k
i |μ(ϑ̃i)

k
−,Σ(ϑ̃i)

k
−)

F∑
f =1

wk
f −� (pk

i |μ(pi)
k
f −,Σ(pi)

k
f −) (4.27)

where

wk
f − =

1
F

1F , μ(pi)
k
f − = μ(pi)

k−1
f + n f ,

with n f being the noise vector derived from the distribution � (n|0,Qn(pi)),
for Qn(pi) = diag(σ2

x ,σ2
y). In practice, we initialize Σ(pi)kf − = diag(F−0.4, F−0.4)

which is proved to be the optimal choice in [78]. Furthermore, according to [46],

μ(ϑ̃i)
k
− = Fμ(ϑ̃i)

k−1 + u, Σ(ϑ̃i)
k
− = FΣ(ϑ̃i)

k−1FT +Qn(ϑ̃i) (4.28)

with

F=

�
1 0

T 1

�
, u=

�
0 T

�T
, Qn(ϑ̃i) = diag(σ2

γ
,σ2
θ
).
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The matrices Qn(ϑ̃i) and Qn(pi) denote the covariance of the zero-mean Gaussian

noises on each gdf across the ϑ̃i and pi axes, respectively. In general, as mentioned

before, designing Qn(·) is a challenging task. In particular, if it is too small, the

filter will be overconfident in its prediction model and will diverge from the actual

solution. In contrast, if it is too large, it will be unduly dominated by the noise in

the measurements and perform sub-optimally [102]. Similar to [4], [18], [23].
We set σ2

γ
and σ2

θ
, such that the external noises as well as the residues from the

previous iteration are accounted for. Furthermore, to determine the value of σ2
x

and σ2
y , we follow the design model discussed in [101], [102]. That is, opting

for a noise variance that is large enough to allow the gdfs to assign a reasonable

probability to the locations where the MU might be. In the urban scenario, for

example, in most areas, the maximum permitted speed is 50 km/h (≈14 m/s),

resulting in σx = σy = 14T.

4.3.3.2 Measurement Likelihood and Weight Update

The same structure as (4.26) is imposed on the likelihood of the measurements.

That is,

p({ck
i j,ϕ

k
i j,ζ

k
i j}∀ j∈ne(i)|ξk

i ) =

� (ϑ̃k
i |μ(ϑ̃i)

k
+,Σ(ϑ̃i)

k
+)

F∑
f =1

wk
f +� (pk

i |μ(pi)
k
f +,Σ(pi)

k
f +) (4.29)

To obtain the parameters of the above likelihood, we firstly transform (4.24) and

(4.25) into the matrix form. That is,

Bk
i jϑ̃

k
i = rk

i j + zi j, (4.30)

where zi j ∼� (z|0,Rk
i j) with Rk

i j = diag(2σ2
Ti j

,σ2
Ti j
+σ2

Ri j
), and

Bk
i j =

�
ci(tk

4)− ci(tk
2) 0

ci(tk
4) + ci(tk

5) −2

�
, rk

i j =

�
cj(tk

3)− cj(tk
1)

cj(tk
3) + cj(tk

6)

�
.

The mean and covariance matrix of the gdfs across the ϑ̃i axis can be written as

μ(ϑ̃i)
k
+ = Ak

i jr
k
i j, Σ(ϑ̃i)

k
+ = Ak

i jR
k
i j(A

k
i j)

T , (4.31)

where Ak
i j = ((B

k
i j)

T Bk
i j)
−1(Bk

i j)
T .
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To obtain the location parameters corresponding to each gdf, we can assume

that the measurement equations are linear around the points predicted by the pre-

diction step. That is, to approximate them with their first-order Taylor expansions,

the details of which are thoroughly explained in [47], [48] and Section 4.3.2. The

measurement equations we rely on to estimate the parameters of the likelihoods

are (3.4) and

arctan(
yi − yj

xi − x j
) = ϕk

i j, (4.32)

where ϕk
i j is calculated as explained in Section 4.2.2. Carrying out the necessary

mathematical manipulation, we can write the same relation as (4.30) for each

gdf. That is,

Bk
i j, f p

k
i = rk

i j, f + zi j, f , (4.33)

where zi j, f ∼� (z|0,Ri j, f ) with Ri j, f = diag(σ2
Ri j

,σ2
ϕ
). Furthermore,

Bi j, f =

�
ak

i j, f

bk
i j, f

�

with the vectors ak
i j, f and bk

i j, f calculated as

ak
i j, f =

1
vc

%%%%%%μ(pi)
k
f − − p j

%%%%%% , ak
i j, f =

1

v2
c ak

i j, f

�
μ(pi)

k
f − − p j

�
, (4.34)

bk
i j, f = arctan(

ak
i j, f [2]

ak
i j, f [1]

), bk
i j, f =

1

ak
i j, f

�−ak
i j, f [2], ak

i j, f [1]
�

. (4.35)

Finally, ri j, f is constructed as

ri j, f =

�
cj(tk

6)− ak
i j, f +μ(pi)kf − • ak

i j, f −
�
ci(tk

5) −1
� •μ(ξi i)k+

ϕk
i j − bk

i j, f +μ(pi)kf − • bk
i j, f

�
. (4.36)

We note that (4.34) and (4.35) are computed by means of Taylor expansions of

Equations (3.4) and (4.32) around the predicted point μ(pi)kf − with the known

μ(ϑ̃i)k+ obtained by (4.31). Given (4.33) (and similar to (4.31)) we can write

μ(pi)
k
f + = Ak

i j, f r
k
i j, f , Σ(pi)

k
f + = Ak

i j, f R
k
i j, f (A

k
i j, f )

T , (4.37)
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where Ak
i j, f = ((B

k
i j, f )

T Bk
i j, f )
−1(Bk

i j, f )
T . Furthermore, it is straightforward to see

that

wk
f + =� (pk

i = μ(pi)
k
f +|μ(pi)

k
f +,Σ(pi)

k
f +). (4.38)

In other words, the weights are equal to the likelihood of the mean of each gdf.

Having obtained the prediction and correction distribution, in the following we

estimate the posterior distribution.

4.3.3.3 Posterior Estimation

Having taken the necessary steps, we can now compute (4.26) as an approxima-

tion for the posterior distribution in (4.7). Multiplying (4.27) and (4.29), the

parameters of (4.26) can be given by

μ(ϑ̃i)
k =

�
Σ(ϑ̃i)

k
− +Σ(ϑ̃i)

k
+

�−1 �
Σ(ϑ̃i)

k
+μ(ϑ̃i)

k
− +Σ(ϑ̃i)

k
−μ(ϑ̃i)

k
+

�
, (4.39)

Σ(ϑ̃i)
k =

��
Σ(ϑ̃i)

k
−
�−1
+
�
Σ(ϑ̃i)

k
+

�−1�−1
. (4.40)

The final estimation of the clock skew and offset can then be given by

γ̃k
i =

1

μ(ϑ̃i)k[1]
, θ̃ k

i =
μ(ϑ̃i)k[2]

μ(ϑ̃i)k[1]
. (4.41)

Furthermore, each gdf can be updated across pi axis by

μ(pi)
k
f =

�
Σ(pi)

k
f − +Σ(pi)

k
f +

�−1 �
Σ(pi)

k
f +μ(pi)

k
f − +Σ(pi)

k
f −μ(pi)

k
f +

�
, (4.42)

Σ(pi)
k
f =

��
Σ(pi)

k
f −
�−1
+
�
Σ(pi)

k
f +

�−1�−1

. (4.43)

Next, the weights can be updated as

wk
f =

wk
f −wk

f +∑F
f =1 wk

f −wk
f +

. (4.44)

Given (4.42), (4.43), (4.44), the final position estimation can be given by

pk
i =

F∑
f =1

wk
f μ(pi)

k
f , (4.45)

which is equivalent to the expectation of the approximated posterior distribution.
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Algorithm 4 DePF joint sync&loc.
1: Initialize p(ξ0

i ).
2: for all the APs in ne(i) do
3: Perform the time-stamp exchange mechanism described in Section 3.2.3

and Figure 3.4.
4: Estimate the CIR.
5: Estimate the AoA and the link condition
6: end for
7: for all LoS links (ζk

i j=0) do
8: Calculate the mean vector and covariance matrix of the prediction using

(4.27).
9: Construct Bk

i j, Bk
i j, f , Rk

i j, Rk
i j, f , rk

i j and rk
i j, f and update the parameters of

(4.29) using (4.37) and (4.38).
10: Update the parameters of the posterior distribution using (4.39), (4.40),

(4.42), and (4.43).
11: end for
12: Estimate the clock and position parameters using (4.41) and (4.45).
13: if Neff <

2
3 F then

14: Perform resampling.
15: end if
16: Go to step 7.

4.3.3.4 Resampling and Tuning

Resampling is one of the most crucial steps when using PGMFs. Without the

resampling step, the filter would suffer from sample depletion. That is, after a

while, all gdfs but a few will have negligible weight. Consequently, the posterior

will be approximated with only a few gdfs, leading to its underestimation. To

overcome this shortcoming, in each iteration, we replace the minor-weight gdfs

with new ones whose means are sampled from the approximated posterior. The

sample depletion can be monitored throughout the filtering process by calculating

the number of effective gdfs as

Neff =
1∑F

f =1(w
k
f )2

. (4.46)

As can be seen, Neff attains its maximum when all the weights are equal to 1
F and

falls to its minimum when all but a single weight is equal to zero. Following the

suggestion in [80], we perform resampling when the Neff <
2
3 F, striking a balance

between the number of effective particles and the frequency of resampling.

Algorithm 4 summarizes the steps required to perform DePF joint sync&loc.

In particular, we initialize the gdfs in the area of interest in step 1. In steps 2-6,
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Table 4.1: Complexity comparison of L-BRF and PGMF.
L-BRF PGMF

Prediction 2l3 + l2 2l3 + l2

Likelihood/Correction 2l3 + l2 2Fn3 + Fn2 + 2l3 + l2

Estimation 7l2 7Fn2 + nF + 7l2

Total O(l3) O(Fn3 + l3)

the time-stamps are exchanged between a mobile user and its serving APs. Then,

the CIRs are computed, the AoAs are estimated, and the link conditions for all

MU-AP links are determined. In steps 7-11 the posterior distribution is computed

recursively using the measurements from the APs with LoS to the MU. Finally,

in steps 13-15, the resampling is performed if the number of effective gdfs has

dropped below the threshold. The process repeats itself periodically.

4.3.4 Complexity of the Algorithm

The computational complexity of different types of BRF and PF filters including

L-BRF and PGMF has been extensively discussed in [80], [103]. Parameters l,

n, and F denote the number of linear state variables, non-linear state variables,

and gdfs (or mixtures), respectively. For the sake of simplicity, we only consider

the number of multiplications to evaluate the complexity. Table 4.1 shows the

complexity for each step of L-BRF and PGMF. For the prediction step, it can be

seen from (4.27) and (4.28) that two square matrix multiplications and a matrix-

vector multiplication are needed. We note that the computation cost of generating

random variables is O(1). The same holds for the likelihood computation given

(4.31) and (4.37). In the PGMF, the L-BRF is repeated F times for each gdf. For

the estimation step, the L-BRF needs 4 matrix inversions and 3 matrix-vector

multiplications. The same number of multiplications is necessary for each gdf of

the PGMF in addition to the multiplications between the weights and the particles

to obtain the final estimation. Finally, as we need to perform a cumulative sum to

perform resampling, its complexity is considered O(F). It is apparent that PGMF

adds an overhead, however, it turns out that, according to [80], [103], PGMF is

more efficient, especially when the uncertainty of the measurements increases,

which is the case when the time-stamp accuracy is low or a measurement is

conducted under NLoS condition.
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4.4 Simulation Results and Comparison with

State-of-the-Art

In this section, we evaluate the performance of the techniques employed in this

work. In particular, firstly we evaluate the performance of a DNN-based NLoS

identifier. Next, we present the result of AoA estimation. Lastly, the performance

of the joint sync&loc algorithms developed in this work is thoroughly analyzed.

4.4.1 DNN-based NLoS Identification

To perform NLoS identification, the DNN in Figure 4.2 needs to be trained

first. The training data is obtained using the QuaDRiGa channel model [104].
Specifically, the MU-AP CIRs throughout the MU’s movement profile can be

implemented under the “3GPP_38.901_UMi" scenario. We collect 5000 CIR

realizations for each scenario, i.e., LoS and NLoS, 80% of which is used for the

training purpose while the remaining 20% is treated as the test set. To prepare the

CIRs to be fed into the DNN, we firstly input them into a 64-point FFT to obtain

the CFRs. Subsequently, we take the magnitude of the CFRs and normalize each

to its maximum component. The normalized magnitudes of the CFRs are then

fed into a DNN with 2 hidden layers, each comprising 64 (size of FFT) neurons

with Rectified Linear Unit (ReLU) activation function. The loss function in (4.1)

is then optimized using an Adam optimizer to obtain the weights of each neuron.

Furthermore, the probability that a CFR corresponds to a LoS and NLoS link

condition is indicated by the DNN’s two output neurons with softmax activation

function. Note that we could alternatively use the CIRs without transforming

them into CFRs. The number of neurons in that case would be the size of CIRs.

The same holds when estimating the AoA using the MUSIC algorithm. There, the

number of snapshots Ns can be equal to the number of time points or the size

of FFT. Furthermore, we only draw on the magnitude as the phase is noisy and

requires noise reduction in order to be used as input, which is out of the scope of

this dissertation.

Figure 4.5 depicts the accuracy of the NLoS-identifier based on SVM, a classical

ML algorithm, and DNN, the method proposed in this work. As can be seen, the

DNN-based method delivers higher accuracy, outperforming the classical method.

Specifically, DNNs are more powerful regarding estimating the classifier function,

and, therefore, they deliver superior performance. The performance remains high

even if we employ the DNN in an environment other than that of the training
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Figure 4.5: Comparison of two ML schemes when performing NLoS-identification.
Pf (LoS)/Pf (NLoS) denotes the probability that the true condition of
the links detected as LoS/NLoS is NLoS/LoS.

data, i.e., Urban Macro (UMa) cells instead of UMi. If the environment is too

dissimilar, the performance will drastically deteriorate. In our simulations, we

observed a poor accuracy of 61% for the rural-urban scenario, which is highly

different from the UMi or UMa.

As mentioned before, the extremely high accuracy provided by the DNN is

crucial as determining the link condition is among the most important decisions

to be taken. In particular, false detection of NLoS links as LoS Pf (LoS), not only

can result in a poor estimation of the MU position and clock parameters, but

also may lead to divergence of the filter. This occurs since the AoA estimation as

well as the time-based distance measurement (which in the case of this work is

carried out through time-stamp exchange) are highly inaccurate for NLoS links.

4.4.2 AoA estimation

To evaluate the performance of the MUSIC algorithm, we arrange a specific

simulation setup where an MU moves with the velocity of 2 m/s along the x axis

from the point [x = 0, y = 0, z = 1.5] until [x = 70, y = 0, z = 1.5]. An AP with

a Nant × Nant UPA and tilted 20◦ is located at [x = 35, y = −5, z = 10], equally

distant from the two edges of the trajectory. Figure 4.6 depicts such a setup where

the MU’s trajectory and AP’s coverage area (for 23 dBm power allocated to each

antenna element) are observable. Furthermore, the elements are assumed to be

patch antennas with 90◦ and 180◦ beam opening in the elevation and azimuth

plane, respectively. Such a setup covers all angles that an MU might most likely

have with respect to an AP, i.e., from 6◦ to 171◦. Furthermore, it represents the
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Figure 4.6: Simulation setup for calculating the AoA.

basic movement of the MUs in an urban scenario, e.g., the movement profile of

the users shown in Figure 4.1 can be seen as the combination of that depicted

in Figure 4.6. Lastly, at each time step, the AoA is estimated using the MUSIC

algorithm fed with the corresponding CIR generated by QuaDRiGa. The algorithm

estimates the azimuth and elevation AoA using the binary exhaustive search up

to the 0.5 degree accuracy level, where the number of search bins are 40 and 20,

respectively.

Figure 4.7 depicts the Root Mean Square Error (RMSE) of AoA estimation for

several UPA sizes. As can be observed, the RMSE of azimuth AoA estimation

remains under 1.5◦ for almost all investigated UPAs, which enables a precise

localization of the MUs. Nevertheless, in our simulations, we observed that for

smaller UPAs the RMSE increases drastically due to the large errors at the edges

of the trajectory. Although such cases occur rarely, they can potentially lead to

filter divergence. Moreover, the same behavior is observed for the elevation AoA

estimation. Generally, as can be seen in the figure, the RMSE is slightly higher for

the elevation AoA since the MU is always in the [10◦ − 50◦] angle sight of the AP.

We know that UPAs’ estimation performance deteriorates as we move towards the

edges. In practice, due to the density of the APs, the MUs are expected to be in

the azimuth angle range of [20◦−150◦], and elevation angle range of [20◦−50◦],
i.e., AP density of less than 60 meters.
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Figure 4.7: AoA estimation accuracy.

4.4.3 Joint Synchronization and Localization

To verify our proposed approach, we perform analysis for the scenario shown in

Figure 4.1, which is regarded in [6], [9] as challenging. A car commences its

journey by accelerating to reach the velocity of 14 m/s (= 50 km/h). It continues

moving with constant velocity and decelerates upon approaching the intersection

until it completely stops (e.g., due to the red light). The same repeats between

two intersections. At the second intersection, it begins moving and takes a turn

and continues to accelerate to 14 m/s limit until it exits the map. All turns as

well as acceleration coefficients are chosen randomly. During its journey, at each

joint sync&loc round k, the MU exchanges time-stamps with a fixed number of

APs (NAP) in ne(i), the link to each of which is LoS/NLoS with the probability of

0.8/0.2. The APs are grouped into ne(i) based on the distance criteria, that is,

ne(i) includes the NAP closest APs to the i-th MU. A further assumption is that at

each joint sync&loc period T, Nant × Nant CIRs are available at each AP connected

to the MU. In our simulations, the CIRs are obtained using the QuaDRiGa channel

model. More explicitly, at each round k, knowing the true MU-AP distance

and the link condition, i.e., LoS or NLoS, the CIRs are generated using the

“3GPP_38.901_UMi" scenario of the QuaDRiGa channel model. Moreover, the

RMSEs obtained by [6], [9] serve as the baseline to our approach. In particular,

these works rely primarily on the ToA and AoA estimations fused with the aid of

an EKF to compute the clock and position parameters. The second scheme with

which we compare our proposed algorithm is the L-BRF proposed in [47], [48]
and explained in Section 4.3.2. The aforementioned approaches are the most
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Table 4.2: Simulation parameters
General parameters Values
# of independent simulations 1000
Initial random delays (θ̃i) � (−103,103) ns
Initial random skew (γi) [0− 100] ppm
Max. MU velocity 14 (m/s)
AP density 50 m
Distance traversed by the MU 600 m
QuaDRiGa parameters
Scenario 3GPP_38.901_UMi
Center Frequency / FFT size (Ns) 3.8 GHz / 64
# of MU/AP antenna (Nant) 1 / 3× 3
Filter Parameters
Period of joint sync&loc (T) 100 ms
Process noise covariance matrix (Qn) diag(10−5, 10,1.5, 1.5)
# of Gaussian mixtures (gdfs) 500
DNN parameters
lH , nH 2, 64
Optimizer Adam
# of epochs 10
Batch size 16
Activation function of hidden layers ReLU
Activation function of output layer Softmax

relevant as they use the same inputs as our proposed method does. We begin our

analysis with L-BRF and then compare DePF and L-BRF with [6], [9].
We initialize all the clock offsets from the uniform distribution � (−103, 103)

ns. The initial skews of all clocks are drawn from the uniform distribution

� (1− 10−4, 1+ 10−4), which corresponds to skew values between 0 and 100

part-per-million (ppm). The covariance of the clock process noise Qn(ϑ̃i) is set to

diag(10−5, 100) to account for the residual errors from the previous iterations

as well as the external noises on the clock skew and offset. The covariance of

position process noise Qn(pi) amounts to diag((14T )2, (14T )2) to account for

every possible movement of the MU. All additional simulation parameters can be

found in Table 4.2.

4.4.3.1 Analysis of L-BRF Joint sync&loc

Figure 4.8 shows the CDF of the clock offset and position estimation error for

different time-stamping error mean μT (or alternatively μR) and σT = 1ns. Note

that we use the truncated distribution in the simulations as ri/rj and ti/t j cannot
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Figure 4.8: Performance of joint sync&loc algorithm (σT = 1ns).

be negative. As can be observed, the error of the position estimation increases as

the mean delay of time-stamping grows. However, the clock offset estimation

error does not show any increase. The reason is disguised in Equations (4.24)

and (4.25), which are obtained by subtracting Equation (3.3) from Equation (3.2)

and adding Equation (3.3) to Equation (3.4). As can be seen, the mean of the

time-stamping error is cancelled out in the terms T k,1
i j − T k,0

i j and T k,1
i j − Rk

i j. This

is not the case for the position estimation as the position parameters (embedded

in di j) will always depend on Rk
i j no matter how the time-stamp equations are

simplified. In practice, however, we can calibrate out the mean of time-stamping

error, thereby keeping the position estimation error low. Thus, the main source of

error in offset and position estimation becomes the uncertainty in time-stamping.

In the following, we analyse the impact of time-stamp uncertainty on the position

and clock offset estimation error.

Figure 4.9 shows the CDF of the clock offset and position estimation error

for different time-stamping error standard deviation σT (or alternatively σR)

and μT = μR = 0. As can be observed, the error for both position and offset

estimation increases as the uncertainty of time-stamping grows. In particular, high

uncertainty in time-stamping leads to a larger error when estimating the clock

skew and offset. Since the offset error translates to an error in position estimation,

we observe a degradation in the position estimation as well. According to the

figure, sub-meter and sub-ns estimation accuracies require the time-stamping to

be less than 2 ns. Typically, new commercial off-the-shelf devices are capable of

performing time-stamping with the uncertainty less than 5ns.
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Figure 4.9: Performance of joint sync&loc algorithm for different time-stamp
uncertainties (μT = 0ns).

Figure 4.10 presents the CDF of position and clock offset estimation versus the

number of employed APs for σT = 2 for μT = μR = 0 ns. It can be noticed that the

position and clock offset estimation error drop with the increase of the number of

APs. In particular, given that the APs are synchronized, the growth in the number

of APs serving the MUs increases the number of collected time-stamps providing

more information about the clock offset and AP-MU distance estimation. More

APs not only mitigates the impact of time-stamping uncertainty, but also helps

in calibrating out μT . Nevertheless, the gain obtained from adding the third AP

is clearly less significant than that from the second one. The reason is that the

third AP is far from the MU, which results in a less informative MU-AP time-

stamp exchange and, therefore, does not significantly improve the accuracy of

estimation. We can observe that the localization with two APs ensures sub-meter

accuracy.

Considering all Figures, we can remark that while the uncertainty in time-

stamping, i.e., σT and σR, can be mitigated using BRF (especially for the 1-AP

case), the delay in time-stamping, i.e., μT and μR, can only be mitigated by either

employing multiple APs, or calibrating out, or improving the hardware deployed

for time-stamping. In particular, according to Figures 4.9 and 4.10, for sub-meter

accuracy localization with a single AP, the time-stamping mechanism should be

designed such that σT is kept below 2ns.
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Figure 4.10: Performance of L-BRF joint sync&loc algorithm. σT = 2ns, μT = 0ns.

4.4.3.2 Analysis of DePF Joint sync&loc

Figure 4.11 shows the RMSE of the clock offset estimation error for three joint

snyc&loc algorithms. The DePF algorithm is compared with two linear Bayesian

methods, i.e., EKF [9] and L-BRF [48], in multiple scenarios. In particular, we

compute the RMSEs in three scenarios, with the number of LoS APs ranging from

1 to 3. In another additional scenario, we consider the MU being connected to

three APs, where each MU-AP link condition is set to LoS with the probability of

0.8. As can be seen, for all scenarios, the L-BRF and DePF deliver an identical

performance, what is expected as they rely on the same approach to estimate the

clock parameters. On the other hand, the performance of the EKF falls behind

as it does not explicitly utilize the synchronization signals to estimate the clock

offset. Moreover, the synchronization algorithm scheme utilized to synchronize

the APs, i.e., hybrid BP-BRF network synchronization, leads to a more precise

inter-AP synchronization and consequently lower MU clock offset estimation

error.

Figure 4.12 depicts the RMSE of position estimation error for three joint

snyc&loc algorithms. The DePF algorithm is compared with two linear Bayesian

methods, i.e., EKF and L-BRF, in the same scenarios as in 4.11. As can be

seen, for almost all scenarios, the DePF algorithm delivers superior performance.

In particular, since the DePF uses a higher number of gdfs, rather than only

one, to represent the posterior distribution, it can estimate the position more

accurately. Furthermore, DePF stands out when dealing with NLoS links. This is

straightforward to notice as the RMSE of position estimation is lower for DePF in



72 Chapter 4 Joint Statistical Synchronization & Localization

1-AP LoS 2-AP LoS 3-AP LoS 3-AP
0

2

4

6

8

10
33

5

1

3

1.6 1.3 0.8 1.251.6 1.3 0.8 1.25

# of APs

C
lo

ck
of

fs
et

R
M

SE
(n

s)

EKF L-BRF DePF

Figure 4.11: Performance comparison of three joint synchronization and localiza-
tion algorithms in terms of clock offset estimation.
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Figure 4.12: Performance comparison of three joint synchronization and localiza-
tion algorithms in terms of position estimation.

the 3-AP scenario where the L-BRF employs the same NLoS identifier as DePF.

Additionally, unlike EKF and L-BRF, DePF does not need any initialization, which is

of crucial importance in practice as initialization would require the APs to request

position estimation from the MUs, what may not be always possible. Overall,

considering 2-AP LoS, 3-AP LoS, and 3-AP scenarios, the linear Bayesian approach

and DePF give similar performance when a reliable initialization and MU-AP

links with know LoS condition are available. Nevertheless, such requirements

are hard to guarantee in practice, rendering EKF and L-BRF algorithms futile in

real-world scenarios.
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Figure 4.13: Performance comparison of L-BRF and DePF when estimating the
MUs’ clock offset.

Hereafter, all simulations have been carried out assuming that there is always

at least one LoS MU-AP link. Figure 4.13 presents the CDF of the clock offset

estimation error when the MU is connected to multiple number of APs. It can be

seen that the estimation accuracy increases as both L-BRF and DePF utilize more

measurements to estimate the clock offset and skew. In fact, since the APs are

synchronized with a high precision, collecting time-stamps from each additional

AP does provide additional information about the statistics of MU’s clock param-

eters and, therefore, increases the accuracy of the estimation. Furthermore, the

performances of both schemes are identical as they deploy the same approach to

estimate the clock parameters. That is, both model the clock parameters with a

single Gaussian function.

Figure 4.14 presents the CDF of the position estimation error when the MU is

connected to multiple number of APs. As can be seen, the position estimation

error is less than 1 meter in 90% of the cases for the DePF algorithm. We observe

that DePF significantly outperforms the L-BRF. In particular, unlike the L-BRF

which approximates the posterior with a single Gaussian distribution, in DePF,

the approximation is based on multiple gdfs. Consequently, the approximated

posterior is closer to the true one, resulting in a more precise position estimation.

Another subtle observation is that although the position estimation error decays

with the growth in the number of APs, increasing the number of APs from 2 to 3

only slightly improves the performance. In fact, the third AP is far away from

the MU, leading to a poorer (AoA and time-stamp) measurement accuracy com-
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Figure 4.14: Performance comparison of L-BRF and DePF when estimating the
MUs’ position.

pared to that of the first two APs. Hence, it does not provide substantial further

information about the posterior distribution of the MU’s location. Furthermore,

the performance difference between DePF and L-BRF is more pronounced for

1-AP indicating that DePF is more successful when we have a limited number of

measurements.

Figure 4.15 indicates the CDF of position estimation for multiple number of

gdfs. It can be noticed that the position estimation improves with the increase

of the number of gdfs. This is expected as in PGMFs, the posterior distribution

is approximated by multiple gdfs. Consequently, the more gdfs we employ, the

more accuracy we achieve, albeit with higher computation time, which linearly

increases with respect to the number of gdfs F (Table 4.1). A trade-off can be

struck between the computational complexity and the accuracy by determining

the number of gdfs. In particular, we can see from the figure that the improvement

in accuracy is negligible when increasing F from 200 to 500.

Figure 4.16 shows the CDF of clock offset estimation error for a single AP for

different time-stamp uncertainties, i.e., σT = 2,4,6. As can be seen, the clock

offset estimation accuracy drops as the σT grows. It remains, however, less than

6 ns in 90% of the cases. Such degradation can cause an additional error in

position estimation as both parameters are intertwined given (3.4). Nevertheless,

the uncertainties of the time-stamping of the state-of-the-art devices are expected

to be below 5 ns. Moreover, the destructive impact of the uncertainty can be

also mitigated by employing more APs as discussed previously and shown in
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Figure 4.15: Performance of joint sync&loc algorithm for different number of
gdfs.
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Figure 4.16: Clock offset estimation performance of joint sync&loc algorithm
with different number of APs involved.

Figure 4.13. Again, the same performance L-BRF and DePF is due to the fact that

they use the same estimation approach for the clock parameter estimation.

Figure 4.17 shows the CDF of position estimation conducted by a single AP

for different time-stamp accuracy. It can be noticed that the position estimation

accuracy deteriorates with the growth in the time-stamp uncertainty. Specifically,

the growth in uncertainty results in more erroneous distance measurements and

offset estimation that, consequently, worsens the position estimation accuracy.

Nevertheless, it can be readily seen that DePF is more successful in mitigating
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Figure 4.17: Position estimation performance of joint sync&loc algorithm with
different time-stamp accuracy.

the destructive effect of the time-stamp uncertainty on the position estimation.

Moreover, as seen in Figure 4.13 and 4.14, for both DePF and L-BRF, employing

more APs can alleviate the negative impact of large time-stamping uncertainty

on both offset and position estimation.

To summarize the discussion on L-BRF and DePF, from the Figures 4.11, 4.13,

and 4.16 we can conclude that both L-BRF and DePF deliver the same perfor-

mance in terms offset estimation accuracy. The estimation accuracy is highly

dependent on the time-stamp uncertainty and the number of APs serving the MU.

Furthermore, from Figures 4.12, 4.14, and 4.17, we can observe that generally

DePF outperforms L-BRF in terms of position estimation accuracy. The gap be-

tween their performances is more pronounced in the presence of limiting factors

such as low number of serving APs and inaccurate measurements.

4.5 Summary

We presented two joint sync&loc techniques for MUs in wireless communication

networks (summarized in Table 4.3). These algorithms are primarily based

on the hybrid network synchronization developed in Chapter 3. The L-BRF

was adopted by linearizing the measurement equations along with the BRF

filter. Moreover, we introduced the DePF algorithm, which relies on PGMFs

functioning in a hybrid parametric and particle-based manner, to obtain the

posterior distribution of the clock and position parameters, thereby estimating the
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clock offset and position of MUs. An extensive simulation campaign was carried

out and comprehensive results were presented. It was shown that, firstly, an

accurate NLoS identification is essential if a successful and robust joint sync&loc

algorithm is to be developed. Furthermore, we indicated that DePF is generally

more resilient to deal with real-word limiting factors such as lack of MU’s initial

position, erroneous measurements, and uncertainty in time-stamping.

Joint sync Algo-
rithm

Corresponding
PGM

Strengths Weaknesses

Linearized BRF
(L-BRF)

Dynamic
Bayesian Net-
works (DBNs)

Low complexity Low accuracy
with low number
of access points,
requires initial-
ization

DNN-assisted
Particle-based
(DePF)

DBNs High accuracy
even with low
number of access
points

High complexity

Table 4.3: Summary of the joint sync&loc algorithms presented in this chapter.
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Chapter 5

Conclusions and Future Works

We explained that a wide variety of services in communication networks are only

deliverable when Mobile Users’ (MUs) locations are known. To localize the MUs,

the Access Points (APs) rely mostly on AP-MU time measurements to cooperatively

estimate the position. For such methods to function, APs are required to be

synchronized among each other as well as with the MUs. In this dissertation,

after introducing the preliminary statistical tools, i.e., Probabilistic Graphical

Models (PGMs), in Chapter 2, we firstly addressed the inter-AP synchronization

in the framework of network synchronization in Chapter 3. Subsequently, in

Chapter 4, we tackled the MU joint synchronization and localization (sync&loc)

problem. In what follows, we summarize the contributions of these two chapters

and point to the future possible research directions.

5.1 Conclusions

In this section, we highlight the main contributions made by this dissertation.

Specifically, we briefly mention the main results of Chapters 3 and 4, which

dealt with network synchronization and joint synchronization and localization,

respectively.

Synchronization: In Chapter 3, we presented two Bayesian approaches toward

clock offset and skew estimation in communication networks. In particular,

Belief Propagation (BP) was employed to perform high-precision network-wide

synchronization, albeit at the cost of a high number of time-stamp exchanges and

message passing iterations. Additionally, Bayesian Recursive Filtering (BRF) was

leveraged to carry out pairwise synchronization, delivering a superb performance

at the edge of the network. Based on these two algorithms, a hybrid Bayesian

approach was proposed to not only fulfill a low relative time error at a local level
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but also to maintain a high synchronization accuracy at a global level. Simulation

results show that the proposed hybrid approach achieves faster and more frequent

synchronization at the cost of only a slight deterioration in performance.

MU joint sync&loc: In Chapter 4, we presented two schemes for joint sync&loc

of MUs in communication networks, a) Linearized BRF (L-BRF), and b) DNN-

assisted Particle-based filtering (DePF). In particular, we leveraged an asymmetric

time-stamp exchange mechanism, traditionally utilized for time synchronization,

to estimate the clock offset and skew while simultaneously obtaining information

about AP-MU distance. Further on, with the aid of L-BRF and DePF, we combined

the aforementioned information with angle of arrival estimation and the link

condition, i.e., line-of-sight or non-line-of-sight, to localize the MUs. Simulation

results indicate that while the performance of the proposed algorithm is promising

and can outperform the state-of-the-art algorithms, the position and clock offset

estimation errors are highly dependent on the delay in hardware time-stamping

as well as its accuracy. The negative impact of this dependency can be mitigated

by improving the hardware time-stamping mechanism and deploying more APs

for performing MU joint sync&loc. In addition, it can be noticed that generally

DeBRF outperforms L-BRF in terms of position estimation accuracy. The gap

between their performances is more noticeable when there are limiting factors

such as low number of serving APs and inaccurate measurements.

5.2 Future Works

In the following, we provide a number of possible future directions. In particular,

the research problems arising from the contributions of this dissertation are

mentioned and briefly explained.

Synchronization: Given the promising simulation results, a possible future

direction can be the implementation of the hybrid synchronization algorithm

presented in this work using commercial-of-the-shelf hardware. Pursuing such a

direction can reveal, on the one hand, the limitations caused by the hardware

components, and, on the other hand, the challenges we face when implementing

message passing in practice. The former would determine how accurately the

time-stamping can be implemented and, therefore, reveals the performance

boundary in both network synchronization and MU joint sync&loc. The latter

would indicate how feasible BP is at the network level.
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MU Joint sync&loc: A particularly interesting research problem is to cross-

validate the obtained simulation results. Specifically, the impact of the time-stamp

exchange on the accuracy of joint sync&loc can be investigated. Later on, such

scheme can be combined with the previous implementation of hybrid synchro-

nization to build up an end-to-end demonstration. Furthermore, it can reveal the

challenges for implementing the end-to-end model such as time-stamp exchange,

collection of time-stamps in a single central unit responsible for performing the

joint sync&loc algorithm, and the time efficiency of the algorithm.

Another compelling track to follow is to design the NLoS-identification and AoA

estimation based only on Received Signal Strength (RSS). This may be favorable

to some of the currently in operation devices without the CIR estimation capability.

In particular, RSS is readily available in all the communication devices and is

periodically computed when exchanging control signals. Therefore, an NLoS-

identification scheme based on RSS can be more ubiquitously employed.

Finally, although the evaluation scenarios were mostly outdoor, the joint

sync&loc algorithms presented in this dissertation can be applied to the indoor

environment as well. Therefore, the application of L-BRF and DePF in an indoor

environment, both in simulation and practice, is another possible trajectory that

can be followed. The challenge in indoor environments is that typically there is

only one AP with LoS to the MU due to the distribution of the APs (one per room

or hall). In such an environment, highly precise NLoS identification is of crucial

importance.
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